Overrings of Prüfer Domains

ROBERT W. GILMER, JR.

Department of Mathematics, Florida State University, Tallahassee, Florida

Communicated by Nathan Jacobson

Received July 3, 1965

Let D be an integral domain with identity having quotient field K. By an overring of D we mean any domain between D and K. By a quotient ring of D we mean an overring of D of the form D_N for some nonempty multiplicative system N contained in $D - \{0\}$. We say D_N is a prime quotient ring of D if $N = D - P$ for some proper prime ideal P of D and, following the notation of $[10, \text{p. 228}]$, we write $D_P = D_N$ in this case. We say that D has the QR-property if each overring of D is a quotient ring of D [4]. If for each maximal ideal M of D, D_M is a rank-one discrete valuation ring, then D is almost Dedekind. If Δ is the set of maximal ideals of D, we say D has property (#) if for Δ_1 and Δ_2 distinct subsets of Δ we have $\bigcap_{P \in \Delta_1} D_P \neq \bigcap_{P \in \Delta_2} D_P$. In [3], it was conjectured that an almost-Dedekind domain need not have property (#). The validity of this conjecture is established here by Theorem 3, which states that an almost-Dedekind domain satisfying property (#) is a Dedekind domain. In Section 1 we consider property (#) in an arbitrary integral domain D with identity. In Section 2 we consider the case in which D is a Prüfer domain. The examples of Section 3 show that the results obtained are, in most cases, the best possible.

1. Preliminary Results on Property (#)

In this section D denotes an integral domain with identity having quotient field K and Δ denotes the set of maximal ideals of D. We consider consequences of property (#) on D.

Lemma 1. D has property (#) if and only if for $P \in \Delta$ and $\Delta_P = \Delta - \{P\}$, $\bigcap_{M \in \Delta_P} D_M \neq D_P$.

Proof. The condition is obviously necessary in order that D have property (#). And if the condition holds, let Δ_1 and Δ_2 be distinct subsets of Δ, say,

1 This research was supported by National Science Foundation Grant GP-4127.
$P \in A_1 - A_2$. Then $D_P \supseteq \cap_{M \in D_1} D_M$, but $D_P \nsubseteq \cap_{M \in D_2} D_M \subseteq \cap_{M \in D_3} D_M$. Consequently $\cap_{M \in D_2} D_M \neq \cap_{M \in D_3} D_M$. In particular, $\cap_{M \in A_1} D_M \neq \cap_{M \in A_2} D_M$ and D has property ($\#$).

Lemma 2. If for $P \in A$, $P \notin \cup_{M \in D} M$, then D has property ($\#$).

Proof. If $P \in P - \cup_{M \in D} M$, then $1/p \notin (\cap_{M \in D} D_M) - D_P$. Thus D has property ($\#$) by Lemma 1.

For D one-dimensional, the condition that $P \notin \cap_{M \in D} M$ is equivalent to P’s being the radical of a principal ideal, or to the condition that there is a P-primary ideal of D which is principal. Thus by taking D to be a Dedekind domain whose class group is not a torsion group [cf. 4, p. 102; 9, p. 146], we see that the conditions of Lemma 2 are not necessary in order that D have property ($\#$). But for D having the QR-property they are necessary as is shown by the following result.

Lemma 3. If D has the QR-property, if $\{P_\alpha\}$ is a set of proper prime ideals of D and if P is a proper prime distinct from each P_α, the statements “$P \subseteq \bigcup P_\alpha$” and “$D_P \supseteq \bigcap D_{P_\alpha}$” are equivalent.

Proof. In the proof of Lemma 2 we have shown that if $D_P \supseteq \bigcap D_{P_\alpha}$ then $P \subseteq \bigcup P_\alpha$. The converse follows immediately from Proposition 1.2 of [4].

Corollary 1. If D has the QR property and is one-dimensional, then D has property ($\#$) if and only if each maximal ideal of D is the radical of a principal ideal.

Corollary 1 shows that for a wide class of almost-Dedekind domains J, J has property ($\#$) if and only if J is Dedekind. This result will be proved in general by Theorem 3. Namely, let J be the integral closure of Z in an infinite algebraic number field K. K can be expressed as the union of an ascending sequence of finite algebraic number fields; $K = \bigcup K_i$, and $J = \bigcup Z_i$ where Z_i, the integral closure of Z in K_i, is well known to be a Dedekind domain with a finite class group, hence a domain with the QR-property [2, p. 200], [4, p. 100]. Thus J is one-dimensional and has the QR-property [4, p. 99]. Consequently, if J is almost Dedekind and has property ($\#$) then Corollary 1 shows that if M is maximal in J, (m) is M-primary for some $m \in M$. By Theorem 1 of [3], $(m) = M^k$ for some positive integer k so that M is invertible. Then by a well-known result of Nakano [7], J is Dedekind.

Remark. By Corollary 1.4 of [4], J obtained as above is almost Dedekind if and only if no maximal ideal of J is idempotent. In [8], Nakano gives necessary and sufficient conditions on the sequence $\{K_i\}$ in order that J contain no indempotent maximal ideals.
2. PRÜFER DOMAINS AND PROPERTY (#)

Our notation in this section is as in the first section except that here we always require that D be a PRÜFER domain. The principal result of the section is Theorem 3 which shows that if D is almost Dedekind and has property (#) then D is Dedekind. Our first result is a generalization to PRÜFER domains of Theorem 4 of [3]. Only part (i) of Theorem 1 is used in the remainder of this paper.

THEOREM 1. Suppose D' is an overring of D, and let Ω be the set of prime ideals P of D such that $PD' \subseteq D'$. Then

(i) If M is a maximal ideal of D' and if $P = M \cap D$, then $D_P = D_{M'}$ and $M = P D_P \cap D'$. Therefore D' is PRÜFER.

(ii) For P a proper prime ideal of D, $P \in \Omega$ if and only if $D_P \supsetneq D'$. Further, $D' = \bigcap_{P \in \Omega} P D_P$.

(iii) If A' is an ideal of D' and if $A = A' \cap D$, then $A' = A D'$.

(iv) $(PD')_{P \in \Omega}$ is the set of proper prime ideals of D'.

Proof. In (i) we have $D_{M'} = D_{M \cap D} = D_{M'} = D_{P D_P}$ for some prime ideal Q of D. Hence $Q = P \cap D_P$ for some prime ideal $P = M \cap D$. Therefore $MD_{M'} = P D_P$ and $D' = (P D_P)_{P \in \Omega}$. Let $P = M \cap D$. Then $P = M \cap D_P$ and $P = M \cap D_P$. Thus $D_{M'} = D_P$ and $M = MD_{M'} \cap D' = PD_P \cap D'$ as asserted.

The proof of (ii) follows by a slight modification of the proof of part (e) of Theorem 4 of [3]. Also the proof in [3] shows that (iv) is valid as soon as (ii) and (iii) hold. Hence to complete the proof we establish (iii). We may assume $(0) \subseteq A' \subseteq D'$. Obviously $AD' \subseteq A'$. Now $A' = D' = (A' D_{M'} \cap D$), M_a running over all maximal ideals of D' [(11, p. 94)]. If $P_a = M_a \cap D$ we have $D_{M_a} = D_P$ by (i). Hence if $x = A'D_{M_a} = A'D_{P_a}$, then $x = a'/v$ for some $a' \in A'$, $v \in D - P_a$. But $A' \subseteq D$ so $a' = a/u$ for some $a \in D$, $u \in D - P_a$. We then have $a = a'u \in A' \cap D = A$ and $x = a/u \in AD_{P_a} = AD'D_{P_a} = AD'D_{M_a}$. We conclude that $A'D_{M_a} = AD'D_{M_a}$, so for each α so that $A' = \bigcap (A'D_{M_a} \cap D') = \bigcap (AD'D_{M_a} \cap D') = AD'$.

COROLLARY 2. Suppose D is one-dimensional. If D has property (#), so does each overring of D.

Proof. Let D' be an overring of D, let M be maximal in D' and let $\{M_a\}$ be the set of maximal ideals distinct from M. If $P = M \cap D$ and $P_a = M_a \cap D$, then $(P, P_a) \subseteq A$ since D is one-dimensional. Theorem 1 shows that the ideals P, P_a, P_b are distinct for $\alpha \neq \beta$, that $D_{M'} = D_P$, and that $D_{M_a} = D_{P_a}$.
for all α. Since D has property (#) we then have $D_{M'} = D_P \cap D_{P\alpha} = \cap D_{M\alpha}$.

Lemma 4. Let D^* be the integral closure of D in L, an algebraic extension of K. Then

(a) D^* is Prüfer.

(b) if P is prime in D, if P^* is prime in D^*, and if v and v^* are the valuations of K and L, respectively, associated with the valuation rings D_P and D_{P^*}, respectively, the concepts "v extends v^*" and "P^* lies over P" are equivalent.

(c) if L is of finite degree over K, there are only finitely many primes of D^* lying over a given prime P of D.

Proof. (a) is proved by Krull in [5, p. 555]; (b) follows from Lemma 1 of [II, p. 24]; then (c) follows from (b) and Corollary 4 [II, p. 27].

Lemma 5. Let v be a valuation of a field L_0 with valuation ring D_v and let $\{L_i\}^\infty_{i=0}$ be an ascending sequence of finite algebraic extensions of L_0. Let $F = \cup_{i=0}^\infty L_i$, let $\mathcal{S} = \{v_\lambda\}_{\lambda \in \Lambda}$ be the set of valuations of F which are extensions of v, and let F_λ be the valuation ring associated with v_λ. In order that for each $\lambda \in \Lambda$ we have $F_\lambda \supseteq \cap_{v \neq v_\lambda} F_v$, it is necessary and sufficient that \mathcal{S} be finite.

Proof. If $\mathcal{S} = \{V_1, V_2, ..., V_n\}$ is finite, then because F is algebraic over L_0, \mathcal{S} is an independent set of valuations. That $F_i \supseteq \cap_{v \neq v_i} F_v$ for each i then follows from the approximation theorem for independent valuations [II, p. 41].

Now suppose \mathcal{S} is not a finite set. v has only finitely many extensions $w_{i1}, ..., w_{ij}$ to L_1 and for $\lambda \in \Lambda$, v_λ is an extension of some w_{ij}. Hence there exists an extension w_1 of v to L_1 such that w_1 has infinitely many extensions to F. By induction we obtain a sequence $\{w_i\}_{i=1}^\infty$ such that for each i, w_i is a valuation on L_i having infinitely many extensions to F and such that for $i \leq j$, w_j is an extension of w_i to L_j. The sequence $\{w_i\}_{i=1}^\infty$ then defines a unique valuation w on F such that w_i is the restriction of w to L_i for all i. We show that $F_w \supseteq \cap_{v \neq v_i} F_{v_i}$. Thus let $x \in F - F_w$. For some integer i we then have $x \in L_i - F_w$; hence $w_i(x) < 0$. By assumption there exists an extension v_{λ} of w_i to F distinct from w. Hence $v_{\lambda}(x) = w_\lambda(x) < 0$ so $x \notin \cap_{v \neq v_i} F_{v_i}$, implying our desired conclusion.

Corollary 3. Suppose D is one-dimensional and has property (#). Let J be the integral closure of D in L, an algebraic extension of K which may be expressed as an ascending union of finite algebraic extensions of K. Then J has property (#) if and only if for each maximal ideal M of D, there are only finitely many maximal ideals of J lying over M.
Proof. By Lemma 4, J is one-dimensional and Prüfer. Hence if M is a maximal ideal of J there is associated with J_M a valuation w_M of L. Similarly, for P maximal in D there is a valuation v_P of K associated with D_P. By Lemma 4, M ∩ D = P if and only if w_M extends v_P. Lemma 5 then shows that if J has property (♯) each v_P must have only finitely many extensions to L. Hence for P maximal in D, there can be only finitely many maximal ideals of J lying over P.

Conversely, if each maximal ideal of D lies under only finitely many maximal ideals of J, let M be maximal in J and let M_1, ..., M_n be the other maximal ideals of J lying over P = M ∩ D. If {M_i} is the set of all other maximal ideals of J and if \{P_β\} is the set of maximal ideals of D distinct from P, then D_P \neq \bigcap D_β by hypothesis on D. Hence if \(x \in (\bigcap D_β) - D_P \), then \(x \in J_M - (\bigcap M_i) \). Now \(M \neq \bigcap M_i \) so we choose \(t \in (\bigcap M_i) - M \). Since w_M has rank one for each i, there exists a positive integer k such that w_M(t^k) > w_M(x) for each i. For such a k we then have \(t^k x \in (\bigcap M_i) \cap (\bigcap M_i) \), \(t^k x \notin J_M \). Consequently, J has property (♯).

Lemma 6. Suppose D is one-dimensional. A sufficient condition in order that D have property (♯) is that each maximal ideal of D contain an element which is contained in only finitely many maximal ideals of D.

Proof. The proof is quite similar to that of the converse of Corollary 3. Let M be a maximal ideal of D and let \(\{M_α\} = Δ - \{M\} \). Let \(v \) be the valuation associated with D_M and \(v_α \) the valuation associated with D_M. Let m be a nonzero element of M which is contained in only finitely many maximal ideals of D distinct from M. Let this set be \(\{M_i\}_{i=1}^n \). Then for \(t \in (\bigcap M_i) - M \) and for a suitably chosen positive integer k we have \(v_α(t^k/m) \geq 0 \) for each α while \(v(t^k/m) = -v(m) < 0 \). Hence \(t^k/m \in (\bigcap D_α) - D_M \) and D has property (♯) as asserted.

Note. Example 1 of Section 3 shows that a one-dimensional Prüfer domain in which each nonunit is contained in only finitely many maximal ideals need not be almost Dedekind.

Before proving Theorem 2 we establish the following lemma.

Lemma 7. Suppose D is one-dimensional and that the Jacobson radical of D is nonzero. If \(Δ = \{M_β\} \) and if \(M_α \in Δ \) is the radical of an ideal with two generators, then there exists \(m_α \in M_α \) such that \(1 - m_α \in M_β \) for each \(β ≠ α \).

Proof. Let \(x \) be a nonzero element of the Jacobson radical of D. If \(v_β \) is the valuation associated with D_M for each β, then \(v_β(x) > 0 \) for each β. By hypothesis, there exist \(u, t \in M_α \) such that \(M_α = \sqrt{(u, t)} \). Since \(v_α \) has rank one, there is an integer n such that \(v_α(u^n) > v_α(x), v_α(t^n) > v_α(x) \).
Then if \(B = (t^n, u^n, x), \sqrt{B} = M_\alpha \) and the minimum \(v_\alpha \)-value of an element of \(B \) is \(v_\alpha(x) \). Now \(x \in B \) and \(B \) is invertible since \(D \) is Prüfer. Thus \((x) = AB \) for some ideal \(A \) of \(D \). \(A \) is also invertible so that \(v_\alpha \) attains its minimal value on \(A \), which in this case must be zero because of our observation regarding the \(v_\alpha \)-values of elements of \(B \). That is, \(A \nsubseteq M_\alpha \). Yet for \(\beta \neq \alpha \), \(AB = (x) \subseteq M_\beta \) while \(B \nsubseteq M_\beta \). It follows that \(A \subseteq \bigcap_{\beta \neq \alpha} M_\beta \). We choose \(a \in A - M_\alpha \). Since \(M_\alpha \) is maximal \(m_\alpha + da = 1 \) for some \(m_\alpha \in M_\alpha \), \(d \in D \). Then for \(\beta \neq \alpha \), \(1 - m_\alpha = du \in M_\beta \).

Lemma 8. Let \(R \) be a commutative ring with identity \(e \) and let \(\sum = \{M_\lambda\}_{\lambda \in \Lambda} \) be the set of maximal ideals of \(R \). If for each \(M_\lambda \in \sum \) there exists \(m_\lambda \in M_\lambda \) such that \(e - m_\lambda \in \bigcap_{\mu \neq \lambda} M_\mu \), then \(\Lambda \) is a finite set.

Proof. Suppose \(\Lambda \) is not finite. Then there exists a well-ordering \(< \) of \(\Lambda \) under which \(\Lambda \) has no largest element. Then for \(\lambda \in \Lambda \) we define \(A_\lambda = \bigcap_{\beta > \lambda} M_\beta \). By hypothesis, \(e - m_\lambda \in A_\lambda - M_\lambda \) for each \(\lambda \). Hence \(\{A_\lambda\}_{\lambda \in \Lambda} \) is a chain of proper ideals of \(R \). Then \(A - \bigcup A_\lambda \) is again a proper ideal of \(R \) since \(e \notin A \). But by choice of \(A_\lambda \), \(A \) is not contained in any maximal ideal of \(R \), a contradiction. Hence \(\Lambda \) is finite as asserted.

Theorem 2. If \(D \) is one-dimensional and if \(\Delta = \{M_\beta\} \), then given \(M_\alpha \in \Delta \), these statements are equivalent.

(a) \(D_{M_\alpha} \nsubseteq \bigcap_{\beta \neq \alpha} D_{M_\beta} \).

(b) \(M_\alpha \) is the radical of an ideal with two generators.

(c) \(M_\alpha \) is the radical of a finitely generated ideal.

Proof. (a) \(\rightarrow \) (b): Let \(\Delta' = \{M_\lambda\} = \Delta - \{M_\alpha\} \), let \(v_\beta \) be the valuation associated with \(D_{M_\beta} \) for each \(\beta \). Since \(D_{M_\alpha} \nsubseteq \bigcap D_{M_\lambda} \), there exist \(a, b \in D \) such that \(v_\alpha(a) < v_\lambda(b) \) and \(v_\alpha(a) \geq v_\lambda(b) \) for each \(\lambda \). Hence \(v_\alpha(b/a) > 0 \) and \(b/a \in M_{D, M_\lambda} \); say \(b/a = s/t \) where \(s \in M_\alpha \), \(t \in D - M_\alpha \). Then \(v_\alpha(t) = 0 < v_\alpha(s) \) and \(v_\lambda(t) \geq v_\alpha(s) \) for each \(\lambda \). We now let \(\Omega' \) be the set of \(M_\lambda \)'s which contain \(s \) and we let \(\Omega = \Omega' \cup \{M_\lambda\} \). \(\Omega \) is the set of maximal ideals of \(D \) containing \(s \). We note that if \(P \in \Omega \) and if \(P \subseteq \bigcup_{T \in \Omega} T \), then \(P \in \Omega \). For if \(P \notin \Omega \)—that is, if \(s \notin P \), then \(P + ds = 1 \) for some \(p \in P \), \(d \in D \). It then follows that \(p \notin T \) for \(T \in \Omega \). Whence \(p \in P - \bigcup_{T \in \Omega} T \). This observation shows that if \(N = D - \bigcup_{T \in \Omega} T \) and if \(D' = D_N \), then \(\{TD'\}_{T \in \Omega} \) is the set of maximal ideals of \(D' \). \(D' \) is one-dimensional Prüfer by Theorem 1 and \(D_{M_\beta}^{D'} = D_{M_\beta} \nsubseteq \bigcap_{T \in \Omega} D_{T}^{D'} = \bigcap_{T \in \Omega} D_T \) by hypothesis. Also if \(M_\beta \in \Omega, \) \(D_{M_\beta} = D_{M_\beta}^{D'} \) implies \(v_\beta \) is the valuation associated with \(D_{M_\beta}^{D'} \). For each such \(M_\beta \in \Omega' \) we then have \(v_\beta(s) > 0 \) while \(v_\alpha(s) = v_\beta(s) = 0 \). This then implies, as in the proof of Lemma 7 and as previously shown in this proof, that there exists \(u \in M_\alpha D' - \bigcup_{T \in \Omega} (TD') \). There is no loss of generality.
in assuming \(u \in M_\alpha \). We now show that the ideal \(B = (s, u) \) in \(D \) has radical \(M_\alpha \). Clearly \(B \subseteq M_\alpha \). If \(M_\beta \in \Omega - \Omega' \), then \(s \notin M_\beta \) so \(B \notin M_\beta \). Moreover, if \(M_\beta \in \Omega' \), then \(u \notin M_\beta \), implying \(u \notin M_\beta \), again implying \(B \notin M_\beta \). Therefore \(\sqrt{B} = M_\alpha \), and (b) holds.

Obviously (b) \(\rightarrow \) (c).

(c) \(\rightarrow \) (b): We suppose \(M_\alpha = \sqrt{B} \) where \(B = (b_1, b_2, \ldots, b_n) \). Since \(B \) is invertible, \(B \supseteq BM_\alpha \). Thus if \(b \in B - BM_\alpha \) then \(B^2 + (b) = [B^2 + (b)]B^{-1}B = [B + (b)B^{-1}]B \). Hence \([B^2 + (b)] : B \supseteq B + B^{-1}(b) \) and since \(b \notin M_\alpha B_\alpha \), \(B^{-1}(b) \notin M_\alpha \). Then \(\sqrt{R + B^{-1}(b)} \cap M_\alpha \); therefore \(R + B^{-1}(b) = [B^2 + (b)] : B = D \) and \(B = B^2 + (b) \). Hence for each \(b_i \), there exist \(a_{ij} \in B, \ r_i \in D \) such that

\[
b_i = \sum_{j=1}^{n} a_{ij}b_j + r_id
\]

or such that \(\sum_{j=1}^{n} (\delta_{ij} - a_{ij})b_j = r_id \).

If \(\|\delta_{ij} - a_{ij}\| = u \) is the determinant of this system, then from Cramer’s rule we have \(ub_j \in (d) \) for each \(j \). But \(u \) is of the form \(1 - t \) for some \(t \in B \) so that we have \(b_j - bt \in (d) \) for each \(j \). Consequently, \(B = (t, d) \) and (b) holds.

(b) \(\rightarrow \) (a): We suppose \(M_\alpha = \sqrt{(r, s)} \) and we fix \(x \in M_\alpha, \ x \neq 0 \). If \(\{M_\alpha\} \) is the set of maximal ideals of \(D \) which contain \(x \), if \(N = D - (\bigcup M_\alpha) \), and if \(D' = D_N \), \(D' \) is one-dimensional Prüfer and \(\{M_\alpha D'\} \) is the set of maximal ideals of \(D' \). Hence the Jacobson radical of \(D' \) contains the nonzero element \(x \) and \(M_\alpha D' = \sqrt{(r, s)}D' \). Lemma 8 then shows that there exists \(t_\alpha \in M_\alpha, \ n \in N \) such that \(t_\alpha/n \in M_\alpha D' \), \((n - t_\alpha)/n = 1 - (t_\alpha/n) \in M_\alpha D' \) for each \(r \neq x \). Thus \(t_\alpha \in M_\alpha - (\bigcap_{r \neq x} M_r) \) and \(n - t_\alpha \in (\bigcap_{r \neq x} M_r) - M_\alpha \). These observations imply that in \(D'' = D/r_{i=1}^{n} \), \(\{M_r D''\}_{r \neq x} \) is the set of maximal ideals. Further \(n - t_\alpha \in \bigcap_{r \neq x} M_r D'' = \sqrt{x}D'' \) since \(x \) is contained in each \(M_\alpha \). Therefore \((n - t_\alpha)^k \in xD'' \) for some positive integer \(k \), so that \((n - t_\alpha)^k/x = \xi \in D'' \). Consequently, \(\nu_\alpha(\xi) \geq 0 \) for each \(M_\alpha \) containing \(x, \ r \neq x \). And if \(x \notin M_\beta \in \Delta \), clearly \(\nu_\beta(\xi) \geq 0 \). Moreover, \(\nu_\alpha(\xi) = k\nu_\alpha(n - t_\alpha) - \nu_\alpha(x) = -\nu_\alpha(x) < 0 \). We then have \(\xi \in (\bigcap_{\beta \neq x} D_{M_\beta}) - D_{M_\alpha} \) and (a) is valid.

Remark. That (c) implies (b) in Theorem 2 is a special case of the following more general result:

If \(A \) is an invertible ideal of \(J \), an integral domain with identity, if \(\{M_\alpha\} \) is the collection of maximal ideals of \(J \) containing \(A \), and if \(A \supseteq \bigcup AM_\alpha \), then \(A \) has a basis of two elements. In particular, if \(A \) is primary for a maximal ideal, \(A \) has a basis of two elements.
THEOREM 3. If D is almost Dedekind and has property ($\#$), D is a Dedekind domain.

Proof. Let M be maximal in D. By Theorem 2, there exist $u, v \in D$ such that $\sqrt{(u, v)} = M$. Hence (u, v) is M-primary, and therefore a power of M: $(u, v) = M^k[3, p. 813]$. Since D is almost Dedekind, (u, v) is invertible and hence M is also invertible. Therefore D is Dedekind as asserted.

Note. Theorem 2, Lemma 7, and Lemma 8 imply that if D is one-dimensional and has property ($\#$), then each nonunit of D is contained in only finitely many maximal ideals of D. Hence the conditions of Lemma 6 also are necessary in order that a one-dimensional Prufer domain have property ($\#$).

3. EXAMPLES

The first of the following examples exhibits a one-dimensional Prufer domain with infinitely many prime ideals having property ($\#$) which is not almost Dedekind. The second exhibits an almost Dedekind domain such that all but one of its maximal ideals is the radical of a principal ideal, but such that the domain is not Dedekind.

Example 1. Let A be the domain of all algebraic integers and let $\{p_i\}_{i=1}^\infty$ be the sequence of primes of \mathbb{Z}. For each i choose a maximal ideal M_i of A lying over $p_i\mathbb{Z}$, let $N = A - (\bigcup_{i=1}^\infty M_i)$, and let $J_1 = A_N$. A may be expressed as the union of an ascending sequence of Dedekind domains with finite class groups; hence A is one-dimensional and has the QR-property. Consequently, J_1 has these same two properties. It is straightforward to check that $\{M_iJ_1\}_{i=1}^\infty$ is the set of maximal ideals of J_1 and that each nonunit of J_1 is contained in only finitely many maximal ideals. Hence Lemma 6 shows that J_1 has property ($\#$). But each maximal ideal of A is known to be idempotent, and this property carries over to J_1. Hence J_1 is not almost Dedekind [3, p. 814].

Example 2. Denote by \mathbb{F} the field of rational numbers and let $\{p_i\}_{i=1}^\infty$ be the sequence of positive primes in \mathbb{Z}. We denote by ω_i a primitive p_ith root of unity for each i, and we let $L = \mathbb{F}(\omega_1, \omega_2, \ldots)$. Nakano showed in [8, pp. 426-427] that the integral closure J of \mathbb{Z} in L is an almost-Dedekind domain which is not Dedekind. He further shows that given p a fixed prime of \mathbb{Z}, there is an ascending sequence $\{L_i\}_{i=1}^\infty$ of finite algebraic extensions of \mathbb{F} such that $L = \bigcup_{i=1}^\infty L_i$ and such that the following holds: there exists a fixed positive integer t such that in Z_i, the integral closure of Z in L_i, $pZ_i = (P_{i1}P_{i2} \cdots P_{ikt})^t$ where the P_{ij} are distinct maximal ideals of Z_i and where P_{ij} decomposes into a product of at least two distinct primes in Z_{i+1} for all
These conditions imply that the following construction is possible: Let v be the p-adic valuation of I. There exist distinct extensions v_1 and w_1 of v to L_1. We let μ_1 be any extension of w_1 to L. There exist distinct extensions v_2 and w_2 of v_1 to L_2. Let μ_2 be any extension of w_2 to L, etc. Let M_i be the center of μ_i on J and let $M = \bigcup_{i=1}^{\infty} V_i$ where V_i is the center of v_i on Z_i. We let $N = J - (\bigcup_{i=1}^{\infty} M_i)$ and we let $J_2 = J_N$. Since J is almost Dedekind, so is J_2. We next show that $\{M_2, M_i J_2\}$ is the collection of maximal ideals of J_2. Thus suppose Q is a maximal ideal of J such that $Q \subseteq \bigcup_{i=1}^{\infty} M_i$. Then for any j, $Q \cap Z_j \subseteq \bigcup_{i=1}^{\infty} (M_i \cap Z_i)$. For $j > i$, μ_j extends v_i. Hence $\{M_i \cap Z_j\}_{i=1}^{\infty} = \{M_1 \cap Z_j, \ldots, M_{j+1} \cap Z_j\}$, the latter enumeration being into distinct maximal ideals. Thus $Q \cap Z_j = M_r \cap Z_j$ for some r. Since μ_j is the unique extension of w_j to L which is finite on J_2, it is apparent that if for some j, $Q \cap Z_j = M_i \cap Z_j$ where $r < j + 1$, then $Q \cap Z_i = M_r \cap Z_j$ for all j and $Q = (\bigcup_{j=i}^{\infty} Q \cap Z_i) = (\bigcup_{j=i}^{\infty} M_i \cap Z_i) = M_i$. But if $Q \cap Z_i = M_{j+1} \cap Z_i$ for all j, then $Q = \bigcup_{j=i}^{\infty} M_{j+1} \cap Z_i = \bigcup_{j=i}^{\infty} V_j = M$. This proves our assertion concerning the maximal ideals of J_2.

Because $M_i \cap Z_{i+1} \subseteq V_{i+1} \cup (\bigcup_{j\neq i} M_j \cap Z_{i+1})$, $M_i \subseteq M \cup (\bigcup_{j\neq i} M_j)$. Therefore $M_i J_2$ is the radical of a principal ideal for each i. Finally we note that if $x \in M$, then for some j, $x \in V_j$. Hence $x \in M_i$ for all $t > j$. Hence x is contained in infinitely many prime ideals of J_2, and J_2 is not Dedekind.

ACKNOWLEDGMENT

The author expresses his thanks to William J. Heinzer for several helpful suggestions concerning the preparation of this paper. In particular, the proofs of Lemmas 5 and 8 are due to Heinzer.

REFERENCES

