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Abstract-Nodal variables are given for a new family of complete conforming triangular finite elements of 
arbitrary polynomial order p for use in linear stress analysis. This family has two important properties: (I) 
hierarchic property, i.e. the elemental stiffness matrix corresponding to an approximation of order p is a 
submatrix of the elemental stiffness matrix corresponding to an approximation of order p + I; (2) the family 
enforces exactly the degree of smoothness across interelement boundaries which is required by the problem 
(Co continuity for plane elasticity, Cl continuity for plate bending) even at vertices. It is shown how to use 
precomputed arrays in an efficient manner in calculating elemental stiffness matrices. Results from a 
numerical example in plane stress analysis are presented. These results demonstrate the efficiency of a 
p-convergence procedure which uses the new family of finite elements. 

I. INTRODUCTION 

In standard approaches to the finite element method the degree of the polynomial ap- 
proximation to the solution is held fixed while the number of elements is increased in such a 
way that the maximum diameter, h, of the elements goes to zero. We call this procedure for 
achieving accuracy h-convergence. It is also possible, however, to obtain convergence by fixing 
the number of finite elements and allowing the degree p of the approximating polynomial to 
increase. We call this procedure p-convergence. It has been demonstrated in a variety of cases, 
including that of a difficult benchmark problem [ 11 posed by Lockheed, that the second mode of 
convergence is more rapid[2-51. The p-convergence procedure also possesses the additional 
advantage that no change in the number or geometry of the elements is required to achieve 
accuracy, thereby resulting in manpower savings in data preparation and processing. 

In order to implement convergence with respect to polynomial approximations of increasing 
degree, it is necessary to have available a family of finite element approximations of arbitrary 
degree p. The constraint formulation for finite element analysis provides just such a family of 
polynomials. In the constraint method, the total potential energy ?T is expressed as the sum of 
the potential energies & of the (triangular) elements. Complete pth order polynomial ap- 
proximations are used[6], and the requirement that the global approximating function is 
continuous across interelement boundaries (Co continuity) or that it and its first normal 
derivative are continuous across interelement boundaries (C’ continuity), is expressed by a set 
of linear equality constraints. 

Specifically, the problem is to minimize 

7r = 2 TTp = $, tfl~'J[S'lwl- l~‘lG3) (1) 
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subject to the linear equality constraints: 

$, [m~a'l= {N (2) 

where x is the total potential energy functional: pe is the potential energy of the element e; n is 
the number of finite elements; [Se] is a positive semi-definite matrix defined over the eth 
element. It is often called the unconstrained stiffness matrix or the element stiffness matrix; 
{ae} is the vector of the unknown coefficients of the complete pth degree polynomial ap- 
proximation over the pth finite element; {Ze} is the vector of the applied loads. 

Equation (2) enforces interelement continuity and boundary conditions, [P’] is a matrix 
whose rows are polynomial expressions evaluated at specific points along the boundary of the 
eth element. 

Equations (1) and (2) represent a constrained quadratic programming problem. This problem 
may be solved by separating dependent and independent variables in equation (2) and then 
substituting back into equation (1) to yield an unconstrained minimization problem. Gaussian 
elimination is used in [7] to find independent variables among all the coefficients in the set of 
{ae}. This approach, however, is inefficient and unsuitable for large problems. In [8], nodal 
variables denoted by {S} are introduced and the constraints given in equation (2) are rewritten in 
the form 

where [A] is a block diagonal matrix whose ith submatrix defines nodal variables for the ith 
finite element: {a} is the vector of all unknown polynomial coefficients for all finite elements; 
[N] is a nodal matrix. The elements of [N] are either zero or one: 

nii = 
1 if the ith row in [A] corresponds to nodal variable j 
0 otherwise. 

{S} is the vector of all nodal variables. 
A special adaptation of the simplex method is then used in [8] for rank analyses and to find 

basic (dependent) variables and non-basic (independent) variables among the nodal variables 
and polynomial coefficients. Dependent variables are replaced in equation (1) by their 
expressions in terms of independent variables in a process which requires multiplication of 
large matrices and which utilizes sparse matrix multiplication techniques. This process may 
become very expensive unless the matrices are banded, and bandedness can be obtained only 
by a careful choice of the dependent variables. This problem does not exist if Co continuity 
only is enforced: All nodal variables are independent: some polynomial coefficients are 
independent too but can be eliminated by static condensation. Therefore the total potential 
energy is expressed in terms of nodal variables and an unconstrained minimization problem is 
formulated directly with respect to these nodal variables. This case corresponds to the standard 
finite element method and the independent polynomial coefficients can be viewed as internal 
nodal variables. For C’ continuity, however, this is no longer possible (and this was one of the 
motivations of the constraint formulation). This problem is fully investigated in [12, 14, 201 
where it is shown how to avoid the need for linear programming. We present here that part of 
the discussion needed to make this report self-contained. Briefly, the potential energy is again 
expressed in terms of nodal variables but these nodal variables must now satisfy certain 
constraint relations. We show how to define the nodal variables so that the constraint relations 
will have as simple a form as possible. This leads to an a priori choice for dependent and 
independent variables without the use of linear programming. We also show that by using these 
nodal variables the process of assembling the finite elements is simplified and there is no longer 
the time-consuming need to multiply large matrices. In either case (Co or C’ continuity) we 
have a pth order approximating polynomial enforcing the desired level of global continuity for 
each p. 

The most important and unique feature of the nodal variables presented here is that they 
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produce a sequence of hierarchic stiffness matrices and therefore possess the advantages 
presented in [14]. The hierarchic character of the stiffness matrices is manifested by an 
embedding property: The elemental stiffness matrix corresponding to a polynomial ap- 
proximation of order p is a submatrix of the elemental stiffness matrix corresponding to a 
polynomial approximation of order p + 1. Therefore when increasing the order of polynomial 
approximation from p to p + 1 it is necessary to compute only the new rows and columns in the 
new stiffness matrix. 

Other families of approximating polynomials are known. In 191 for example, a hierarchy of 
polynomials of degree p = 4m + k(m = 0, 1, . . .; k = 1,2,3,4) is given which generates functions 
that are m-times continuously differentiable and have piecewise continuous derivatives of order 
(m + 1). Thus, for problems requiring C’ continuity, the elements are over-conforming when 
m 2 2. It is important to note, however, that the rapidity of convergence observed with respect 
to increasing degree of polynomial approximation appears to depend upon enforcement of only 
the minimal degree of continuity required by the problem. Hence our insistence that our 
polynomials should not enforce more than Co or C’ continuity, as the case requires. Also, the 
polynomials in [9] enforce (for p 2 5) at least C* continuity at vertices (see also [15]). In some 
geometries with corners, such as the Lockheed benchmark problem [ 1 I, the solution does not in 
fact have Cz continuity at all the corner vertices. This results in the requirement of a large 
number of the finite elements given in [93 for an adequate approximation. We have in mind, 
however, applications where few elements are used (as determined by the geometry) and 
accuracy is achieved instead by increasing the degree of polynomial approximation. This can 
best be accomplished by enforcing no more than C’ continuity at vertices. In [51, this kind of 
application is shown to yield significant improvements over standard methods for the Lockheed 
problem. Also, the family given in [9] does not have the hierarchic property referred to earlier. 
Therefore, when raising the order of polynomial approximation in an element from p to p + 1, 
the entire elemental stiffness matrix changes and must be recomputed. This is inefficient when 
seeking convergence by increasing the order of the approximating polynomial, which is the . 
p-convergence procedure that we have in mind. 

We note that the definition of nodal variables for the enforcement of C’ continuity is closely 
related to a problem posed by Strang[lO] concerning the dimension of the space of polynomials 
of degree p and continuity class C’. This dimension is, in fact, the number of independent nodal 
variables remaining in equation (1) after dependent variables have been eliminated using 
equation (3). Our nodal variables, which are similar to those introduced simultaneously and 
independently in [l 11 are actually a nodal basis for this space of polynomials. This is treated in 
greater detail in 1121. Our main prupose here is to show that these nodal variables are 
computationally efficient. Additional details on the implementation of these nodal variables in a 
computer algorithm are given in [18]. 

In this paper, we first introduce a standard coordinate system for simplicity of computation. 
Then, we introduce nodal variables and local transformation matrices which &force Co 
continuity for arbitrary p. After explaining the need for constraint equations in order to enforce 
C’ continuity, we introduce nodal variables and local transformation matrices for this case. The 

simplest form of the constraint equations as well as an explicit choice of independent variables 
is described. We show how to compute element stiffness matrices and load vectors in standard 
coordinates by using precalculated arrays, and we discuss the structure of the final uncon- 
strained minimization of the total potential energy. Finally we present a numerical example in 
plane stress analysis. Other examples are given in [18]. 

2. COORDINATE SYSTEMS 

It is convenient and computationally efficient to do many of the calculations in terms of 
standard triangles. Let (x, y) denote the global coordinates of a point P, let Pi(Xi, yi) i = 1,2,3, 
be the vertices of an arbitrary triangle T in the x - y plane, and let (&Y) = (x -xl, y - y,). We 
define the transformation M from standard (5, p) coordinates to (2, y) coordinates as 
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where /ii is the length of the side PiPb and where (cos eii, sin 8ii) is a unit vector in the direction 
of PiPf The inverse transformation M-’ maps the triangle T in the x - y plane into the standard 
triangle f with vertices at Ri(& Ti)i = 1,2,3, in the 5 - T) plane where (&, 7,) = (O,O), (22, 72) = 
(1, 0). (& 73 = (0, 1). This inverse transformation is given by 

where A = &zj$ - I?&; IAl is the area of T. 

Mb) 

Let u(f y) be a complete polynomial of degree p defined on T. Then 

that is, the coeficients of u considered as a pth degree polynomial in 5 and q are a’+ oit and a’ii 
can be computed explicitly in terms of each other. The precise expressions are given in 
Appendix 1. We now give expressions for differentiations along the sides of T in terms of 
differentiation in standard directions. Let Sii be the direction from Pi to Pi, let nir be the 
direction normal to PiPj as shown in the figure, let S be the direction (- l/v/2,1/v/2), and let ii 
be the direction (l/V/2,1/~/2). Then we have 
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where 

(6b) 

3. NODAL VARIABLES AND TRANSFORMATION MATRICES 
FOR I?’ CONTINUITY 

We first define the nodal variables used to assure c” continuity across interelement 
boundaries. We refer to these as boundary or external nodal variables, Let Q,, Q2, Q3, be the 
midpoints of sides P,P2, P2P3, and P,P, respectively and let the images under the mapping M-' 
of Q,, Q2 and Q3 be S,(1/2,0), S2(1/2, l/2) and S3(0, l/2) respectively. Then for p 2 2 we define 
the 3p external nodal variables 

In order to show that the external nodal variables in (7) do indeed enforce e continuity 
along interelement boundaries, we must show that two polynomials with the same values of 
these nodal variables along a side actually coincide along the side. It suffices, therefore, to show 

that if the side is of length 1, if 0 c s s 1 is distance along the side, ’ = d/ds, and if u(s) = ii0 his’, 

then u(O) = u(1) = u”(1/2) = #‘(l/2) = 0 implies that bi = 0, i = 0, 1, . . ., p. To show this let 
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t = s - l/2 and let 
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i(t)=u t+l ( 2)zU(S)=&6i(t+~)i =&bi$(j)(i)i-it’ 

Therefore the coefficients 6j of u as a function of t are given in terms of the coefficients 6j of ri 
as a function of s by 

_. 

6j = 8 (j)(i)i-jbi j = 0,. . ., p 

and similarly 

bj = $. (-~)‘-j(~)6i j = 0,. . ., P. (9) 

This means that bj = 0, for j = 0, . . ., p if and only if & = 0 for j = 0, . . ., p. NOW P(O) = k! & = 
0 for k = 2 , . . ., p, and 

so that 6, = 6, = 0 also. This proves that our external nodal variables do indeed enforce Co 
continuity. 

In order to determine a transformation between the [(p + l)(p + 2)]/2 polynomial coefficients 
of u, given by equation (5) and nodal variables, we introduce t(P + l)(p + 2) - 3p = i(p - l)(p - 2) 
additional nodal variables which we call internal nodal variables. These variables are associated 
only with one element, and when minimizing the potential energy functional ?r in equation (1) 
they can be eliminated by static condensation from the elemental potential energy ?rc. For this 
reason we call them internal although they are defined at boundary points (in fact at vertices). 
For p = 2, no internal nodal variables are needed. For p L 3, the internal nodal, variables are 
chosen as 

a3U . a4u a4u . asu $U asi -. . 
as:2as,3' as:2as,3' as,,as:,' asf2as13’ asi2asf3 as12as:3" * *) 

a94 apu 
1 asf; as,,’ as 

apuP_, (for 3 s k I p, 
K2ad3’ . * * as,2as ,3 

omit 
aku 

aS(:2-l)~2aSI~l)1~ if k is odd; 

aku 
omit w2 r~zif k is even) 

asI asI3 
(10) 

all evaluated at PI. Thus for each k, 3 : k 5 p, we introduce k - 2 derivatives evaluated at the 
origin, that is, a total of $(p - l)(p - 2) internal nodal variables. 

We now show that these (external and internal) nodal variables form a nodal basis, that is, 
we show that the transformation mapping polynomial coefficients into these nodal variables is 
invertible. 

Let {a} denote the vector of coefficients of the approximating polynomial in a given 
triangular element T (for convenience we temporarily omit the index e). Then the trans- 
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formation relating {a} to {S} is 

where 

$$ (Q,h . . . g (Q3); as;;s 
13 

(PI), . . . ,,,~;~,, V,) 

for 3 I k s p, omit a kU dsI~-l~12asz~if k is odd 

omit 
aku 

as l2 as ,3’ 
~2 w if k iseven . 

It follows from equation (6a) that under the mapping M 

& ai:-* (for 3 I k I p. omit 

1 akii 
1~~-1)~21’:3+,)1~ af(k-,),2a,+k+,)dR,) if k is odd; 

where 

. 1 ski 
omit m ag~~a,,~2 if k is even) 

1 

[S] = [s’l[W] (13) 

161 = @), u’(Rzh @R3); $f (s,), $(s,,, $(s,,; 

$(S,,, $h2,, $tS,,; &CR,); . . .; 

~@,,, . * .5(&h -$fa+R,), . . .t -&tR,) 

( 
for3skzzp,omit akli(R1) 

af(k-,)/2aq(&+,)fi if k is odd 

omit ‘zk” kl~(R,) if k is even)1 
at* 877 (14) 

and where [D] is the diagonal matrix 

[D] = diag(l, 1, 1; 1:2, 1:,/2, 1:3; r:,, l:3/z3”, !:3, 1:2/,3; . . . 

I* 12,. * -7 12, 12 137. . . 1,21;3-’ lP I*-‘1 

(for 3 5 k s p, omit l{~-“‘21j:““2 if k is odd, 

omit l%21f$2 if k is even)). 
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(12) 

(15) 
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Also we have 
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[A]{d} = {cq (16) 

where {8}, given in (14) is the vector of nodal variables in the standard 6-n plane. The 
transformation matrix [A] is a matrix of constants, that is, it does not depend upon the vertices 
Pi, and {a’} is the vector of polynomial coefficients with respect to 5 and n. Now 

where [I?] is the matrix relating polynomial coefficients with respect to 5, n to those with 
respect to f y. [B] and [B-l] are given explicitly in Appendix 1. Substituting into (111, it follows 
that 

[A] = [D-‘][A][B-‘1 (17) 

so that [A] is invertible if and only if the constant matrix [A] is invertible. Moreover[A-‘1 can 
be inverted once and for all so that {G} can be obtained easily from 

{a-} = [A--‘]{s’) 

once (8) is computed. {S} can be gotten from {8} by multiplication by the diagonal matrix [D]. 
(In the case of C’ continuity [D] becomes block diagonal with the size of the largest block a 
2 x 2 matrix. This will be seen later.) 

In (171 it is shown that [A] is invertible and a procedure for computing its inverse is given. 
It is an important consequence of our choice of higher order derivatives as nodal variables 

that the matrix of coefficients [A@‘] has the partitioned form 

(18) 

This means that [A@‘-‘] can be computed by partitioning. Let [6(p)] = [A(p)-‘] be partitioned 
similarly 

I - 
[j@‘] = [!_;:_Y_!;_q (1% 

PP 
Then 

[p-l’-‘] = [/qP-lr’] 

~~p.pl = &!I 

[~p-‘.pl = - bw-“-‘I[~p-l.plIA,fl. (20) 

Thus, in computing [@p’] after having computed [@‘-“1 only the new rows and columns in (19) 
need be calculated. This property is a consequence of the hierarchic character of our nodal 
variables. We give the transformation matrices [A ‘@‘-‘I for Co elements explicitly for p = 
2 , . . . ,5 in Appendix 2. In [ 12,14,20] shape functions for the nodal variables presented here are 
given in terms of triangular coordinates. 

4. NODAL VARIABLES FOR C’ CONTINUITY 

We now consider displacement fields that are required to be continuous together with their 
normal derivatives across interelement boundaries. Let w(x, y) be such a displacement and 
assume that w(x, y) is approximated on T by a complete pth degree polynomial, 
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For the case of Co continuity we have defined nodal variables for each element. When these 
nodal variables are substituted into the potential energy functional ?r, an unconstrained 
minimization problem, with these nodal variables as independent variables, results. For C’ 
continuity, the situation is considerably more complicated. s again will be expressed in terms 
of suitably defined nodal variables but, as we show, these nodal variables must now satisfy 
certain constraint conditions. Thus the choice of nodal variables is more difficult in the C’ case 
than in the Co case because there are two requirements to be met: 

1. Nodal variables should be chosen in such a way that the transformation from polynomial 
coefficients to nodal variables is as simple as possible. 

2. Nodal variables should be chosen in such a way that the constraint equations which they 
must satisfy are as simple as possible. This is in order to minimize the computational effort 
required to enforce the constraints. 

The enforcement of constraints for C’ continuity is discussed in detail in [12, 14, 201. We 
present here that part of the discussion needed to explain our choice of nodal variables. 

A. Need for constraint equations 
It is important for our discussion to note the following: Suppose P(x, y) and Q(x, y) are 

polynomials which coincide along a line 1 and let a/as denote differentiation in the direction of 1. 
Then for all points (x, y) on 1, 

$(x,y)=$y(x,y) j=O,1,2,... 

Suppose now that the polynomials also satisfy C’ continuity along 1, and let alan denote 
differentiation in a direction normal to 1. Then we have analogously 

c?‘P 
&-I an k Y I= asY:?a, (x9 Y 1 j = 0, 1,2,. . . 

Similarly if s = sI and if s2 is any direction not parallel to s, we have 

Let us now restrict ourselves to the case j = 2 and denote by {S} a set of nodal variables which 
assure C’ continuity. Let (x0, yO) be the common point at which two sides in direction sI and s2 
meet. Let {S}($ = 1,2 be a subset of {S} which enforces C’ continuity along side (i). The 
different subsets {S}(i) may, of course, have elements in common. We have on the one hand 

&(x0. y,,) = linear combination of {S},,, 

and on the other hand 

-$& (x0. yo) = linear combination of {S}r2,, 

This implies a linear dependence between components of the subsets {S}(,, and {S}c2,. Therefore. 
we can state that the set (6) of nodal variables enforcing C’ continuity along the boundary of a 
polygonal finite element has as many redundancies as the polygon has vertices. In particular 
when the element is a triangle there are three such redundancies. The rank analysis in the 
constraint method of equation (3) has revealed, in fact. three dependent equations at each 
elemental level (see [5] and [8]). 

In order to better illustrate what we have stated, consider the following very simple 
example. Take a second order polynomial and suppose that continuity of the slope is enforced 
by means of normal derivatives. 
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along side 1: 
a*P 

- = -($I- $22) a*p 

as,as2 L, =- axay 
2 

along side 2: -& = -bh-df3) a*p =-. 
I2 L2 axay 

In this simple case where the two sides meet at a right angle the linear relation satisfied by the 
nodal variables reduces to equality of the mixed second partial derivatives and gives 

Jth-952 $4--3 -=- 

L L2 

Another example is given by Zienkiewicz in [19]. In the general case the relation will involve 
both nodal variables which enforce continuity and nodal variables which enforce continuity of 
the slope. We give one form of this relation in [12] and [13]. 

In general we may state that the rank of the matrix which transforms the polynomial 
coefficients to a minimal set of nodal variables enforcing C’ continuity along the boundary is 
equal to the number of its rows minus the number of the vertices of the finite element. There is, 
however, one important exception which is essential for our choice of nodal variables: If the 
second order derivatives a*P/as,*, a2P/as,as2, and a2P/as2* at vertices are themselves selected 
as nodal variables, then the subsets {S}(,, and (15)~~~ coincide since both consist of the three 
independent second order derivatives. In this case the rank of the transformation can be made 
equal to the number of its rows. The, by introduction of additional internal nodal variables, the 
transformation can be made invertible. 

The enforcement of an additional continuity of second order derivatives at vertices by 
choosing them as nodal variables as in [16] is the simplest way to avoid singularities of the 
transformation matrix. We have already pointed out in the Introduction that we wish to avoid 
enforcement of C* continuity at vertices. Thus, in order to have a nonsingular transformation 
matrix the set of nodal variables {S} must be such that C’ continuity does not hold. Hence, 
constraints on nodal variables must be imposed separately in order to enforce the desired C’ 
continuity. 

B. Nodal variables and tmnsfofmation matrices for C’ continuity 

As before, we first define nodal variables which enforce C’ continuity across interelement 
boundaries. For p z 5, define the 6p - 9 external nodal variables 

(21) 
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For example, if p = 5 the twenty-one external nodal variables are w, w,, w,,, wss, wIsf. w,,,, at each 
vertex (s and s’ are the directions of the two sides meeting at the vertex), and 

We must show that these external nodal variables enforce C’ continuity across interelement 
boundaries, that is, we must show that if they are all zero along a side 1 (with direction s) of 

length 1, then w(s) = 5 his’ and w,,(s) = “i’ cisi are identically zero for 0 5 s I I. Here w.(s) 
i=O i=O 

denotes the normal slope of w along 1. 
Let the external variables given by (21) be zero along 1. Then 

w(0) = w(l) = w’(0) = w’(1) = w”(0) = w”( 1) = w@) f 
0 

= . . . 

=w@) 1 =o 
0 2 

w,(O)= w,(l)= w;(o)= w;(l)= wi4) ; =... W”@_‘) f =o 
0 0 

(22) 

We must show that (22) implies that bi = 0, i = 0, . . ., p and ci = 0 i = 0,. . ., p - 1. 

AS in (8) let t = s - l/2, G(t) = 5 gjt’, G;,(t) = “i’ Q’. Since gi = l/i! k”‘(O) = 0 for i = 
j=O j=O 

6 ,. . .,p, it follows from (9) that bj =O for i =6,. . ., p. Again for i = 0, 1,2 it follows that 
bi(0) = (l/i!)w”‘(O) = 0. Therefore w(s) = b3s3 + b4s4 + b5s5. Finally, note that the system 

0= w(l)=b3+bq+b5 

0 = w’( 1) = 3b3 + 4b4 + 5b5 

0 = w”(1) = 6b3 + 12b4+ 20b5 

is nonsingular. This implies that b3 = b4 = b5 = 0, too. Similarly P; = I/i! k?‘(O) = 0 for i = 
4 . .,p - 1 implies that ci = 0 for i = 4,. . ., p - 1. Also 
d.(s) = cZs2 + c3s3. The nonsingularity of the system 

co = w.(O) = 0, cl = w;(O) = 0, so that 

o= w,(l)= c2+ c3 

o= w;(l)=2Cz+3C3 

implies that all ci are zero i = 0,. . ., p - 1. Therefore we have shown that these external nodal 
variables do indeed enforce C’ continuity across interelement boundaries. 

We now introduce additional internal nodal variables in such a way that the transformation 
from polynomial coefficients to nodal variables is easily inverted. We restrict our attention to 
p L 5. For p = 5 no internal nodal variables are needed. Forp 2 6, t(p + l)(p + 2) - (6~ - 9) = 
t(p - S)(p - 4) internal nodal variables are required. For each k, 6 5 k d p, define the (k - 5) 
internal nodal variables 

j = 2,3,. . ., k - 2 

omitting any two, say j’(k), j”(k). 

(23) 
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The total number of internal nodal variables is then 

F 1, (k - 9 = &J - 5)(p - 4). 

The vector (6) of all nodal variables now consists of the external nodal variables in (21) and the 
internal nodal variables ‘in (23). We order these variables in {S} according to increasing order of 
derivatives. From (4) and (6), (8) is given by 

161 = [WA O(Rd, O(Rd; &&(R,) - j$Ki,(R,)), 

+3@,(K) + ~,w,(R,)) 3 &([a - WMR2) 

1 
- Y2GW72)), d- Lf3 - f~l~~(Rd+ -f2d2EjtR$)r 

&3 - Yzl9JR3) - y3Xh&(R3)), &(- [a, - f2]6,,(R3) + f,@i&(i(R,)), 

@@I), 1 112113 1 w,(RA - pp(R,), 1 _ . . ., @2(R3); 1 

gEfP(&), F (0236 jP (S2) + @BIG jD-‘fi (Sz)), 
23 3 

y+qs,,. ~y&,3~~P-l(s3) + /3,3O,P(S,)) 1 . 

13 
(24) 

Using notation analogous to that in (14) we have 

1s ] = [S’J [D-‘1 

I_‘] = [‘(RI), ‘(Rz), +(R3)9 *((RI), +qt;(R,), k&R,), Gj(R2)r fiq(R3), Oi(R3); 

‘&RI), ‘I, G~z(RI), * . *y Gqz(R3)9 G+(R3)7 Gj2(Rg); 

‘t%(sI)v hi(s2)9 %+#3);. . .; t&k(&), $k-I,,($), 

Gfk(S2)r Gjis-L-li(S2)y O,k(S3), 6’bk-I(S3), G’.+2,2(R1), 

. . ., $%,k-](R,), $2,+-2(R,) 

(25) 

(omitting any two for each k L 6);. . .; +.(S,), . . ., 

&p(S3), . . ., fic2,,~-2(R,)J CW 
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and where ID] is a block diagonal matrix of the form 

[D]-’ = 

97 

1 

A - F2 -- 

2A 2A 
-xc3 .f2 
-- 

2A 2A 

93 - Y2 j3v2 

-z---r 

- (a3 - X2) ad/2 

2A 2A 
1 

E 

(- o 

lP 13 

(- l)‘B13 (- lIPal -- 
173-’ 1:; 

(2Sb) 

The size of the largest block on the main diagonal of [D]-' is a 2 x 2 matrix. 
In [17] it is shown that the matrix [A] in equation (16) is invertible, so from equation (17) it 

follows that the nodal variables {S} are a local basis. We give the transformation matrices 
[$“‘-‘I for C’ elements explicitly for p = $6 in Appendix 3. In [12, 14, 201 shape functions for 
the nodal variables presented here are given in terms of triangular coordinates. 

C. Constraint equations 

An essential point in the determination of nodal variables to enforce C’ continuity is the 
selection of the derivatives a2w/as12, a2w/aslasz, and a2wl&22 as nodal variables. In this way, 
and only in this way, is it possible without enforcing C2 (or higher) continuity at vertices, to 
invert the transformation from polynomial coefficients to nodal variables. As shown earlier it is 
now necessary, however, to enforce continuity of these derivatives at interelement boundaries. 

P 52 

The continuity of aZw/asi2 and a2w/asz2 is enforced simply by identifying these values when 
they come from neighboring elements. We now derive an equation which enforces continuity of 
the mixed derivative a2w/as,as2 at an interelement boundary. 

Let T and T’ be adjacent triangular elements with a common side. Assume that T and T’ 
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have been given a common orientation (say that their sides are transversed in the counter- 
clockwise direction). We wish to enforce the continuity of ~*wl~sl~s2 along the common 
boundary at P, that is, we require 

-gy) = -&tP, 
I 2 

where w is the approximating polynomial in T and w’ in T’. Since s$ = -s,, we have 

a*d d2W’ 
-=-- 

as,as* as;as2 

and we must now express alas2 in terms of alas; and alas& 
Let the direction t be normal to si, then we have 

i SL 

++ 

Substituting in equations (26) and (27) we obtain 

-z& = sin 4 
2 

+os~~ 
2 

a 
- = sin 4’ 
asi 

-$-cos&$ 
2 

a 1 -=_ 
( 
a+cos @$ at sin& f3si 2 > 

a sin 4 a 
-==----_--+ cosc#a+ 

as2 sin 4’ as i ( 

sin 4 cos 4’ 
sin q5’ > 

- sin 4 a + sin (4 + 4’) a 
sm 4’ as i sinf$’ asi 

a*w sin 4 a*d _=---- sin (4 + 4’) a%’ 

as,as2 sin 4’ as i asi sin& X’ 

Now consider a vertex where n sides meet. Then 

sin 42 , w3,s2 = -3 w,,,*- sing,4*J w:2s* 

w:,s, = 
sin 43 w2 

sin +2 ‘Is* 
_ sin (42 + 43) w 2 

sin 42 S2Q 

sin 43 , 

= - ws1s2 + sin f$, sin d2 sin 4, 
sin (41+ 42) sin 43 w 1 

S2”2 

_sin(42+cP3) w2 

sin CJ%* 5212 

(26) 

(27) 

(28) 
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and in general 

i+l _ Sin 4i+l 

ww2 
_ -- Wi 

sin 4i SIS2 - 

sin (4 + 4i+*) wi 

sin 4i 5252 

sin 4i+l I 
i-l 

= (- 1)’ sin & - Ws,r,+(- 1)’ 2 (- l)j+’ !: ~~s~n’~~~ sin 4i+i Wj2s2 -sin ($n+4++” Wi2s2 
j=l I 1 

W +(- l>’ sin 4i+i $ (- l)‘+‘(COt #q + Cot ~~+I)WS~~~, i=1,2,... (29) 
J=t 

Let i = n. Then 

W 
n+l _ 
SIS2 - d,s, = (- lY[ w&s, +(sin 4,) 2 (- ly’+‘(cot 4i + cot 4j+dwjls2 . j_, 

3 
(30) 

Therefore, if n is odd 

W’ 
SIS2 

= 9 $ (- 1)’ (Cot 4j + Cot 4j+*)Wj2s2. (31) 

Since the numbering of sides is arbitrary, equation (31) can be used to eliminate all mixed 
partials. Thus the potential energy functional will have n tangential second order partials as 
independent variables corresponding to each vertex where an odd number n of sides meet. 

If n is even, however, then (30) becomes 

$I (- l)j+‘(COt 4j + COt 4j+l)W!2s2 = O* (32) 

In this case, then, we can choose any f such that cot 4j+ cot 41+1 # 0 and solve for wtzs2 in terms of 
the other wi s2s2, j# _i. As another independent variable we may choose one mixed second partial say 
W l,,,. All other mixed second partials can then be solved in terms of these from (29). 

There is one important exception, the case n = 4 and 4i = v - #i-i, i = 1,2,3,4. Equation (32) 
then reduces to an identity and therefore no pure second derivative can be eliminated. Hence in 
this case there is one constraint fewer than in the other cases. Such a vertex is called a singular 
vertex and is used in [ 1.11 and [ 121 to determine the total number of independent variables i.e. 
the dimension of the space S,’ consisting of piecewise polynomials of degree p satisfying global 
C’ continuity. 

We can conclude that 
1. The system of constraints given in equation (29) is singular only at vertices where four 

elements meet and their boundaries are given there by a pair of intersecting straight lines: 

2. In order to enforce constraints by 
each vertex: 

Pattern of singular vertex 

direct elimination of a set of dependent variables, at 

(a) if the number n of elements meeting there is odd then all mixed second order derivatives 
can be selected to be eliminated. 

(b) If the number n is even, and provided that the vertex is not singular, one tangential 
second order derivative w:, an d n - 1 mixed second order derivatives can be eliminated. 
The index i is arbitrary provided that cot 4i + cot 4i+l# 0. 
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What we have presented here is one choice of dependent and independent variables. In [12, 
14,201 an optimal choice of dependent variables and the reasons for its optimality are discussed 
in detail. 

Note that constraint equations given in equation (28) relate only external nodal variables 
and, in particular, only the second order derivatives at the vertices. Therefore the internal nodal 
variables are independent variables in ?r and the set of internal nodal variables associated with 
element e is associated with no other element. This means that static condensation can be used 
to determine internal nodal variables at the elemental level. Also, with our choice of nodal 
variables once dependent and independent variables have been chosen for a fixed p and the 
relations between them have been determined, these same constraints relations hold for other p. 
This means that the determination of dependence in terms of independent variables has to be 
made only once, as the degree of the approximating polynomial is increased to achieve greater 
accuracy. 

We now show how to compute elemental stiffness matrices and elemental load vectors for 
pth order polynomial elements by using precomputed arrays. More details are given in [18]. 

5. ELEMENT STIFFNESS MATRICES AND LOAD VECTORS 

We assume a displacement vector field {EQ, y)} of the form 

where 

LV] = 14 kr &I 
lV1 = lu, hr u,J 
lW_l=l w, wx, wy, K.0 wxy, wyy J (33) 

u(x, y) and u(x, y) are required to satisfy Co continuity and w(x, y) is required to satisfy C’ 
continuity. 

Let ?rc denote the potential energy of the triangular element T. Then 

1 #=- 
2 11, l@k ~11 CS’l{W, y,) dx dy - 11, lz’J{*b-, y)I dx dy (34) 

where [SC] is the symmetric elemental matrix of elastic constants and [.??I is the elemental 
distributed load. 

We’use the transformation M-’ given in equation (4) to map from x - y to 5 - 77 coordinates, 
and we let 

a(& 7) = r&x, Y). O’K 7) = u(-% Yh w, 11) = w(x, Y). 

Now, since M-’ is given by (4b), 

1 - - 
{V] = a W,l{V) = [‘%I{ VI 

0 

h2 -2Yzj3 h2 
- .f#3 2293 + .f3j2 - .f2y2 

132 - 2_$2fj 1z2 



Nodal variables for complete conforming finite elements 101 

Therefore 

{W, y,) = [Gl$_(5, TN= [Gl 

where 

Gl 
[G]= G, 

[ 1 . 
G2 

Substituting in equation (34), this gives 

(351 

where 

[s’] = [G7][S”l[G] 

@=J = [Z’][Gl. 

Now we partition [s’] as 

(37) 

where [St,], [S:,], [&,I gives the (possible) coupling between the different displacement fields. 
In many applications at least some of these coupling terms will vanish. Then 

denote the vector of all polynomial coefficients associated with element e after having been -_ . . 
mapped into F (partitioned into coefficients assoctated with 6, v’, and CJ respectively). Let (6,) 
denote the vector of all nodal variables partitioned similarly. We have shown that the 
transformation 

can be inverted to give 

(39) 
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The computation for [A-‘] in equation (39) is assumed to have been performed and to be 
available for use. Let 

Then 

Let 

(40) 

(42) 

with similar expressions for ii” and ii” for i = 1,2,3. Substitute in the first term in equation (48) to 
obtain 

(42) 

The six matrices Bf’“, I s i sj 5 3, are of size [(p + I)@ f 2)/2] x [(p + l)(p + 2)/2]. They are 
computed once and for all and stored for future use. In the calculation of 

the following formula is of use: 

If p!q! 
itp?lqwl)=(P+q+2)! 

The six constants dy, I 5 i I j s 3 are given by 

d;” = 2(lAl[G’Tl[s~,ltG’l)ii i‘= 1,2,3 

dy = (411Al[GlTl[s’,,l[GlI)ij lzSi<jS3 (43) 

and are computed for each element. 
Similar expressions and computed for dr, 15 i I j zs 3, and d;“, 15 i I j 5 6, for each 

element. Again the matrices By, Bt’” are computed once and for all and then stored for future 
use. 
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The expressions obtained from the coupling terms are 

41A1 j-j-i 1 OIJ l&I { v] d5 dn 

Isis6 

and they are obtained analogously 
In (42)-W) there are a total of 78 constants dii to be calculated for each element and then 

multiplied by the precomputed matrices Bib In most applications, however, there will not be 
complete coupling between I(, a, and W, so that not all constants will have to be computed. 

Let Iz:, = E d$“B%, R:, = I: drB7, &, = z d;“B;“, I& = I: dr”B;“, R:, = z &j”B;“, 

&,, = Z: dgwBr, then from equations (34)-(46) we obtain 

1 
2 II 

1W Y ,J Wl{w, y,I d.x dy T 

= ;~6eJ[Ke]{Se} (47) 

[I?] is the elemental stiffness matrix referred to standard nodal variables, and [K’] = 
[D”][I?][D’] is the elemental stiffness matrix referred to nodal variables in the xy plane. In 
equation (47) 

where [D,‘] and [D,‘] are the diagonal matrices given in equation (15) and [Dv’] is the block 
diagonal matrix given in equation (25b). 

Similar calculations give for the distributed load vector: 

I I T 12% Y)JI%x, y)ldx dy 
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If [z’(& q)J is not constant the integration is performed numerically; otherwse, standard 
formulas are used. 

6.THE UNCONSTRAINED MINIMIZATION 

The total potential energy ?r which was given in equation (1) is now expressed in terms of 
nodal variables as 

?r = T ?rc =; T 1S’J [K’]{6’}- u’J{S’}. (50) 

Independent variables among the set of all {Se} consisting of appropriate second order 
derivatives (either mixed or tangential) have been chosen as described in equation (29) and in 
the subsequent discussion. The other second order derivatives which are dependent variables 
are expressed in terms of these explicitly. The set of all independent nodal variables (81) is now 
determined explicitly. For the case of C’ continuity it is similar to the set given in [Ill. 

The set of all dependent variables {SD} is expressed explicitly in terms of (6,). These 
expressions are substituted in equation (50) to give an unconstrained minimization problem. 
Internal nodal variables are hrst eliminated at the elemental level via static condensation. It is 
important to note that the nodal variables associated with a given element e will depend only 
upon nodal variables of those elements which are adjacent to e. Therefore the final stiffness 
matrix in the unconstrained optimization will now have a banded structure, the width of the 
band depending only upon the number of elements adjacent to a given element. This will 
eliminate the problem of multiplying large matrices referred to in the Introduction. In [12], a 
scheme is described in detail in which the calculation of the global unconstrained stiffness 
matrix can be treated as if it were a conventional finite element assembly process. We do not 
elaborate here. 

In any case, form this point on, the problem is one of unconstrained optimization and 
conventional finite element codes such as Irons’ Frontal Solver[21] can be used to determine 
{&} the vector of alI independent nodal variables. {SD} is given explicitly in terms of (81) so the 
entire vector (15) is known. For each element e, the polynomial coefficient vector (6’) is given in 
terms of {s’c ) by means of the explicitly computed inverse [A’-‘] and {p} is easily computed from 1 
(6’) as described earlier. Hence a typical displacement field G(& n) is gtven in terms of its 6 - + 
coordinates. In order to determine w(x, y) one can either compute the coefficients {a’} in terms of 
{Z’}, or one can map f j into 1, n via the afIine transformation M-’ and then compute w and its 
derivatives from equation (35). Similarly for the other displacement fields U(X, y) and u(x, y). 

7.ANUMERICALEXAMPLE-PLANESTRESSSQUAREWITH 
PARABOLIC ENDLOADS 

We give some numerical results obtained in the solution of a plane stress problem (co 
continuity). Accuracy was achieved by increasing the orders of polynomial approximation while 
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keeping the triangulation fixed, (p-convergence) as opposed to the conventional approach in 
which the polynomial orders are fixed and the triangulation is successively refined (h- 
convergence). Numerical results in other problems, as well as more details concerning the 
implementation of hierarchic nodal variables on the computer are presented in [18]. 

To demonstrate the computational efficiency obtainable using hierarchal nodal variables and 
pre-computed arrays, a computer program was written and a number of test problems solved. 
The program was executed on an IBM Model 360/65 running under OS/360 MFT II and HASP 
3.1 and using Memorex 3330 disks. IBM Level H FORTRAN IV with the OPT = 2 option was 
used for all routines performing substantial computations; Level G FORTRAN was used 
elsewhere. No machine language routines were employed. All calculations with real variables 
were performed with double precision arithmetic. Random access disk files were used for 
storing the precomputed arrays. 

In [22], Cowper described an algorithm (based on precomputed arrays) for the computation 
of the 18 x 18 element stiffness matrix for his C’ plate bending element. He also gave the 
computation time required to execute the algorithm, and, to indicate the relative speed of his 
computer, he reported the time required to square an 18 x 18 matrix. On the computing system 
used in the present study, an 18 x 18 matrix can be squared in 0.107 f 0.007 seconds, a result 
obtained using the IBM Scientific Subroutine Package [23] routine GMPRD converted to double 
precision and compiled with optimization level OPT = 2, and averaging over many runs. We will 
define 0.107 seconds to be an equivalent time unit (e.t.u.), and, to facilitate possible future 
comparisons with other programs implemented on different computers, all CPU times given in 
this paper will be given in e.t.u. 

The computational effort required to solve the test problems will be indicated in most cases 
by giving the CPU time (in e.t.u.) consumed in solving the governing system of linear equations. 
The particular equation solver employed was the frontal solver of Irons[21], modified by the 
introduction of direct access files (to avoid the BACKSPACE command) and the elimination of 
all implied DO-loops. Along with the CPU time for a given polynomial order, we will also give 
the value of Ni, the total number of external and internal nodal variables in the mesh 
disregarding boundary conditions, since this equals the number of equations processed by the 
frontal solver. (Boundary conditions are enforced by multiplying appropriate terms on the 
diagonal of the coefficient matrix by a large number, rather than through omitting the 
corresponding equations.) 

Many investigators in finite element research are reluctant to quote actual machine time, 
perhaps justifiably, since this may introduce factors irrelevant to evaluating the efficiency of the 
algorithm, such as particular machine and operating system characteristics or programming 
skill. To facilitate comparisons which are independent of these factors, in addition to CPU 
times we will give the number of active degrees of freedom (DOF), equal to Ni minus the 
number of nodal variables suppressed through boundary conditions. Furthermore, following the 
suggestion of Abel and Desai[24], a measure of error will be plotted versus A%‘, where N and 
B are the number of equations and the maximum half bandwidth calculated by disregarding 
boundary conditions and assuming internal nodal variables have been eliminated through static 
condensation. Unfortunately, the use of NB2 to measure computational effort may be mislead- 
ing, since on the one hand ignoring internal degrees of freedom tends to favor high order 
elements with many internal nodal variables, while on the other hand ignoring boundary 
conditions favors low order elements, as was recently shown in [25]. Since these are contrary 
effects, perhaps they tend to cancel each other; in any event, Abel and Desai’s procedure will 
be adopted here for its convenience. 

The strain energy of an isotropic, linearly elastic, plane stress membrane of thickness t is 

(51) 

where E is the elastic modulus, Y is Poisson’s ratio, u and u are the x and y displacements 
(subscripts denote derivatives) and fl is the area of the membrane. This expression may be 
written in the form of the first term appearing in the functional of equation (34) if [&,I = [S,,] = 

[&I = [SW1 = VLJ = WI and 
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0 0 0 

Ll=[S,.l=~ 

i I 0 j$ 0 f 

0 0 ; 

(52) 

(53) 

As an example, we consider the problem of a square membrane loaded with the parabolic- 
ally varying edge stresses 

UYyv = ao( 1 - 4x2/L2) (54) 

shown in the inset of Fig. 1. The vertical edges are stress-free. Using the two element mesh 
shown, to model one quarter of the domain, the values given in Table 1 for various polynomial 
orders p (the same for u and v) were obtained. Rapid convergence can be observed for all 
quantities in the table, with some of the computed values agreeing with the analytic values to 
five or more significant figures. In general, the convergence is not monotonic, for example the 
most accurate value of ue is obtained for p = 4. The strain energy does converge monotonically, 
however, and for p = 8 agrees to seven digits with the analytic value. 

A Cubic element 

0 Herorchol element 

IO' 

Equotton solving effort NB’ 

Fig. 1. Comparison of computational efficiency for plane stress problem. 

.In Fig. 1 the error in strain energy is plotted versus equation solving effort NB* for the 
hierarchal element and for the plane stress element of Cowper et al.[26]. The latter element is 
generally considered quite efficient since it is based on complete third order polynomials and 
employs both function and first derivative values as v rtex nodal variables. Even so the results 
of Fig. I indicate that the conventional approach of mesh refinement with polynomial order 
fixed (h-convergence) is less efficient than increasing polynomial order with the hierarchal 
element with the triangulation fixed (p-convergence). Solution trends for the hierarchal element 
approach are given in Table 2. 
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Table 1. Results for plane stress square problem 

P 
lOrEu, ldEtuc 

DOF - - 
IOEto, 10ErvD 

(I-v )uoL (I-u )uoL (I-v’)aoL (1 - v2)uaoL 

3 
4 
5 
6 
7 
8 

Ref. 14 
5x5 
Mesh 
Analytic 

24 - 1.524012 I.9310 I .29200 5.069395 
46 - 1.519549 I .7839 1.27730 5.073858 
6- - 1.518966 I .7782 1.21672 5.074441 

84 - 1.519974 1.7808 1.27698 5.073432 
II2 - 1.519976 I.7821 1.27712 5.073431 
I44 - I.519918 I .7829 1.27720 5.073489 

292 - 1.519900 

- 1.519928 

1.7852 

1.7837 

1.21742 

I .27727 

5.073507 

5.073478 

100,, & oug Ioa,,8 o,,c Strain energy 
oo 00 UC! oil uo 10Er2U 

(1- v)2L2ao 

- I .20354 8.225% 0.00828 4.51315 0.05357 2.78955% 
- 1.39082 8.64721 - 0.00167 4.15533 0.08328 2.7934086 
- 1.44156 8.59593 0.00005 4.11341 -0.00664 2.7935428 
- 1.39880 8.58848 0.00010 4.10366 - 0.00658 2.7935648 
- 1.41451 8.59148 -0.00006 4.10611 -0.00451 2.7935684 
- 1.40705 8.58991 o.Oooo3 4.10738 - 0.08299 2.7935692 
- 1.40880 8.59120 0.008166 4.10767 - 0.00233 2.7935667 
- 140954 8.59046 0 4.10670 0 2.7935695 

Table 2. CPU time required to solve 
equations for plane stress square 

problem 

P Ni 

3 32 
4 50 
5 72 

6 98 7 128 
8 162 

CPU time 
in e.t.u. 

19 
24 
38 

:: 
152 
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APPENDIX 1 
Transfomzation from Standard to Non-standard Polynomial Coeificients. 
From equations (4) and (5) we have 

= 
It now follows that if we let 5 = 716 then 

where the binomial symbol 
0 

jnn = 0 if m > n. Therefore, 

so that we have the transformation 

(I-1) 

(l-2) 

(f-3) 

If we let {a) and (i) be the vectors consisting of ail the polynomial coefficients in (1-t) and (l-2) respectively then (1-3) 
gives the matrix [II-‘] in 

{a} = [B-‘](o). U-4) 

Note that (B-t] is block diagonal, each block relating the coe4Iicient.s of kth degree terms in (l-1) and (l-2). Siihuly using 
equation (4b) we obtain 

where ./ = .?& -a& = 26. This gives 

Again [B] has block diagonal shcture. 

10) = [El@). (l-6) 
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APPENDIX 2 

Transformation matrices for Co elemeflls 

We give [A@‘-‘] by writing {gCp’} = [ACP’-‘]{@)} explicitly. 
Assume that 

and let 

[CP’J = l&j$‘, (is), 6%‘. ago’, 67%’ ,. . ., h~~,a~2,.,,.. . . ii~_Ll, a’gq. 

For each p we give those expression in lily’, 0 I i + j I p, which are different from 6:;‘. for k c p. 

p=2 

1~‘“J = li(R,), P(Rz), n(&); li,(S,), MS,), &,,,(S,)J 

d$ = ii 

I. 
o”:d = - i(R,) + P(R2) - zu,(S,) 

a-$‘= -i(R,)+ i(R,)-f&,JS,) 

6% = +,, 
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p=s 

-m - -,4’ a01 - aol + 

The matrices [A@‘] are not used in the calculations. They are given explicitly, however, in [17]. 
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APPENDIX 3 

Transfonation matrices for C’ elements 
We give [j(p)-‘] by writing {6’“))= [A”t’]{@‘)) explicitly. 
Assume that 

It(f, T))= 2 q-‘fr) 

and let 
ClS,+jSp 

lo’@‘J = lag’; al%‘, i??; al’, aw, ng, . .( cqf2, np ,.,..... iiy$,, liL’J 

For each p we give those expressions in riya c i + j 5 p which are different from dCk’, k < p. 
p=s 

18”J = [WV, N&h Wd; $(R,), %,(R,), Gt(Rd, k(R&, &,(Rt), @(Rx); 

&(RI), Gb(Rd. k,,(R,), @(Rt), $,(Rd. %;(R,), 

k,,,(Rd, k,t(R,), MRP). Q,,(S,). I. &,G,)J 

Boo = G(R,) 

d,o = &(RI) 

i,,, = *JR,) 

&,, = fQ(R,) 

d,, = %,(RI) 

do* = ;Gq(R,) 

li,=-lO~(R,)-6~t(R,,-~~~R,)+ IOI;(R2)-4Gt(RZ)+;@(Rz) 

&I = -3MR,)-2WRd+3~t(R,)+3~2@dR2)- IG,I(R,)-~Z~~~(R,)+~~~,(S,) 

in= -34(&)-2%(Rd+3~R3-3t/2~Rd- 6~R3+~2~~a(R,)+i14~~~S1) 

&,= -lOG(R,)-6G,,(R,)-$(R,)+ 10G(R1)-41t,(R1)+&r(R,) 

&,= 15~(R,)+8~t(R,)+~~~z(R,)- 15C(R&+7&(Rz)- Q(R2) 
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The matrices (I@“] are not used in the calculations. They are given explicitly, however, in [17]. 


