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Abstract—Nodal variables are given for a new family of complete conforming triangular finite elements of
arbitrary polynomial order p for use in linear stress analysis. This family has two important properties: (1)
hierarchic property, i.e. the elemental stifiness matrix corresponding to an approximation of order p is a
submatrix of the elemental stiffness matrix corresponding to an approximation of order p + 1; (2) the family
enforces exactly the degree of smoothness across interelement boundaries which is required by the problem
(C° continuity for plane elasticity, C' continuity for plate bending) even at vertices. It is shown how to use
precomputed arrays in an efficient manner in calculating elemental stiffness matrices. Results from a
numerical example in plane stress analysis are presented. These results demonstrate the efficiency of a
p-convergence procedure which uses the new family of finite elements.

1. INTRODUCTION

In standard approaches to the finite element method the degree of the polynomial ap-
proximation to the solution is held fixed while the number of elements is increased in such a
way that the maximum diameter, h, of the elements goes to zero. We call this procedure for
achieving accuracy h-convergence. It is also possible, however, to obtain convergence by fixing
the number of finite elements and allowing the degree p of the approximating polynomial to
increase. We call this procedure p-convergence. It has been demonstrated in a variety of cases,
including that of a difficult benchmark problem[1] posed by Lockheed, that the second mode of
convergence is more rapid[2-5]. The p-convergence procedure also possesses the additional
advantage that no change in the number or geometry of the elements is required to achieve
accuracy, thereby resulting in manpower savings in data preparation and processing.

In order to implement convergence with respect to polynomial approximations of increasing
degree, it is necessary to have available a family of finite element approximations of arbitrary
degree p. The constraint formulation for finite element analysis provides just such a family of
polynomials. In the constraint method, the total potential energy = is expressed as the sum of
the potential energies =° of the (triangular) elements. Complete pth order polynomial ap-
proximations are used[6], and the requirement that the global approximating function is
continuous across interelement boundaries (C° continuity) or that it and its first normal
derivative are continuous across interelement boundaries (C' continuity), is expressed by a set
of linear equality constraints.

Specifically, the problem is to minimize
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subject to the linear equality constraints:
Z‘ [P*Na®}={R} @

where = is the total potential energy functional; 7* is the potential energy of the element e; n is
the number of finite elements; [S¢] is a positive semi-definite matrix defined over the eth
element. It is often called the unconstrained stiffness matrix or the element stiffness matrix;
{a} is thé vector of the unknown coefficients of the complete pth degree polynomial ap-
proximation over the pth finite element; {Z°} is the vector of the applied loads.

Equation (2) enforces interelement continuity and boundary conditions, [P¢] is a matrix
whose rows are polynomial expressions evaluated at specific points along the boundary of the
eth element.

Equations (1) and (2) represent a constrained quadratic programming problem. This problem
may be solved by separating dependent and independent variables in equation (2) and then
substituting back into equation (1) to yield an unconstrained minimization problem. Gaussian
elimination is used in (7] to find independent variables among all the coefficients in the set of
{a°}. This approach, however, is inefficient and unsuitable for large problems. In [8], nodal
variables denoted by {8} are introduced and the constraints given in equation (2) are rewritten in
the form

[Ala}~[N)s}=0 )

where [A] is a block diagonal matrix whose ith submatrix defines nodal variables for the ith
finite element; {a} is the vector of all unknown polynomial coefficients for all finite elements;
[N1] is a nodal matrix. The elements of [N] are either zero or one:

_ J1 if the ith row in [A] corresponds to nodal variable j
i =10 otherwise.

{8} is the vector of all nodal variables.

A special adaptation of the simplex method is then used in [8] for rank analyses and to find
basic (dependent) variables and non-basic (independent) variables among the nodal variables
and polynomial coefficients. Dependent variables are replaced in equation (1) by their
expressions in terms of independent variables in a process which requires multiplication of
large matrices and which utilizes sparse matrix multiplication techniques. This process may
become very expensive unless the matrices are banded, and bandedness can be obtained only
by a careful choice of the dependent variables. This problem does not exist if C° continuity
only is enforced: All nodal variables are independent; some polynomial coefficients are
independent too but can be eliminated by static condensation. Therefore the total potential
energy is expressed in terms of nodal variables and an unconstrained minimization problem is
formulated directly with respect to these nodal variables. This case corresponds to the standard
finite element method and the independent polynomial coefficients can be viewed as internal
nodal variables. For C' continuity, however, this is no longer possible (and this was one of the
motivations of the constraint formulation). This problem is fully investigated in [12, 14, 20]
where it is shown how to avoid the need for linear programming. We present here that part of
the discussion needed to make this report self-contained. Briefly, the potential energy is again
expressed in terms of nodal variables but these nodal variables must now satisfy certain
constraint relations. We show how to define the nodal variables so that the constraint relations
will have as simple a form as possible. This leads to an a priori choice for dependent and
independent variables without the use of linear programming. We also show that by using these
nodal variables the process of assembling the finite elements is simplified and there is no longer
the time-consuming need to multiply large matrices. In either case (C° or C' continuity) we
have a pth order approximating polynomial enforcing the desired level of global continuity for
each p.

The most important and unique feature of the nodal variables presented here is that they
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produce a sequence of hierarchic stiffness matrices and therefore possess the advantages
presented in [14]. The hierarchic character of the stiffness matrices is manifested by an
embedding property: The elemental stiffness matrix corresponding to a polynomial ap-
proximation of order p is a submatrix of the elemental stiffness matrix corresponding to a
polynomial approximation of order p + 1. Therefore when increasing the order of polynomial
approximation from p to p + 1 it is necessary to compute only the new rows and columns in the
new stiffness matrix.

Other families of approximating polynomials are known. In [9] for example, a hierarchy of
polynomials of degree p =4m+k(m =0,1,...;k =1,2,3,4) is given which generates functions
that are m-times continuously differentiable and have piecewise continuous derivatives of order
(m +1). Thus, for problems requiring C' continuity, the elements are over-conforming when
m =2, It is important to note, however, that the rapidity of convergence observed with respect
to increasing degree of polynomial approximation appears to depend upon enforcement of only
the minimal degree of continuity required by the problem. Hence our insistence that our
polynomials should not enforce more than C° or C' continuity, as the case requires. Also, the
polynomials in [9] enforce (for p = 5) at least C? continuity at vertices (see also [15]). In some
geometries with corners, such as the Lockheed benchmark problem[1], the solution does rot in
fact have C? continuity at all the corner vertices. This results in the requirement of a large
number of the finite elements given in [9] for an adequate approximation. We have in mind,
however, applications where few elements are used (as determined by the geometry) and
accuracy is achieved instead by increasing the degree of polynomial approximation. This can
best be accomplished by enforcing no more than C' continuity at vertices. In [5], this kind of
application is shown to yield significant improvements over standard methods for the Lockheed
problem. Also, the family given in [9] does not have the hierarchic property referred to earlier.
Therefore, when raising the order of polynomial approximation in an element from p to p + 1,
the entire elemental stiffness matrix changes and must be recomputed. This is inefficient when
seeking convergence by increasing the order of the approximating polynomial, which is the
p-convergence procedure that we have in mind. )

We note that the definition of nodal variables for the enforcement of C' continuity is closely
related to a problem posed by Strang[10] concerning the dimension of the space of polynomials
of degree p and continuity class C'. This dimension is, in fact, the number of independent nodal
variables remaining in equation (1) after dependent variables have been eliminated using
equation (3). Our nodal variables, which are similar to those introduced simultaneously and

_independently in [11] are actually a nodal basis for this space of polynomials. This is treated in
greater detail in [12]. Our main prupose here is to show that these nodal variables are
computationally efficient. Additional details on the implementation of these nodal variables in a
computer algorithm are given in [18].

In this paper, we first introduce a standard coordinate system for simplicity of computation.
Then, we introduce nodal variables and local transformation matrices which enforce C°
continuity for arbitrary p. After explaining the need for constraint equations in order to enforce
C' continuity, we introduce nodal variables and local transformation matrices for this case. The
simplest form of the constraint equations as well as an explicit choice of independent variables
is described. We show how to compute element stiffness matrices and load vectors in standard
coordinates by using precalculated arrays, and we discuss the structure of the final uncon-
strained minimization of the total potential energy. Finally we present a numerical example in
plane stress analysis. Other examples are given in [18].

2. COORDINATE SYSTEMS
It is convenient and computationally efficient to do many of the calculations in terms of
standard triangles. Let (x, y) denote the global coordinates of a point P, let Pi(x;, y;) i =1,2,3,
be the vertices of an arbitrary triangle T in the x — y plane, and let (%, §) = (x — x;, y — y,). We
define the transformation M from standard (£, n) coordinates to (£, ) coordinates as

M:{f}z[xz—x, X3“xl]{f}=[x-2 33]{§}=[112C05012 lgCOSOu]{E} (4)
y Y2=y1 yi—ynlln ¥ vl liasin @32 li3sin 83 {17y a
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where {; is the length of the side P,P,. and where (cos 8;, sin 8;) is a unit vector in the direction
of P;P, The inverse transformation M ™' maps the triangle T in the x — y plane into the standard
triangle T with vertices at Ri(&, m:)i = 1,2, 3, in the £— 1 plane where (¢, 1) = (0,0), (&2, 12) =
(1,0), (&, 73) = (0, 1). This inverse transformation is given by

wilil=xl-n 26 o

where A = §(%,5; — %355); |A] is the area of T.

n
y LA
Paylaays)
¥ 53
23
P, (Xz Yz)
Piix y)/ (2 ~—— ¢
' —_ M R 10,00 5, RO

Let u(x, y) be a complete polynomial of degree p defined on 7. Then

u(fy)= > ag'y

Osi+)sp
= u(X2€ + X3m, o€ + ¥3m)
=@n= Y dg'n ®

Osi+j=<p

that is, the coefficients of u considered as a pth degree polynomial in £ and 5 are d;. a; and d;;
can be computed explicitly in terms of each other. The precise expressions are given in
Appendix 1. We now give expressions for differentiations along the sides of T in terms of
differentiation in standard directions. Let s; be the direction from P; to P, let n; be the
direction normal to P;P; as shown in the figure, let § be the direction (- 1/v/2, 1/4/2), and let /i
be the direction (1/v/2, 1/4/2). Then we have

;—:;=%cos0l3+%sin0|3=i(fgg—-+y Z:)-ﬁ;%

2 = 8 cos b+ Sosin by = (8- 200+ (335 )
L% N ©

:;:le—-smona + cos 0,;‘;‘;

_ 1 ( ( 1 a:z)+x( a‘+x 811))
—2A1|2 ¥2 )’sa£ ¥2 2 8{ 231’

I S -z«zz)
2Al,2( (X2X3+ ¥273) a§+(x2 + ) P

2 1]
2Aln(—(ln 2) f ) alz f Blz
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ou au
—_—= —cos 6
ann sin 0|3 133 3y

1 ( ( al au) f( au+x au))
2AI|3 Y\ ¥i 77 ag )’23 3 a§ 231’

(e 5Bt 5 )
TV ((xs +75) FT; (F2X3+ §273) on

=1 (pod ) oa o o
-ZAIB( 13 a§+—“23 i) ap 3§+B'3 an

du du ou
g = sin 6y — ox —cos O3 3

2All (()’3 )’2)()’322-—}’2;’:) (% - Xz)( 3;4')‘23:))

ZA, A (874 55) = (Bafs + yzys))—f+«x22+ 52) - (X2X3+,Vz}'3))—

1 o o
T 24, \2 (_(IZ’H \/2< 8s+an)
2 il gt_)
+3(lh = By \/2(35 Pr
2 ﬁ 2 3")
zva, (- Ao Fz+ B g +pn s
where
2 2 llZ
ap= 4Al (123 13- 1) B12="2Z
=18 By = e (B = I3y = Iy)
13 ZA 13 4AI[3 3 13 12
a _____!___(12_12) B = 123
23 2'\/2A 123 12 13 23 2\/2A

(6b)

3. NODAL VARIABLES AND TRANSFORMATION MATRICES
FOR C° CONTINUITY

We first define the nodal variables used to assure C° continuity across interelement
boundaries. We refer to these as boundary or external nodal variables. Let @y, Q,, Qs, be the
midpoints of sides P,P,, P,P;, and PyP; respectively and let the images under the mapping M~
of Q,, Q; and Qs be S;(1/2,0), Sx(1/2,1/2) and S5(0, 1/2) respectively. Then for p =2 we define
the 3p external nodal variables

u(Py), u(Py), M(Pz) (Ql) "‘T(Qz) 5'31‘(03),'3?'(01)

TH 00 T Tk @ 2E Q) Tk @) )

In order to show that the external nodal variables in (7) do indeed enforce C° continuity
along interelement boundaries, we must show that two polynomials with the same values of
these nodal variables along a side actually coincide along the side. It suffices, therefore, to show

that if the side is of length 1, if 0 =<s =<1 is distance along the side, ' = d/ds, and if u(s) = §'. bis’,
i=0
then u(0)= u(1)= u"(1/2) = u¥(1/2)=0 implies that b;=0,i=0,1,...,p. To show this let
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t=ys5-1/2 and let

Therefore the coefficients 5; of u as a function of ¢ are given in terms of the coefficients b; of 4
as a function of s by -

b0 s

and similarly

b= i(——)'-’() . j=0,...p. ©)

i=j

This means that b; =0, for j=0,. .., p if and only if b; =0for j=0,..., p. Now 4*(0) = k! b, =
Ofork=2,...,p,and

"

0=u(0)= u(—§> bo—%é,

—u(1)—u() bo+ b.

so that by = b, =0 also. This proves that our external nodal variables do indeed enforce C°
continuity.

In order to determine a transformation between the [(p + 1)(p + 2)}/2 polynomial coefficients
of u, given by equation (5) and nodal variables, we introduce 3(p + 1)(p +2)-3p = p — D)(p - 2)
additional nodal variables which we call internal nodal variables. These variables are associated
only with one element, and when minimizing the potential energy functional 7 in equation (1)
they can be eliminated by static condensation from the elemental potential energy #°. For this
reason we call them internal although they are defined at boundary points (in fact at vertices).
For p =2, no internal nodal variables are needed. For p =3, the internal nodal variables are
chosen as

Pu_ . *u u . du d’u Pu
35%520513° 35120813 35120813 35120813" 3812087 3s2dsty’
$120813 05120813 08120813 05120813 08120813 0812083
’u ’u fu
5% 9513’ 0s%7 0513’ 9s1208%;

s=(for3=k=p,

. 3 u o g s
Omltwlfk is odd;

k
omit g,lg}a—m if k is even) (10

all evaluated at P,. Thus for each k,3 <k < p, we introduce k — 2 derivatives evaluated at the
origin, that is, a total of 3(p — 1)(p — 2) internal nodal variables.

We now show that these (external and internal) nodal variables form a nodal basis, that is,
we show that the transformation mapping polynomial coefficients into these nodal variables is
invertible.

Let {a} denote the vector of coefficients of the approximating polynomial in a given
triangular element T (for convenience we temporarily omit the index e). Then the trans-
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formation relating {a} to {8} is

[A}{a} = {8}

where

(6)=

2 2 2
u(Py), u(Py, u(Py): S5 (Q: 77 (Qz),—f;’ 7 (Qo);
12 $13

3 83
s’fz(ol),—r(oz),—r(os) T P

a*u

Fsnastst &Y

(Qn) 57 (Qs) (P, ..

P las

(for3 =k < p, omit a—(-k-_am;—mxf k is odd

omit —gzs—g-lf kis even) J
13

It follows from equation (6a) that under the mapping M

161 = | 2R, 1R, iR 50, - S5, 1 sy

1 3%u 2v/2 8% 1 8% .
T?(Sl)s —-S_—T(SZ)’T_—?(SS)’_Q;I—‘;WRI)s vy

1 3% 1 0% LT
l” agp(sl) "lp an p(ss),lp =T ;,F:r—(R) ..

llzllp ~7 —gg—!f,—_T(Rl) (for3=sk=< p, omit

1 ok -
WWW(&) if k is odd;

omit -ﬂ}m—f&a—m if k is even)J

(8] = 81D

where
1§) = lu(Rl),u(Rz),u(Ra) a—gf(s.),—-f(sz),—z(sa),

‘;—;(sl) ~;(sz) ‘—5(53) @—m.)

] i ]
afp (Sl) (SS)’ agp laT’(Rl) aga p— I(Rl)

(for 3<sk=p, omitﬁ%if k is odd
omit = (R if k )
W 1 is even J
and where [D] is the diagonal matrix

[D] = diag(1, 1, 1; I}, 133/2, i 1 125 123/23/2 R, 2113; cee
112’ ey 112’ 112- 1137 e 112113-
(for 3=k = p, omit I V1 V2if k is odd,

omit {214 ?if k is even)).

9

)

(12)

(13)

(14)

(15)
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Also we have
[A)a} = {8} (16)
where {8}, given in (14), is the vector of nodal variables in the standard £-n plane. The

transformation matrix [A] is a matrix of constants, that is, it does not depend upon the vertices
P;, and {d} is the vector of polynomial coefficients with respect to £ and 5. Now

{8} = [DI{8}
{a}=[B}a}

and

where [B] is the matrix relating polynomial coefficients with respect to £ n to those with
respect to %, §. [B] and [B™'] are given explicitly in Appendix 1. Substituting into (11), it follows
that

[A]=(D™'[A]B™"] (17

so that [A] is invertible if and only if the constant matrix [A] is invertible. Moreover[A '] can
be inverted once and for all so that {4} can be obtained easily from

{a}=[A""){8}

once {§} is computed. {8} can be gotten from {§} by multiplication by the diagonal matrix [D].
(In the case of C' continuity [D] becomes biock diagonal with the size of the largest block a
2 X 2 matrix. This will be seen later.)
In {171 it is shown that [A] is invertible and a procedure for computing its inverse is given.
It is an important consequence of our choice of higher order derivatives as nodal variables
that the matrix of coefficients [A’] has the partitioned form

. APV A ‘
(40 = [ et (®)
0 App
This means that [A®""'] can be computed by partitioning. Let [B®"] =[A®’""] be partitioned
similarly
; B¢V B _
(BN = [0;“’] (19)
Then >

[éw—l)“] = [A(p-l)“]
[Ep.p] = [A;;
(B,-151 = —[A7""" 1A, 1, MAS) (20)

Thus, in computing [B*’] after having computed [B®~"] only the new rows and columns in (19)
need be calculated. This property is a consequence of the hierarchic character of our nodal
variables. We give the transformation matrices [A®"'] for C® elements explicitly for p =
2,...,5in Appendix 2. In [12, 14, 20] shape functions for the nodal variables presented here are
given in terms of triangular coordinates.

4. NODAL VARIABLES FOR C' CONTINUITY
We now consider displacement fields that are required to be continuous together with their
normal derivatives across interelement boundaries. Let w(x, y) be such a displacement and
assume that w(x, y) is approximated on T by a complete pth degree polynomial,

wiEk )= > a7y

Osi+j<p
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For the case of C° continuity we have defined nodal variables for each element. When these
nodal variables are substituted into the potential energy functional a, an unconstrained
minimization problem, with these nodal variables as independent variables, results. For C'
continuity, the situation is considerably more complicated. 7 again will be expressed in terms
of suitably defined nodal variables but, as we show, these nodal variables must now satisfy
certain constraint conditions. Thus the choice of nodal variables is more difficult in the C' case
than in the C® case because there are two requirements to be met:

1. Nodal variables should be chosen in such a way that the transformation from polynomial
coefficients to nodal variables is as simple as possible.

2. Nodal variables should be chosen in such a way that the constraint equations which they
must satisfy are as simple as possible. This is in order to minimize the computational effort
réquired to enforce the constraints.

The enforcement of constraints for C' continuity is discussed in detail in [12, 14, 20]. We
present here that part of the discussion needed to explain our choice of nodal variables.

A. Need for constraint equations

It is important for our discussion to note the following: Suppose P(x,y) and Q(x,y) are
polynomials which coincide along a line [ and let 3/ds denote differentiation in the direction of 1.
Then for all points (x, y) on [,

3'P _4'Q .
W(X,y)-'a—y’(x,)’) j=0,1,2,...

Suppose now that the polynomials also satisfy C' continuity along /, and let 4/on denote
differentiation in a direction normal to /. Then we have analogously

3'P _¥Q
as'"on (x,y)= as''an

x,y) Jj=0,12,...

Similarly if s = s, and if s, is any direction not parallel to s, we have

d'P _¥Q
as,"lasz x, y) B aS|'-1352

x.y) Jj=0,1,2,...

Let us now restrict ourselves to the case j =2 and denote by {8} a set of nodal variables which
assure C' continuity. Let (xo, yo) be the common point at which two sides in direction s, and s,
meet. Let {8},i=1,2 be a subset of {§} which enforces C' continuity along side (i). The
different subsets {8}, may, of course. have elements in common. We have on the one hand

2

P . .
35195 (Xo. ¥o) = linear combination of {8},

and on the other hand

2

75,57 (xo. yo) = linear combination of {8}3.

This implies a linear dependence between components of the subsets {8},;, and {8}, Therefore.
we can state that the set {8} of nodal variables enforcing C' continuity along the boundary of a
polygonal finite element has as many redundancies as the polygon has vertices. In particular
when the element is a triangle there are three such redundancies. The rank analysis in the
constraint method of equation (3) has revealed, in fact, three dependent equations at each
elemental level (see[5] and[8]).

In order to better illustrate what we have stated, consider the following very simple
example. Take a second order polynomial and suppose that continuity of the slope is enforced
by means of normal derivatives.
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S2
Ve i by
T {8kn= {zl}
i © g —tSI {8} = {gi}
I ummma v,

p W= _ a*P

along side 1:

aslaSZ Ll axay
S, 4. P —(Yu—y) _ 3*P
along side 2: 3595, P axay'

In this simple case where the two sides meet at a right angle the linear relation satisfied by the
nodal variables reduces to equality of the mixed second partial derivatives and gives

h=t_Ys—ts
L L,

Another example is given by Zienkiewicz in [19]. In the general case the relation will involve
both nodal variables which enforce continuity and nodal variables which enforce continuity of
the slope. We give one form of this relation in [12] and [13].

In general we may state that the rank of the matrix which transforms the polynomial
coefficients to a minimal set of nodal variables enforcing C' continuity along the boundary is
equal to the number of its rows minus the number of the vertices of the finite element. There is,
however, one important exception which is essential for our choice of nodal variables: If the
second order derivatives 32P/ds.%, 3°Plds;ds,, and 3*P/as;® at vertices are themselves selected
as nodal variables, then the subsets {8}, and {8} coincide since both consist of the three
independent second order derivatives. In this case the rank of the transformation can be made
equal to the number of its rows. The, by introduction of additional internal nodal variables, the
transformation can be made invertible.

The enforcement of an additional continuity of second order derivatives at vertices by
choosing them as nodal variables as in [16] is the simplest way to avoid singularities of the
transformation matrix. We have already pointed out in the Introduction that we wish to avoid
enforcement of C? continuity at vertices. Thus, in order to have a nonsingular transformation
matrix the set of nodal variables {86} must be such that C' continuity does not hold. Hence,
constraints on nodal variables must be imposed separately in order to enforce the desired C'
continuity.

B. Nodal variables and transformation matrices for C' continuity
As before, we first define nodal variables which enforce C' continuity across interelement
boundaries. For p = 3, define the 6p —9 external nodal variables

w(P1), w(Py), w(Ps); —(Pn) -—(Pn),—-{Pz) (Pz),

P2 (Ps) —r(Pl) _9_p), —ﬁPl),...,

ax 38120813
3w 3w X
EE(PBL 353 as 2 3) —T(PJ)’ asl anlz\Ql), 6s an \02)1 asTan \QS),- oy

$5) \Ql)a asp- \Ql), 6s§ \02)9 sp— 23(Qz) 5§(Qs) sp 1an (QJ)- (21)
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3 _W. W,

2 H
Wy, W 'ws!.z‘?a!‘ ws?,

I
W, W W, WAL R

w4 ws 2w w, 2
w.? .w w2 LT s W, 5,9 Ws
12 s sy ey 2 2 21 21 *23 23

X

For example, if p = 5 the twenty-one external nodal variables are w, wy, wy, Wy, Wy, We at each
vertex (s and s' are the directions of the two sides meeting at the vertex), and

Weton (Q1), Wetanyi(Q2)s Wity (Q3).
We must show that these external nodal variables enforce C' continuity across interelement
boundaries, that is, we must show that if they are all zero along a side ! (with direction s) of
L4 : p_] H . .
length 1, then w(s)= £ b;s' and w,(s)= £ c;s' are identically zero for 0 =s =<1. Here w,(s)
i=0 i=0

denotes the normal slope of w along L
Let the external variables given by (21) be zero along . Then

w(0) = w(l) = w'(0) = w'(1) = w'(0) = w'(1) = w‘“’(%) _

= w“”(-;—) =0

wnl0)= wa(1) = wi0) = wilh = w®(3) = ... w>(3) =0 22)

We must show that (22) implies that b;=0,i=0,...,pand ¢;=0i=0,..,p—1.
. -1 . .
As in (8) let t=s—1/2,w(t)= 3 b/, wa(t)= S &', Since b =1/i! %) =0 for i=
=0 j=0
6,...,p, it fol}ows from (9) that ;=0 for j=6,...,p. Again for i=0,1,2 it follows that
b:(0) = (1/ihYyw(0) = 0. Therefore w(s) = b3s>+ bys*+ bss’. Finally, note that the system
0= W(1)= b3+ b4+ bs
0=w'(1)=3bs;+4bs+ 5b;s
0=w"(1)=6b;+ 12bs+ 20bs
is nonsingular. This implies that bs;=b,= bs=0, too. Similarly & = 1/i! w,(0)=0 for i=
4,...,p—1 implies that ¢;=0 for i=4,...,p—1. Also ¢co=w,(0)=0,c;=wi(0)=0, so that
wa(s) = c252+ ¢35°. The nonsingularity of the system
O=w,()=c2+c3
0=w,(1)=2c+ 3¢,

implies that all ¢; are zero i =0, ..., p — 1. Therefore we have shown that these external nodal
variables do indeed enforce C' continuity across interelement boundaries.

We now introduce additional internal nodal variables in such a way that the transformation
from polynomial coefficients to nodal variables is easily inverted. We restrict our attention to
p=5. For p =5 no internal nodal variables are needed. Forp = 6,3p+p+2)-(6p-9) =

(p — 5Xp —4) internal nodal variables are required. For each k,6 <k =p, define the (k-5)
internal nodal variables

I _(p i=2,3... . k=2 3
755,9557 1) j=2,3,.., (23)

omitting any two, say j'(k), j"(k).
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The total number of internal nodal variables is then
2 1
2 (k=5)=30=5)p - 4.
=6

The vector {8} of all nodal variables now consists of the external nodal variables in (21) and the
internal nodal variables in (23). We order these variables in {8} according to increasing order of
derivatives. From (4) and (6), {8} is given by

(8] = [W(Rl) W(R2), w(Ry); (}73‘95(R|) - y2wa(R1)),
3= EWeRY) + Fawn(R), (5~ Fole(Ro)
- 2V 25(R)), 3~ 155 ~ D e(Ro) + £/ 20(Ra),

F 5= T2l (R) = 337/ 205 (Ro), 5= [F1= 521, (R + F5/ 265 (o)),

waz(Rl) I, 1 Wer,(Rl),Tz‘W AR,),. %‘W AR3);

. 1 - _
ﬁwqf(R3)9 —%—w,-z(R3)‘, T (@We(S)) + Brawg, (Sy),
Lzl I3 [0}

é(au Ws(S2) + B3 Wi (Sa)), 'I%;(a 13Wend(S3) + Br3Wns(S3)),

1. 1 - .
.o —p‘WgP(Sl)» _p_-_l(al2w§”(sl) + BraWwe-1,(S1)),
i %

pi2 (=12
7‘2’?{""(32)’ T (anwgr (S2) + Buwso-1; (S2)),

OO G 59 S g5 + B (5. N

Using notation analogous to that in (14) we have
18] = 181(D™") (25)
L8] = LB(R)), W(R2), W(R3), We(Ry), Wa(R1), We(Ry), We(R2), Wa(R3), Wi(Rs);

We(R)), Wea(R1), Wn2(RY), . . ., Wa(R3), W,5(Rs3), ws2(R3);

Weta(51), Weta(S2), Wetg(Sa); . . .; We(S)), Wet-1,(S)),

Wek(S2), Wet-15(S2), Wnk(S3), Wenk-1(S3), Wet-2,2(R,),

-s Weank-3(R}), Werpe-2AR()

(omitting any two for each k =26);...; W (S)), ...,

Wegr-(S3), . . ., Wezgr-AR,) ] (252)
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and where [D] is a block diagonal matrix of the form

[DI'= -
1
1
1
PERnd
2A 2A
5%
24 2A
240 2A
= (X3 — %) HV2
2A 2A
1
7,
2
B
(=1
—L 0
1
1B (=1 ays
L p~1 p-1
T 5

(25b)

The size of the largest block on the main diagonal of [D}™! is a 2 X 2 matrix.

In [17] it is shown that the matrix [A] in equation (16) is invertible, so from equation (17) it
follows that the nodal variables {6} are a local basis. We give the transformation matrices
[A®!] for C' elements explicitly for p = 5,6 in Appendix 3. In [12, 14, 20] shape functions for
the nodal variables presented here are given in terms of triangular coordinates.

C. Constraint equations

An essential point in the determination of nodal variables to enforce C' continuity is the
selection of the derivatives a’w/ds,’, 3> w/ds,ds,, and 3°w/ds,® as nodal variables. In this way,
and only in this way, is it possible without enforcing C? (or higher) continuity at vertices, to
invert the transformation from polynomial coefficients to nodal variables. As shown earlier it is
now necessary, however, to enforce continuity of these derivatives at interelement boundaries.

S

P S2

The continuity of 3°w/ds,> and 3°w/ds,” is enforced simply by identifying these values when
they come from neighboring elements. We now derive an equation which enforces continuity of
the mixed derivative 3’w/ds,ds, at an interelement boundary.

Let T and T’ be adjacent triangular elements with a common side. Assume that 7 and T’
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s/
q
P ¢ S\ 52

—— ——

U

S

have been given a common orientation (say that their sides are transversed in the counter-
clockwise direction). We wish to enforce the continuity of 4°w/ds,ds, along the common
boundary at P, that is, we require

3w . dw
35,987 )= as.asz‘P ) (26)

where w is the approximating polynomial in T and w’ in T'. Since s} = —s,, we have

3w _ a*w’ n
35,08, 355382
and we must now express 3/ds, in terms of d/ds; and 4/ds5.
Let the direction t be normal to 53, then we have
d . d 9
as; sin at cos ¢ as}
d _ . ., 9 , 8
S G " Sin @’ g —cosé' o
¢ s, s:
\i 2 (Lo s )
AN ¢ at  sin ¢’ \as} cos ¢ )
O 0 _sing in & cos ¢
sin¢g 4 sin ¢ cos ¢’
| — == —+ ( + - )
| Sz ds, sin @’ 3s| cos ¢ sin ¢’
*f =sin¢i+sin(¢+¢’)_¢_9_
sin ¢’ 3s] sing’ ds3
Substituting in equations (26) and (27) we obtain
P w _ _sing I’w _sin(¢+¢) ’*w' (28)
35,05 sin @' ds1ds3 sin ¢’ s}
Now consider a vertex where n sides meet. Then
, __sing, , _sin(¢i+éy
\ Wis; = “sin S Wsisy ™ sin ¢, W;zSz
3 __sings w? _sin(¢r+3)
5152 sin ¢2 s152 sin ¢2 $252

_singy ,  sin(¢:+¢y)
sing; °“? sin ¢, sin ¢,

_sin(ér+¢3) >

sin ¢, i

3 1
sin ¢3 wszsz
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and in general

i+ _Sin@ivy ;o sin (@i + diry)
152 sing; = ' sin ¢; 522
=(=1) S:‘n‘ﬁq';‘ who+(=1) 2 -1y %ﬁ%ﬁn Gisi Wy, 51“—(:;;?1*—‘) -
Wi = (1) %‘n—"’f Wi, +(=1) sin v le (170t g+ ot oWl =120 9
Let i = n. Then
Wo=Wse=(- 1)"[Wl,sz+(sin é) ;l (- 1Y*!(cot ¢; + cot ¢,+,)w§,,,]. (30)
Therefore, if n is odd
Wiy = sinzdn ,Z: (— 1Y (cot @; + cot . )W, 31

Since the numbering of sides is arbitrary, equation (31) can be used to eliminate all mixed
partials. Thus the potential energy functional will have n tangential second order partials as
independent variables corresponding to each vertex where an odd number n of sides meet.

If n is even, however, then (30) becomes

2 (= 1Y*!(cot ¢; + cot Gj.1)wi,,, = 0. (32)
~

In this case, then we can choose any j such that cot ¢; + cot ¢ ., # 0and solve for wstz in terms of
the other w! tasp» JF J. As another independent variable we may choose one mixed second partial say
w5, All other mixed second partials can then be solved in terms of these from (29).

There is one important exception, the case n =4 and ¢; = 7 — ¢;—1, i = 1, 2, 3, 4. Equation (32)
then reduces to an identity and therefore no pure second derivative can be eliminated. Hence in
this case there is one constraint fewer than in the other cases. Such a vertex is called a singular
vertex and is used in [11] and [12] to determine the total number of independent variables i.e.
the dimension of the space S,' consisting of piecewise polynomials of degree p satisfying global
C! continuity.

We can conclude that

1. The system of constraints given in equation (29) is singular only at vertices where four
elements meet and their boundaries are given there by a pair of intersecting straight lines:

Pattern of singular vertex

2. In order to enforce constraints by direct elimination of a set of dependent variables, at
each vertex:

(a) if the number n of elements meeting there is odd then all mixed second order derivatives
can be selected to be eliminated.

(b) If the number n is even, and provided that the vertex is not singular, one tangential
second order derivative w';, and n—1 mixed second order derivatives can be eliminated.
The index i is arbitrary provided that cot ¢; + cot ¢, ¥ 0.
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What we have presented here is one choice of dependent and independent variables. In [12,
14, 20] an optimal choice of dependent variables and the reasons for its optimality are discussed
in detail.

Note that constraint equations given in equation (28) relate only external nodal variables
and, in particular, only the second order derivatives at the vertices. Therefore the internal nodal
variables are independent variables in o and the set of internal nodal variables associated with
element e is associated with no other element. This means that static condensation can be used
to determine internal nodal variables at the elemental level. Also, with our choice of nodal
variables once dependent and independent variables have been chosen for a fixed p and the
relations between them have been determined, these same constraints relations hold for other p.
This means that the determination of dependence in terms of independent variables has to be
made only once, as the degree of the approximating polynomial is increased to achieve greater

accuracy.
We now show how to compute elemental stiffness matrices and elemental load vectors for

pth order polynomial elements by using precomputed arrays. More details are given in [18].

5. ELEMENT STIFFNESS MATRICES AND LOAD VECTORS
We assume a displacement vector field {w(x, y)} of the form

(W, 9} = L, e, y5 0, 05, D)3 W, Wy, Wyy Weey Wiy Wy ] = (U™ VT WT
where
l.UJ = l.u9 Ux, uyJ

LV]=|v, v, 0,)
l.WJ = |_W, Wy Wy, Wxy, Wyy, Wny (33)

u(x, y) and v(x, y) are required to satisfy C° continuity and w(x, y) is required to satisfy C'

continuity.
Let 7° denote the potential energy of the triangular element T. Then

we =1 [ b IS s dy- [ [ 124100 yhaxdy (34

where [S°] is the symmetric elemental matrix of elastic constants and [Z¢] is the elemental

distributed load.
We use the transformation M ' given in equation (4) to map from x — y to £ — n coordinates,

and we let
@€ m) = u(x, y), (£, 1) = v(x, y), w(§ n) = w(x, y).
Now, since M ™' is given by (4b),
ulx,y)! ;128 0 0 | HaEm] ) 3
{U} =1 u:(x, y) =5l 0 i | QA& =55[H|]{U}= ([Gi{U}

u)'(x¢ Y) 0 - f} -fl ﬁn(fv n)

(V=55 HHV} = [GHV)

1 ] [ ¥
w(x, y) w(¢, n)
we(x, y) 2A[(H,) , 0 , | we(€,7) }
wy(x, y) 1 V3 VAZSE ¥ Wol€ 1)
W - y L= . o . i i n\Ss
M= wee)[SEER | 0 —%fs Gafst B —5d2 | Vwem |
Wiy (X, ¥) P -2k 5| e
wyy(x’ y)#_ Lwne(g’ n)

=[G{W}.
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Therefore
_ Q(év 7])
{w(x, y)} = [GAw(& n)} = [G]{ V(&)
W n)
where

G,
[G]= G, J (35)
G,

Substituting in equation (34), this gives

v =321 [ [ Le myIS W56 my d an) - (20 [ [ 12103 € m deam) 30
where
($41=1GTISNG)
|2¢] = [Z°](G].
Now we partition [$°] as

Ge 9 e
Suu S;v Suw
= = =

(Se1=| Se. | S | e (37

wv wv ww

where [§5.], [S%.], [S4.] gives the (possible) coupling between the different displacement fields.
In many applications at least some of these coupling terms will vanish. Then

28] [ [+ RIS} ag n= 28 [ [ (DNSLHOY+ LVNSEHTY+ | WNISHW)
+ALOJISLH VI [OJISLHWH LVIISLHWD) dEdn. (38)

Now let

=

IQ).Q)\

e
e
[

as
{a.}=4d. ‘t {8,} =
a.c

[~

w

denote the vector of all polynomial coefficients associated with element ¢ after having been
mapped into T (partitioned into coefficients associated with &, #, and W respectively). Let {5.}
denote the vector of all nodal variables partitioned similarly. We have shown that the
transformation

[ANa.}={5.}

can be inverted to give

A'u—l e
{d}=[A")b} = A7 } 5 39
A" 8.
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The computation for [A™'] in equation (39) is assumed to have been performed and to be
available for use. Let
E“Eml=1LEn. ... ... 077" 9™
g°&m]=11¢ n,-u-f”".-u,ﬁn”"" 7]
le"Em] = L &m.... 8. .. 607" o).

Then
a(¢, n)= I.gw(f, n)J{du}
(&)= 1£°(& m{a.} (40)
W(f, 77) = I.g-w(f’ 71)] {dw}‘
Let

IMEIFERTATRIE MATAE E A

¢ n
2w 2-w 2w
L) =[Sk, a1 = [ 25 ] et = [ @

with similar expressions for &* and g for { = 1, 2, 3. Substitute in the first term in equation (48) to
obtain

241 [ [ (O1Se)O} g dn

= 3 amlasi([ [+ 30a gt + @) de an ah

Isisj<3

=16 3 ap(tAom [ [ qqam e+ e de anlA

I=isjs3

=16 NCH Bi)8,%). (42)

|ESEIES

The six matrices Bj*, 1si=j=<3, are of size [(p+ 1)(p + /2] x[(p + 1){p +2)/2). They are
computed once and for all and stored for future use. In the calculation of

[[+ a1 agam
the following formula is of use:

1
”T‘” *dédn = (pqu+2)'

The six constants di*, | <i{=<j=3 are given by

di = 2(AIlG"SLIG D i=1,2,3
di = (YAIIG " AIS WG I=i<j=3 (43)

and are computed for each element.

Similar expressions and computed for dj’,1=i=<j=<3, and d}*,1=isj=6, for each
element. Again the matrices B{’, B}j” are computed once and for all and then stored for future
use.
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The expressions obtained from the coupling terms are
48l [ [+ 1011801V g an

=161 3 arqAn [ [ 1aHgr) g anldHE)

I=ij=3
= 15:1( 3, 4By )6 @
4a) [ [+ 1018wy agan = 1651 (3 dirBir )6 )
I=j=6
a8l [ [« V1SN Wy agan = 18:)( 3 di By )6 (46
1=j=6

and they are obtatned analogously
In (42)(46) there are a total of 78 constants d; to be calculated for each element and then
multiplied by the precomputed matrices B;. In most applications, however, there will not be
complete coupling between u, v, and w, so that not all constants will have to be computed.
Let Ki,==dyBy, K¢, =2dyBy, K., =2 dy"By”, K, =2 d*BY, K., =S d%"B.,
K:, =3 d;"B}y”, then from equations (34)~(46) we obtain

3] 1p IS Wbt v dx dy

Lo | R K Ko [
= E laueTaveTaweTJ Ig:u K::w Ig:w 8—,,'
Ki. Ke K& lés

= 3 5 )R 8% = 316°) LD" ) (R“UDYs")
= 3161k Y5) @)

(K9] is. the elemental stiffness matrix referred to standard nodal variables, and [K°]=
[DT)K*][D*] is the elemental stiffness matrix referred to nodal variables in the xy plane. In

equation (47)
; DS o 0 |16
{6}=[DNé}=| 0 DS 0 }18°

0 0 Ds|}s&f

where [D,°] and [D,°] are the diagonal matrices given in equation (15) and [D.?] is the block
diagonal matrix given in equation (25b).
Similar calculations give for the distributed load vector:

[, 1z:@ 1o yrax ay

) L& )]
=28/([ [ 7 126 miR L& ] o dn )L, 16:
L&+(& m)]

) 16" m)
+2|Al( f f + 125 )] {ém n)j d¢ dn)[fi;'l{sx}
8 éB (g’ "7)
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1 = I.élw(ga 17).' . .
+28/([ [ 1l 4€ dn L4161
l.g-Bw(g’ TI)J

= 20al( [ [ 11246 mitdce mh dg am JA™HE)
= f*}{6°) (48)

where
1Z4& m) = 1211251 1200
le@ )] = L& &), (& E D] 80 En)], ..
o B EM LEE ), L8876 )]

Lre) = 28( [ [+ 126 mitdie m} g am 1471 )

If [2‘(£,n)J is not constant the integration is performed numerically; otherwse, standard
formulas are used.

6. THE UNCONSTRAINED MINIMIZATION

The total potential energy 7 which was given in equation (1) is now expressed in terms of
nodal variables as

m= 3w =33 5K K- 107 (50

Independent variables among the set of all {§°} consisting of appropriate second order
derivatives (either mixed or tangential) have been chosen as described in equation (29) and in
the subsequent discussion. The other second order derivatives which are dependent variables
are expressed in terms of these explicitly. The set of all independent nodal variables {8} is now
determined explicitly. For the case of C' continuity it is similar to the set given in [11].

The set of all dependent variables {5p} is expressed explicitly in terms of (8;}. These
expressions are substituted in equation (50) to give an unconstrained minimization problem.
Internal nodal variables are first eliminated at the elemental level via static condensation. It is
important to note that the nodal variables associated with a given element ¢ will depend only
upon nodal variables of those elements which are adjacent to e. Therefore the final stiffness
matrix in the unconstrained optimization will now have a banded structure, the width of the
band depending only upon the number of elements adjacent to a given element. This will
eliminate the problem of multiplying large matrices referred to in the Introduction. In [12], a
scheme is described in detail in which the calculation of the global unconstrained stiffness
matrix can be treated as if it were a conventional finite element assembly process. We do not
elaborate here.

In any case, form this point on, the problem is one of unconstrained optimization and
conventional finite element codes such as Irons’ Frontal Solver(21] can be used to determine
{8:} the vector of all independent nodal variables. {5p} is given explicitly in terms of {5;} so the
entire vector {8} is known. For each element e, the polynomial coefficient vector {G°} is given in
terms of {§° } by means of the explicitly computed inverse [A*~" and {5°} is easily computed from 1
{8°} as described earlier. Hence a typical displacement field w(¢£, n) is given in terms of its § -9
coordinates. In order to determine w(x, y) one can either compute the coefficients {a°} in terms of
{@°}, or one can map %,  into £, n via the affine transformation M~' and then compute w and its
derivatives from equation (35). Similarly for the other displacement fields u(x, y) and v(x, y).

7. ANUMERICAL EXAMPLE—PLANE STRESS SQUARE WITH
PARABOLIC END LOADS

We give some numerical results obtained in the solution of a plane stress problem «c®
continuity). Accuracy was achieved by increasing the orders of polynomial approximation while
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keeping the triangulation fixed, (p-convergence) as opposed to the conventional approach in
which the polynomial orders are fixed and the triangulation is successively refined (k-
convergence). Numerical results in other problems, as well as more details concerning the
implementation of hierarchic nodal variables on the computer are presented in [18].

To demonstrate the computational efficiency obtainable using hierarchal nodal variables and
pre-computed arrays, a computer program was written and a number of test problems solved.
The program was executed on an IBM Model 360/65 running under 0S/360 MFT II and HASP
3.1 and using Memorex 3330 disks. IBM Level H FORTRAN IV with the OPT = 2 option was
used for all routines performing substantial computations; Level G FORTRAN was used
elsewhere. No machine language routines were employed. All calculations with real variables
were performed with double precision arithmetic. Random access disk files were used for
storing the precomputed arrays.

In [22], Cowper described an algorithm (based on precomputed arrays) for the computation
of the 18 18 element stiffness matrix for his C' plate bending element. He also gave the
computation time required to execute the algorithm, and, to indicate the relative speed of his
computer, he reported the time required to square an 18 X 18 matrix. On the computing system
used in the present study, an 18 X 18 matrix can be squared in 0.107 +0.007 seconds, a result
obtained using the IBM Scientific Subroutine Package[23] routine GMPRD converted to double
precision and compiled with optimization level OPT = 2, and averaging over many runs. We will
define 0.107 seconds to be an equivalent time unit (e.t.u.), and, to facilitate possible future
comparisons with other programs implemented on different computers, all CPU times given in
this paper will be given in e.t.u.

The computational effort required to solve the test problems will be indicated in most cases
by giving the CPU time (in e.t.u.) consumed in solving the governing system of linear equations.
The particular equation solver employed was the frontal solver of Irons[21], modified by the
introduction of direct access files (to avoid the BACKSPACE command) and the elimination of
all implied DO-loops. Along with the CPU time for a given polynomial order, we will also give
the value of N, the total number of external and internal nodal variables in the mesh
disregarding boundary conditions, since this equals the number of equations processed by the
frontal solver. (Boundary conditions are enforced by multiplying appropriate terms on the
diagonal of the coefficient matrix by a large number, rather than through omitting the
corresponding equations.)

Many investigators in finite element research are reluctant to quote actual machine time,
perhaps justifiably, since this may introduce factors irrelevant to evaluating the efficiency of the
algorithm, such as particular machine and operating system characteristics or programming
skill. To facilitate comparisons which are independent of these factors, in addition to CPU
times we will give the number of active degrees of freedom (DOF), equal to N; minus the
number of nodal variables suppressed through boundary conditions. Furthermore, following the
suggestion of Abel and Desai[24], a measure of error will be plotted versus NB?, where N and
B are the number of equations and the maximum half bandwidth calculated by disregarding
boundary conditions and assuming internal nodal variables have been eliminated through static
condensation. Unfortunately, the use of NB? to measure computational effort may be mislead-
ing, since on the one hand ignoring internal degrees of freedom tends to favor high order
elements with many internal nodal variables, while on the other hand ignoring boundary
conditions favors low order elements, as was recently shown in [25]. Since these are contrary
effects, perhaps they tend to cancel each other; in any event, Abel and Desai’s procedure will
be adopted here for its convenience.

The strain energy of an isotropic, linearly elastic, plane stress membrane of thickness ¢ is

4]

where E is the elastic modulus, v is Poisson’s ratio, 4 and v are the x and y displacements
(subscripts denote derivatives) and { is the area of the membrane. This expression may be
written in the form of the first term appearing in the functional of equation (34) if [S,.,] = [S..] =
[Sw]=[Su:]=[S.w]1=1[0] and

lljt,, [—1 _I ” (U2 + 0,2+ 2u,v,) +%(uy + vx)z] dQ, 6D
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0 0 0

(Sul=1Sul= 10| 0 = 0 | (52
0 0 3
00 0

[Sw]T=[S'2]=£—'V 0 (l) = (53)
05 0

As an example, we consider the problem of a square membrane loaded with the parabolic-
ally varying edge stresses

a,, = ao(l —4x*/L? (54)

shown in the inset of Fig. 1. The vertical edges are stress-free. Using the two element mesh
shown, to model one quarter of the domain, the values given in Table 1 for various polynomial
orders p (the same for u and v) were obtained. Rapid convergence can be observed for all
quantities in the table, with some of the computed values agreeing with the analytic values to
five or more significant figures. In general, the convergence is not monotonic, for example the
most accurate value of v, is obtained for p = 4. The strain energy does converge monotonically,
however, and for p = 8 agrees to seven digits with the analytic value.
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Fig. 1. Comparison of computational efficiency for plane stress problem.

In Fig. 1 the error in strain energy is plotted versus equation solving effort NB? for the
hierarchal element and for the plane stress element of Cowper et al.[26]. The latter element is
generally considered quite efficient since it is based on complete third order polynomials and
employs both function and first derivative values as v rtex nodal variables. Even so the results
of Fig. 1 indicate that the conventional approach of mesh refinement with polynomial order
fixed (h-convergence) is less efficient than increasing polynomia! order with the hierarchal

element with the triangulation fixed (p-convergence). Solution trends for the hierarchal element
approach are given in Table 2.
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Table 1. Results for plane stress square problem

10tEug 10°Etu, 10Etvc 10Etv,
P DoF (1- Yol (1~ v))ooL Ry (1- ool
3 24 -1.524012 1.9310 1.29200 5.069395
4 40 -1.519549 1.7839 1.27730 5.073858
5 6 - 1.518966 1.7782 1.27672 5.074441
6 84 -1.519974 1.7808 1.27698 5.073432
7 112 -1.519976 1.7821 1.27712 5.073431
8 144 -1.519918 1.7829 1.27720 5.073489
Ref. 14
5%5 292 - 1.519%00 1.7852 1.27742 5.073507
Mesh
Analytic —-1.519928 1.7837 127727 5.073478
10044 100y, s 100y,5 Ty Strain energy
a0 o a0 ) oo 10E2U
(1-v)’L%0¢’
—1.20354 8.225% 0.00828 4.51315 0.05357 2.7895590
~1.39082 8.64721 -0.00167 4.15533 0.00328 2.7934086
- 1.44156 8.59593 0.00005 4.11341 -0.00664 2.7935428
—1.39880 8.58848 0.00010 4.10366 -0.00658 2.7935648
-1.41451 8.59148 - 0.00006 4.10611 =0.00451 2.7935684
- 1.40705 8.58991 0.00003 4.10738 -0.00299 2.7935692
—1.40880 8.59120 0.000166 4.10767 -0.00233 2.7935667
-1.40954 8.59046 0 4.10670 0 2.7935695

Table 2. CPU time required to solve
equations for plane stress square

problem
CPU time
p Ni ine.tu.
3 32 19
4 50 24
5 72 38
6 98 55
7 128 93
8 162 152
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APPENDIX 1

Transfonnaiion from Standard to Non-standard Polynomial Coefficients.
From equations (4) and (5) we have

Uz 3)= o;)a«-..x ¥’ (1)

k .
BE 1) = (Brk + Fym, Fof ¥ Fsm) = 20 S dhoiliaf + T G+ )

k
= = k=i
= 2,0 120 ak—uf n. “_2)

It now follows that if we let { = n/¢ then

Eak-..f* n'= Eak ik (B2 £ T (T + 9ad)

-3 au(S (4 a3 (o)

=0 r=0

_gkza k ( (k—‘)f k—i—r-ux- r-:(')-x s= :){r
=0 koid r=0 \s=p \T— S 2 } 5
where the binomial symbol (:’) =0 if m > n. Therefore,

k.

2 it = Efk-r r(z Qpoii r ( B .)(i)x’:k—i-r+sx-3r-xyzi-sy-3x)

=0 s=0
so that we have the transformation

i = 2 dhersr (}_‘, (‘_'s)( ’) e A )] (13)

s=0 b
If we let {a} and {4} be the vectors consisting of all the polynomial coeflicients in (1-1) and (1-2) respectively then (1-3)
gives the matrix [B~') in
{a}=(B""l{a}. (1-4)

Note that [B~"] is block diagonal, each block relating the coefficients of kth degree terms in (1-1) and (1-2). Similarly using
equation (4b) we obtain

Qi =71:i dx—rs (2_:0(‘ _ s)( ) T - B T (= ) T ) (1-5)

r=0
where J = 5,7, — %352 = 2A. This gives
{a}=[B}{a}. (1-6)
Again B} has block diagonal structure.
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. APPENDIX 2
Transfonnatwn matrices for C° elements_ )
We give [A®"] by writing {d®"} = [A®"){5*’} explicitly.
Assume that

ign= Y aPen

O<i+j=p

and let

|a®) = (a%), %, al). a%, %, ..., a%, a%,, ..., dF)-1. d8)).
For each p we give those expression in 4¥’, 0 <+ j < p, which are different from 4§, for k < p.
p=2

L8] = [@(R,), #(Ry), @(Rs); lige(S1), iiss(S3), limy(Sy)]
-(2) - ll(R|)

- R+ (R~ 3ig(S)

af = - a(R,)+ d(Ry) ~ —u,,,,(Ss)

. 1.

a%’ = Euee(sn)

oy 1. 1.

a% 5“ ee(S1) - “sf(sz)‘*'i“m,(s;)
i@= %aw(s,)

p=3

169 = |62, @g(S1). u(Sy), g Ss), dgm(Ry))
afy=a% +T“2’ac’(s|)

_ =2 -
0{)1’—031"*‘ “v,’(ss)

1. -
i0= 68+ il S) + LS = 58 - gign(R)

5%’ = %ﬂg’(sl)
5%’ = ".],:-;1.,(R|)
o1 \/
an u;’(sl) = i(S)+ < “q’(ss) + '“6 n(RI)
5 é ’(Sg)
p=4
18“)‘] = l_gm: Tg(S1), g4 S), in4S») g, (Ry), g, (Ry))
§8= % - 2 uS)

atft=af e S)) - M‘(S2)+ ll,,‘(sa)"ué (R)

A
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iW=aP
. - l .

a¥=a3 g ,,(R|)“‘lleq’(R|)
i = 6%~ Sy

- 1.

a%’ = EZu;‘(S.)

- 1.

a(3‘|, = g“s’-.(RO

it %ah»(k.)
L

88 = 3 4S5)
p=35

I.émj = [8-“’; ﬁe’(sl)- 153(S2), @,5(S3), ﬁe‘q(Rl)ﬁe’q’(Rl)- ﬁeq‘(Rn)J

- [
a1 = a§3+ o)

|
af =\ + =i V2 ==55(S2) — u,,s(S:) ur,,(R.)

. - - 2. 1. 1. 1.
ity a*.‘z’ ~ g8~ LS + 51 $3)+ 2l (R) = e R)

@)= a%y —s-ie(S) - vz & (SD+3 u.,s(S;)+ um(R.) u;’ (R +3 ue.p(R.)

12
650 = (S + il $2)~ Toer59)~ ggienlR) + i R) + e R)
§t2 = 34 4R)

The matrices [A®’] are not used in the calculations. They are given explicitly, however, in [17].
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APPENDIX 3

T ransfonnauon matrices for C’ elements
We give [A®""] by writing {3’} = [A“’"']{8"’} explicitly.
Assume that

wEm= > apPey’
O<i+j=sp

and let

(6] = (a®; a%, a8 a%, a1, ), ..., 4%, a2, a0\ a8
For each p we give those expressions in 4’0 =<i+j <p which are different from *', k <p.
p=35

18] = [W(R,), W(Ry), W(R3); We(R,), W, (R}, We(Ry), Wi(Ry), W, (Rs), W(Rs):
Wee(R1), Wen(R1), W (Ry), We2(Ry), Wee(Ra), Wis(Ry),
W (R3), Wye(R3), Wes(R3), Wer (S1), W344(S2), ';’e.,‘(sx)J

doo = W(Ry)

dyo= We(R))

do1 = W (R))

dy= ia’fz(Rl)

an= We..(Rl)

dgz = %W#(RI)

o=~ 100(R) = 65(Ri) ~ 3R + 105 (Ry) - 49(Ro) + 39 Ry)

dy = =30, (R)) ~ 2Wey (Ry) + 3W(Ry) + 3/ 2We(R2) ~ W Ro) — v/ 2Wes(Ry) + ilz‘;’e‘.,(sl)
d1y= = 3We(R)) = 2Wen (R1) + 3%, (R3) = 37/ 2W;5(Ry) — w1 R3) + \/2Wq§(R3) + Wen‘(ss)
oy = — 10W(R,) ~ 6w, (R} - Ef’n’(Rl) + 10W(Ry) - 4, (Ry) + 'z'ﬂ'..z(Rz)

dag = 15W(R,) + BWe(R)) + gﬁel(R,) — 15W(R3) + Twe(R2) — walR,)

1
d3 = 2W,(Ry) + Wga(R1) = 2We(Ry) = 20/ 2W:(Ry) + we(Ry) + /2 (Ro) - IV Wetn(S1)

Gy = —30W(R)+ 15W(R;) + 15W(Ry) — 6Wg(R,) ~ 61, (R,) 9w5(R2)-\/2ws(Rz)
9W,,(R3)+\/2 W;(R;)"‘iafl(k )“'Zﬁh(R]}"'—ﬁ’ 1(R )+2‘;’£2(RZ)+V’2‘;'€}(R2)

+'wss(R2)+2an(R3) \/ZW.,S(R;H ws,(Ra) wy,,(S.) \/ wm(Sz) wf.,‘(S;)

1y = 2R+ B (R) = 200 (Ro)+ 2V 25(Rs) + 93(Rs) =V Dis(Ro) = T ea S5

los = 15(R)+ 84, (Ry) + 302(R) = 1SH(Ry) + T (Ry) = i Ry)

dso = ~69(R.) = 3e(Ry) = 3(Ry) + 6(R) = 304(Ry) +%u7£2(R2}

G = giea(S)

5= J09(R.) - 15(Ry)~ 1SB(Rs) + 99(Ra) + 63, (R,)+ 9%(Ro) +3 V2 Ry
+6y(Ry)+ 5\/2%(&) +30pR) + 9l R) - 3@:(1@) +3#u(R)
=W, R3)~ ‘W;_((Rg) +3 wr.,(S,) + 4= \/ ra{S2) *5 Wf.-,‘(SJ)

fzy = 30(R)) - 15(R) ~ 1%(Ra) + 65(Ry) + 95, (Ru) + 6e(Re) = 31/ 2655 Ry)
95 (R~ 220 (Ry) + FplRa) + DR~ R = 3 (Ro) = 2Ry

+ 30 Ro) + spen( S0+ e (S) 4 LHeS)



112 I. N. Katz ¢t al.

los = ~6(R,) = 30y (R1) = 59,(R) + 6(Re) = 1o (Ry) + SRy

p=6

[59] = (59 WS, B2(S1): WesS2), Wssa(S2), #ysS3), W 3¢(Ss), woni(R1)|

Dy
2
]

(1Y
]

00 00
) =a%w
af=ag
i =a%
i =at
df=ag

o s 1

ay = a§’|’+@We’n(Su)

= G5+ 21 + s (51) = S} S S3) + e (S5) + s R1)
E T NG R S A M 7T M YT 7

o e ]

a¥=aty +§Wen’(ss)

I I

= a5+ 325948

[N

ag= a(sf))“i“—owt‘(sl)

o a1

aa = ﬂﬁ"&“’e’q(sl)

ifl=a S”+ we(Sn) 60”" .,(S.)+180w4(Sz)+ w,’n(Sz) 360W.,ﬁ(S;)+240%,;(5,) wéxqa(Rl)

af=af)- we(Sn)+24owe’ (S9+ 1% W:‘(Sz) 60"”‘(52)+720”""(s’) wa,’(S;)—‘w‘:"J(Rl)
) _ __l_

ave =a%w “ﬁ'h’(s;)

89 = 89— S S)

8 = =3RS + grien(S) + S = S+ w"«s,)—ﬁw,.«sm;‘ims(k.)

720
. |
0= iR

. 1. 1 . 1 . 1. 1 .
ifl= 7_‘20"'5‘(51) - 54—0“’(’-.(51) + mwf‘(sz) + @W:’n(sz) '.;‘BW.,‘(S;) + -g'—owf,,s(s,) + %ng,,!(&)

wv;‘(s'!)

The matrices [A®’] are not used in the calculations. They are given explicitly, however, in [17].



