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Abstract

We consider the systemu = p(x)g(v), Av = q(x) f(u) in RV, where f, g are positive and
non-decreasing functions df, co) satisfying the Keller—Osserman condition and we establish the
existence of positive solutions that blow-up at infinity.
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Résumé
On considére le systémen = p(x)g(v), Av =g (x) f (u) surRV, ol f, g sont fonctions positives
et croissantes sup, co), qui satisfont la condition de Keller—Osserman et on établit I'existence des
solutions positives qui explosent a I'infini.
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1. Introduction and the main results

Consider the following semilinear elliptic system:
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{ Au=p(x)g(v) inRN, (1)
Av=q(x)f(u) inRY,

whereN > 3 andp,q € C%S‘(RN) (0 < @ < 1) are non-negative and radially symmetric

functions. Throughout this paper we assume tligt c%f[o, o) (0< B <1) are
positive and non-decreasing @i co).

We are concerned here with the existence of poséivire large solution®f (1), that
is positive classical solutions which satisfyx) — oo andv(x) — oo as|x| — oco. Set
R+ = (0, o0) and define:

G={(a,b) e R" x R* | (3) an entire radial solution afl)
so that(u(0), v(0)) = (a, b)}.
The case of pure powers in the non-linearities was treated by Lair and Shaker in [4].
They proved thaG = RT x RT if f(r) =¢” andg(t) =% fort > 0 with 0< y,6 < 1.

Moreover, they established that all positive entire radial solutions of (1xeyeprovided
that

oo oo

/tp(t) dr = o0, /tq(t) dr = co. (2
0 0

If, in turn
/tp(t) dr < o0, /tq(t) dr < oo, 3)
0 0

then all positive entire radial solutions of (1) dreunded
Our purpose is to generalize the above results to a larger class of systems. More
precisely, we prove:

Theorem 1. Assume that

lim g(CJ:(t))

—00

=0 forall¢>0. 4)

ThenGg =R* x R*. Moreover, the following hotd

(i) If p andg satisfy(2), then all positive entire radial solutions @l.) are large.
(ii) If p andg satisfy(3), then all positive entire radial solutions d¢f.) are bounded.

Furthermore, if f, g are locally Lipschitz continuous of®, co) and (u, v), (i, ¥) denote
two positive entire radial solutions dfL), then there exists a positive constahsuch that
for all r € [0, 00), we have
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max{ |u(r) — i (r)

v(r) — 9(r)|} < C max{|u(0) — @(0)

: . [v(©0) —5(0)]}.

If f andg satisfy the stronger regularit, g € C1[0, o0), then we drop the assump-
tion (4) and require, in turn,

Hy 0 =g0=0  liminfl% _s=0

u—>00 g(u)

and the Keller—-Osserman condition (see [3,9]),

t
< 00, WhereG(t):/g(s) ds.
0

K dr
H
(Ha) 1/ o

Observe that assumptiodd;) and(H2) imply that f satisfies conditioriH>), too.

The significance of the growth conditidil,) in the scalar case will be stated in the
next section.

Setn =min{p, ¢q}. If n is not identically zero at infinity and assumption (3) holds, then
we prove:

Property 1. G # 0 (see Lemma 4).
Property 2. G is bounded'see Lemma 5).
Property 3. F(G) C G (see Lemma 6), where
F(G)={(a,b)€0G|a > 0andb > 0}.
For(c,d) € RT x R1)\ G, define:
Re.q = sup|r > 0| (3) aradial solution of1) in B(0, r)
so that(u(0), v(0)) = (¢, d)}. (5)

Property 4. 0 < R, 4 < oo provided that = max{ p(0), g(0)} > O (see Lemma 7).

Our main result in this case is:

Theorem 2. Let f, g € C1[0, 00) satisfy (Hy) and (Hz). Assume(3) holds, 5 is not
identically zero at infinity and > 0. Then any entire radial solutiof, v) of (1) with
(u(0), v(0)) € F(G) is large.
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2. Preliminaries

Let2 CRY, N > 3, denote a smooth bounded domain or the whole sRicé\ssume
p # 0 is non-negative such thate C%%(2), if £2 is bounded ang Cloo*g‘(Q) otherwise.
Consider the problem:

Au=px)h(u) in 2, (6)
where the non-linearity € C1[0, co) satisfies
(A1) h(Q)=0,h >0, h>0 on(0,oc0).

Proposition 1. Let 2 = B(0, R) for someR > 0 and letp be radially symmetric inf2.
Then Eq(6) subject to the Dirichlet boundary condition

u=c(consy >0 onas, (7
has a unique non-negative solutiopn, which, moreover, is positive and radially symmetric.

Proof. By Proposition 2.1 in [7] (see also [1, Theorem 5]), problem&Y) has a unique
non-negative solution. which, moreover, is positive. i, were not radially symmetric,
then a different solution could be obtained by rotating it, which would contradict the
uniqueness of the solution.c

By a large solutionof Eq. (6) we mean a solutiom > 0 in £2 satisfyingu(x) — oo
as distx, 8£2) — 0 (if 2 £RY) or u(x) — oo as|x| — oo (if 2 =RN). In the latter
case, the solution is called antire large solutionWe point out that, if there exists a large
solution of Eqg. (6), then it ipositive Indeed, assume thaixg) = 0 for somexg € £2.
Sinceu is a large solution we can find a smooth domai& 2 such that € @ andu > 0
ondw. Thus, by Theorem 5 in [1], the problem:

: A =p)h(¢) ino,
L=u onow,
=20 inw,
has a unique solution, which is positive. By uniquenesss u in o, which is a
contradiction. This shows that any large solution of Eq. (6) cannot vanigh in

Cf. Keller [3] and Osserman [9], if2 is bounded ang = 1, then Eq. (6) has a large
solution if and only ifh satisfies

8]

dr
VHQ@)

1

(A2)

t
< 00, whereH(t):/h(s)ds.
0

This fact leads to:
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Lemma 1. Eq. (6), considered in bounded domains, can have large solutions orily if
satisfies the Keller—Osserman conditi@yp).

Proof. Suppose, a priori, that Eq. (6) has a large solutign For anyn > 1, consider the
problem:

u=n onos2,

:Au — ploch() in £,
u>0 in 2.

By Proposition 2.1 in [7], this problem has a unique solution,saywhich, moreover, is
positive in$2. By the maximum principle,

O<up<upt1<ius N2, Vn>1
Thus, for everyx € £2, it makes sense to definfx) = lim,_, o u, (x). Since (u,) is
uniformly bounded on every compact &g £2, standard elliptic regularity implies that

is a large solution of the problemu = || p|loch (1) in 2. O

Therefore, in the rest of this section, we consider Eq. (6) assuming alway#thatnd
(A2) hold. In this situation, by Lemma 1 in [1],

]

dr
/m < 00. (8)

1

Typical examples of non-linearities satisfyitdy1) and(A2) are:
(i) h(u)=e* -1,

(i) h(uw)=u?, p>1;

(i) A(uw) =u[ln(u+ 2117, p> 2.

For the proofs of the propositions that will be stated below, we refer the reader to [1].

Proposition 2 [1, Theorem 1]Let £2 be a bounded domain. Assume thatatisfies

(p1) for everyxg € £2 with p(xg) =0, there is a domai2g > xg

such that2 C 22 andpljge, > 0.
Then Eq(6) possesses a large solution.

Corollary 1. Let 2 = B(0, R) for someR > 0. If p is radially symmetric in2 and
plag > 0, then there exists a radial large solution of K).

Proof. By Proposition 1, the large solution constructed in the same way as in the proof of
[1, Theorem 1] will be radially symmetric. O
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Proposition 3[1, Theorem 2]Consider Eq(6) with 2 = R assuming thap satisfies

(p7) there exists a sequence of smooth bounded doni&ins,>1

such that2,, C 2,41,

o0
RN = U 2, and(p1) holds ins2,, for anyn > 1.
n=1
o0
(02) /r¢(r) dr <oco, Wwhereg(r) =max{p(x): |x|=r}.
0

Then Eq(6) has an entire large solution.

Remark 1. Theorem 4 in [1] asserts that (8) is a necessary condition for the existence
of entire large solutions to Eq. (6) i satisfies(p2) and for which# is not assumed to
fulfill (Az).

Remark 2. If p is radially symmetric ifRY and not identically zero at infinity, them?)
is fulfilled.

Indeed, we can find an increasing sequence of positive nuni®gbs>1 such that
R, — oo andp > 0 ondB(0, R,), for anyn > 1. Therefore o)) is satisfied on2, =
B(O, R,).

Corollary 2. Let 2 =R". Assume thap is radially symmetric irRY , not identically zero
at infinity such that o) is fulfilled. Then Eq(6) has a radial entire large solution.

Proof. By Remark 2 and Corollary 1, the entire large solution constructed as in the proof
of Theorem 2 in [1] will be radially symmetric. O

We supplied in [1] an example of functignwith properties stated in Corollary 2. More
precisely,

p(r)=0 forr=|x|e[n—1/3,n+1/3], n>1;
o

p(r)>0 in R+\ Jin—1/3,n+ 1/3)
n=1

1
peCl0,00) and max p(r)=—.
re[n,n+1] n

3. Auxiliary results

We refer to [5-8,10] for various results related to blow-up boundary solutions for elliptic
equations.
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Lemma 2. Condition(2) holds if and only ifim,_, . A(r) =lim,_, o B(r) = co, where

r 1
A(r)zftl_NfsN_lp(s) ds dt,
0 0

r t

B(r)E/tl_NfsN_lq(s) dsdr, Vr>0.
0 0

Proof. Indeed, for any- > 0,

r

1 1 ( _
A(r) = m[/tp(t) dr — m/tN 1P(t)df:|
0 0

1 r
< m/lp(f)dﬁ 9)
0

On the other hand,

r 1 r Vot
0 0

r

= —erfz /(r"’*2 —tN"2)1p(r) dt

r/2

1 N-2
> N2 |:rN2 - (%) :| ftp(t) dr.
0

This combined with (9) yields

1 r 1 1 N_2 r/2
m/tp(t)dt)A(r) > N—Z[l_ (5) }/tp(t)dt.
0 0

Our conclusion follows now by letting— co. O

Lemma 3. Assume that conditio(8) holds. Letf and g be locally Lipschitz continuous
functions on0, c0). If (4, v) and (@i, v) denote two bounded positive entire radial solutions
of (1), then there exists a positive const@hsuch that for all- € [0, co), we have

max{ |u(r) — i(r)

v(r) — 0(r)|} < C max{|u(0) — i(0)

, 0@ =50},
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Proof. We first see that radial solutions of (1) are solutions of the ordinary differential
equations system:

N-1

u'(r) + W' (r)=pr)g(v(r), r>0,
Nil (10)
V(r)= q(r)f(u(r)), r>0.

r

V(r) +

DefineK = max{|u(0) — u(0)|, |v(0) — v(0)|}. Integrating the first equation of (10), we get:

W' (r)—u'(r)= rl_NfsN_lp(s)(g(v(s)) - g(f)(s))) ds.
0

Hence

r

t
|u(r) - ﬁ(r)| <K+ / tlfN/stlp(s)|g(v(s)) — g(f)(s))|ds dr. (12)
0 0

Since(u, v) and(i, v) are bounded entire radial solutions of (1) we have:
lg(v(r) — g(8()| <m|v(r) —5(r)| foranyr € [0, c0),
| f(u) = f(@@)| <mlu@r) —ii(r)| foranyr €0, co),

wherem denotes a Lipschitz constant for both functighandg. Therefore, using (11) we
find:

r t

|u(r) — ft(r)| <K +m/t17N/sN71p(s)|v(s) — f)(s)|dsdt. (12)
0 0

Arguing as above, but now with the second equation of (10), we obtain:
r t
|mn—ﬁungK@Hn/Hﬂﬁ/w”w@nmg—ﬁQdeL (13)
0 0
Define:

Xr)=K+m

—-

t
tlfN/stlp(s)|v(s) - f)(s)|dsdt,
0

0
r t
YU%=K+m/}PN/Q”4ﬂqu)—mgmmm
0 0
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Itis clear thatX andY are non-decreasing functions wik(0) = Y (0) = K. By a simple
calculation together with (12) and (13) we obtain:
(VXY () = mrN ) o) = 5| <mrN T p () Y (),

(rN_lY’)/(r) = mrN_lq (r) |u(r) — ﬁ(r)| < mrN_lq NHX). (14)

SinceY is non-decreasing, we have:

m

X)) SK+mY (AN <K+

Y(r)/tp(t)dt< K 4+mC,Y(r), (15)
0

whereC, = (1/(N — 2)) f(‘,"’ tp(t) dr. Using (15) in the second inequality of (14) we find:
(rN_lY/)/(r) < mrN_lq (r) (K + mC,,Y(r)).

Integrating twice this inequality from 0 tg we obtain:

r

2

m
N_Zcpftq(t)Y(t)dt,
0

Y(r) < K(14+mC,) +

whereC, = (1/(N — 2)) f0°° tq(t) dt. From Gronwall’s inequality, we deduce:

m2 T
Y (r) < K(14mCy)en2Crlo a0 < k(14 mc, )& CrCe
and similarly for X. The conclusion follows now from the above inequality, (12)
and (13). O
4. Proof of Theorem 1
Since the radial solutions of (1) are solutions of the ordinary differential equations
system (10) it follows that the radial solutions of (1) wiilil0) =a > 0, v(0) =b >0
satisfy:

r

t
u(r):a—i-/tl*N/sN*lp(s)g(v(s)) dsdt, r>0, (16)
0 0

r t
v(r)=b+ / =N / stlq(s)f(u(s)) dsdt, r>0. a7
0 0
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Definevg(r) = b for all r > 0. Let (ux)r>1 and (v)r>1 be two sequences of functions
given by:

r t
ur(ry=a -+ f =N f sN_lp(s)g(vk_l(s)) dsde, r>0,
0 0

r :
v (r) =b~|—ftlfostlq(s)f(uk(s)) dsdr, r>0.
0 0

Sincevi(r) > b, we finduz(r) > us(r) for all r > 0. This impliesvz(r) > v1(r) which
further producesas(r) > ua(r) for all r > 0. Proceeding at the same manner we conclude
that

up(r) <ups1(r) and v (r) <wvgga(r), Vr>=0andk > 1.

We now prove that the non-decreasing sequern@e$))i>1 and (vi(r))i>1 are
bounded from above on bounded sets. Indeed, we have:

up(r) Sugp1(r) <a+g(w(r)Aw), Vr=0 (18)
and
ve(r) <b+ f(u()B(r), Vr=0. (19)
Let R > 0 be arbitrary. By (18) and (19) we find:
uk(R) <a+g(b+ f(ux(R)B(R))A(R), Vk>1
or, equivalently,

ur(R) ur(R)

By the monotonicity of(ux (R))x>1, there exists lim,« ur(R) := L(R). We claim that
L(R) is finite. Assume the contrary. Then, by takihg— oo in (20) and using (4) we
obtain a contradiction. Sinag (r), v (r) > 0 we get that the mafD, oc) > R — L(R) is
non-decreasing o¢D, co) and

ur() <up(R) < L(R), VrelO,R], Yk >1, (21)
v (r) <b+ f(L(R)B(R), VrelO,R], Vk>1. (22)

It follows that there exists li_, o, L(R) = L € (0, co] and the sequences (r))i>1,
(vk(r))i>1 are bounded above on bounded sets. Thus, we can défine= limy_, o ux (r)
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andv(r) := lim;_. o vi(r) for all » > 0. By standard elliptic regularity theory we obtain
that(u, v) is a positive entire solution of (1) witla(0) = a andv(0) = b.

We now assume that, in addition, condition (3) is fulfilled. According to Lemma 2 we
have that lim_, .. A(r) = A < oo and lim._,o, B(r) = B < oco. Passing to the limit as
k — oo in (20) we find:

a g(b+f(L(R))B(R))A(R)< a +g(b+f(L(R))§)K
S L(R) L(R) S L(R) L(R) '

Letting R — oo and using (4) we dedude < co. Thus, taking into account (21) and (22),
we obtain:

uk(r)<L and w(r)<b+ f(L)B, Vr>0, Vk>1.

So, we have found upper bounds @ (r))x>1 and (vi(r))x>1 which are independent
of r. Thus, the solutior, v) is bounded from above. This shows that any solution of (16)
and (17) will be bounded from above provided (3) holds. Thus, we can apply Lemma 3 to
achieve the second assertion of (ii).

Let us now drop the condition (3) and assume that (2) is fulfilled. In this case, Lemma 2
tells us that lim_ - A(r) = lim,_ - B(r) = co. Let (u, v) be an entire positive radial
solution of (1). Using (16) and (17) we obtain:

u(ry=za+gb)Ar), Vr =0,
v(r) =2b+ f(a)B(r), Vr=0.

Takingr — oo we get that(u, v) is an entire large solution. This concludes the proof of
Theorem 1. O

We now give some examples of non-linearitigandg which satisfy the assumptions
of Theorem 1 (see [2]).

(1) Let
I m
f(t)=ZajtV«", g(t)=2bkt91 fort >0
j=1 k=1

with a;, by, y;, 0 > 0 andf (1) = g(t) = 0 fort < 0. Assume thay6 < 1, where

y = max yj, 6 = max 6.
1<j<d 1<ksm

(2) Let

0/2

f(t)=(1+t2)y/2 and g(t)=(1+1?) fort eR

with y, 6 > 0 andy6 < 1.
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(3) Let

v if0<r <1,
FO=10 it 151,

and

1 ifo<r<1,

D=1y ifr>1,

with y,6 > 0,y0 <1 andf(r) = g(t) =0 forr <O0.
(4) Letg(t) =t forr eR, f(t) =0fort <0and

2 Y
f@) = t(— In((;) arctart)) fort >0

wherey € (0,1/2).

5. Proof of Theorem 2
Let f, g € C[0, c0) satisfy (H1) and (H2). Suppose thay is not identically zero at
infinity and (3) holds. We first give the proofs of Properties 1-4 which are the main tools
used to deduce Theorem 2.
Lemmad4. G # 0.
Proof. By Corollary 2, the problem:
AY=(p+9@(f+9@) inRY,

has a positive radial entire large solution. Sincés radial, we have:
r 1
ww=wm+/#wfw4w+@mu+QWm»mm vr>0.
0 0

We claim that(0, ¢ (0)] x (0, ¥(0)] € G. To prove this, fix O< a,b < ¥(0) and let
vo(r) = b for all r > 0. Define the sequencés; ) >1 and(vy)x>1 by:

r t

up(ry=a+ / =N / stlp(s)g(kal(s)) dsdr, Vre[0,00), Vk>1, (23)
0 0

r t
ve(r) =b+/tlfostlq(s)f(uk(s))ds dr, Vrel0,00), Vk=1. (24)
0 0
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We first see thatg < vy which producesi1 < u2. Consequentlyy; < vz which further
yieldsuz < uz. With the same arguments, we obtain that) and(vx) are non-decreasing
sequences. Sinag'(r) > 0 andb = vo < ¥ (0) < ¥ (r) for all r > 0 we find:

r 1

ur(r) < a+ / N f VL p(s)g (¥(s)) ds
0 0

r

t
< ¥ (0) + f =N / sV p + @) (f + @) (W(s)) dsde = ().
0

0

Thusuj < ¢. It follows that

r t

v11(r) < b—i—/tl_N/SN_lq(s)f(w(s))dsdt

0 0

r t
< ¥ (0 + f =N f sV + @) ) (f + ) (¥ (s)) dsdr = ¥ (r).
0 0

Similar arguments show that
up(r) <y(r) and v (r) <y (r), Vrel0,00), Vk > 1.

Thus, (ux) and (vx) converge andu, v) = limy_ o (ux, vx) is an entire radial solution
of (1) such thatu(0), v(0)) = (a, b). This completes the proof.0

An easy consequence of the above result is:
Corollary 3. If (a, b) € G, then(0,a] x (0,p] C G.

Proof. Indeed, the process used before can be repeated by taking:

r 1

ur(r)y=aop+ f 1N f sN_lp(s)g(vk_l(s)) dsdr, Vre[0,00), Vk>1,
0 0

r t
vk(r)=bo+/tlfN/stlq(s)f(uk(s))ds dr, Vrel0,00), Vk>1,
0 0

where 0< ag < a, 0 < bg < b andvg(r) = bg for all r > 0.
Letting (U, V) be the entire radial solution of (1) with central valuesb) we obtain
asinLemma 4,
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up(r) Supa(r) SU),  Vrel0,00), Vk > 1,

ve() < v (M) <V (), Vrel0,00), Vk> 1
Set(u, v) = liMg_ oo (Ui, vi). We see thatt < U, v < V on|0, oo) and(u, v) is an entire
radial solution of (1) with central valudag, bg). This shows thatag, bg) € G, so that our
assertion is proved. O
Lemma5. G is bounded.
Proof. Set 0< A < min{o, 1} and lets = §()) be large enough so that

f(6)=ag(t), Vi=s. (25)

Sincen is radially symmetric and not identically zero at infinity, we can assyme) on

dB(0, R) for someR > 0. Corollary 1 ensures the existence of a positive large solgtion
of the problem

AL = )»n(x)g(%) in B(O, R).

Arguing by contradiction: let us assume tidais not bounded. Then, there exigts ) € G
such thata + b > max{2s, ¢(0)}. Let (u, v) be the entire radial solution of (1) such that
(u(0), v(0)) = (a, b). Sinceu(x) + v(x) > a + b > 28 for all x e RV, by (25), we find:

flu) = f(M> %g(M

> > ) if u(x)>vx)

and

g (v() > g(u(X) + v(X)) > Ag(ﬂ(x) +v(x)

> > ) if v(x) > u(x).

It follows that
Al +v) = p(x)gv) +qx) fw) = nx)(gw) + fw))
> An(x)g(%) inRRV.

On the other hand¢(x) — oo as |x| — R and u,v € C%(B(0, R)). Thus, by the
maximum principle, we conclude that+ v < ¢ in B(0, R). But this is impossible since
u@®+v0)=a+b>¢0. O

Lemmab. F(G) Cg.
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Proof. Let(a, b) € F(G). We claimthata —1/n9, b—1/no) € G providedng > 1 is large
enough so that mia, b} > 1/n9. Indeed, if this is not true, by Corollary 3,

D:=|:a—i,oo> x[b—ni,OO)E(R+XR+)\g-
0

no

So, we can find a small balt centered ina, b) such thatB € D, i.e.,BNG = . But this
will contradict the choice ofa, b). Consequently, there exists,,, v,,) an entire radial
solution of (1) such thagu,,(0), v,,(0)) = (¢ — 1/ng, b — 1/ng). Thus, for anyn > no,

we can define:

r t

1
up(ry=a— —~|—ftl_NfsN_lp(s)g(v,,(s))dsdt, r >0,
n
0 0

r t
vn(r)zb—E—}—/tl*N/sN*lq(s)f(un(s)) dsdr, r>0.
n
0 0

Using Corollary 3 once more, we conclude that),, >, and(v,),>x, are non-decreasing
sequences. We now prove that,) and(v,) converge oR" . To this aim, letxg € R be
arbitrary. Butn is not identically zero at infinity so that, for sonky > 0, we havey > 0
ondB(0, Ry) andxg € B(0, Ro).

Sinceo =liminf,_ « f(u)/g(u) > 0, we findr € (0, 1) such that

a+b 1
2 no

f@) =tg(), Viz

Therefore, on the set wheng > v,,, we have:

fup) > f(#) > rg(”";v")

Similarly, on the set where, < v,, we have:

WV

un—é—vn)

g(vn)>g( fg(unzvn)-

It follows that, for anyx € RV,

Aup +va) = p(X)ga) +q(x) f(un) = n(x)[gWa) + f(un)]
Up + vy
)

> rn(x)g(

On the other hand, by Corollary 1, there exists a positive large solution of

AL = tn(x)g(%) in B(O, Ro).
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The maximum principle yields, + v, < ¢ in B(0, Rp). So, it makes sense to define
(u(x0), v(x0)) = lim,,_ oo (u, (x0), v, (x0)). Sincexg is arbitrary, the functions, v exist
on RV, Hence(u, v) is an entire radial solution of (1) with central valugs b), i.e.,
(a,b)eG. O

Lemma 7. If, in addition, v = max{p(0), ¢(0)} > 0, then0 < R, 4 < co whereR, 4 is
defined by(5).

Proof. Sincev > 0 andp, g € C[0, 00), there existg > 0 such thatp + ¢)(r) > 0 for all

0<r <e¢.Let0< R < ¢ be arbitrary. By Corollary 1, there exists a positive radial large
solution of the problem

AYr=(p+q)x)(f+8Wr) inB(O, R).

Moreover, forany < r < R,
r t
YR() = Yr(O) + f a f SN+ @O (f + @) (Yr(s) dsdr.
0 0

Itis clear thatyj () > 0. Thus, we find:

r

Yr(r) =rtN f sV + O (f + ) (Vr()) ds < C(f + ) (Ve (),
0

whereC > 0 is a positive constant such thﬁt(p +g)(s)ds < C.
Since f + g satisfies(A1) and(Az), we may then invoke Lemma 1 in [1] to conclude

7 dr
—_— <
J (f+e®

Therefore, we get:

. d / ds = Vr(") <C foranyO<r <R.
drw - (f+8))  (f+8WrT)

Integrating from O taR and recalling that/g (r) — co asr /' R, we obtain:

7 ds
— < CR.
(f+8))

Yr(0)
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Letting R \, 0 we conclude that

o0

. ds
lim / _%
R\0 (f +28)(s)

¥r(0)

This implies thatyz(0) — co as R \, 0. So, there exists & R < ¢ such that
0<c,d<yg(0). Set

r t

ug(r) =c+/tl_N/sN_lp(s)g(vk_l(s))ds dr, Vrel0,00), Vk =1, (26)
0 0

r t
ok (r) =d+/ll_N/sN_lq(s)f(uk(s))ds dr, Vrel0,00), Vk>=1, (27)
0 0

wherevg(r) = d for all r € [0, 0c0). As in Lemma 4, we find thatu;) respectively(vy) are
non-decreasing and

ug(r) <ygp@r) and u(r) <yr@r), Vre [O, ﬁ), Vk > 1.

Thus, for anyr € [0, ﬁ), there eXiStS(ufgr),v(r)) = liMy_ oo (ur (r), v (r)) which is,
moreover, a radial solution of (1) iB(0, R) such that(«(0), v(0)) = (¢, d). This shows
thatR. 4 > R > 0. By the definition ofR. ; we also derive

lim u(r)=00 and lim v(r) = oo. (28)
r/Rzr,zl r/ Red

On the other hand, sinde, d) ¢ G, we conclude thar, 4 is finite. O

Proof of Theorem 2 completed.

Let (a, b) € F(G) be arbitrary. By Lemma 6, b) € G so that we can defin@J, V)
an entire radial solution of (1) witliU (0), V(0)) = (a, b). Obviously, for anyn > 1,
(a+1/n,b+1/n) € RT x RY)\ G. By Lemma 7,R,11/n,b+1/x (in short,R,) defined
by (5) is a positive number. L&U,,, V,,) be the radial solution of (1) i®(0, R,) with the
central valuesa + 1/n, b+ 1/n). Thus,

r 1

Uy(r)=a+ 1 +/tl_N/SN_lp(s)g(Vn(s))dsdt, vr € [0, Ry), (29)
n
0 0

r t
Va(r)=b+ 1 +/tlfostlq(s)f(Un(s))ds dr, Vrel[O,Ry). (30)
n
0 0
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In view of (28) we have:

im U,(r)=00 and IlimV,(r)=00, Vn>1.
R r /'Ry

r n

We claim that(R,),>1 is a non-decreasing sequence. Indeed(uif), (vr) denote
the sequences of functions defined by (26) and (27) wite a + 1/(n + 1) and
d=b+1/(n+1),then

up(r) up41(r) < Up(r),

<
Vr € [0, Ry), Vk > 1. (31)
Ve (r) < o1 (r) < Vi (r),

This implies that(u(r))x>1 and (vk(r))r>1 converge for any € [0, R,). Moreover,
(Un+1, Vna1) = limg_ oo (ug, v) is a radial solution of (1) irB(0, R,) with central values
(a+1/(n+1),b+ 1/(n+1)). By the definition ofR,,, 1, it follows thatR,+1 > R, for
anyn > 1.

SetR :=lim,_. . R, and let 0O< r < R be arbitrary. Then, there exisi$ = n1(r) such
thatr < R, forall n > n1. From (31) we see thdf, 1 < U, (respectivelyV,+1 < V,) on
[0, R,) for all n > 1. So, there exists lip, o (U, (r), V,,(r)) which, by (29) and (30), is a
radial solution of (1) inB(0, R) with central valuesa, b). Consequently,

Iimoo U,(r)=U(r) and Iir(r>1o Va(r)y=V(r) foranyrel0,R). (32)

SinceU, (r) > 0, from (30) we find:

]

V(r)<b+ +f (Un(r) /tl Nf N=14(s)dsdr.

0
This yields
Vu(r) < CrUn(r) + Cof (Un (1)), (33)

where(C1 is an upper bound afV (0) + 1/n)/(U(0) + 1/n) and

o]

t
=/t1_N/sN_1q(s) dsdr <
0

0

sq(s)ds < oo.

Defineh(r) = g(C1t + C2f (1)) forz > 0. Itis easy to check thatsatisfieg A1) and(A»).
So, by Lemma 1 in [1] we can define:

o]

F(s):/i, forall s > 0.
h(t)
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But U, verifies

AUy = p(x)g(Va)

which, combined with (33), implies
AU, < p(X)h(Up).

A simple calculation shows that
AT (Uy) = I'(U) AU, + T (U) |V U, 2
-1 ' (Un)

= AU,
A ARTIUAE:

h(Un)

VU, |?

p(r)hUyp) = —p(r),

WV

which we rewrite as

d i
(erd—F(U,,)> > —erlp(r) forany O<r < R,.
r

Fix 0 <r < R. Thenr < R, for all n > n1 providedns is large enough. Integrating the
above inequality oveO, r], we get:

r

dEF(Un) > —rt N / sNp(s) ds.
.

0

Integrating this new inequality ovér, R,] we obtain:

R, t
—F(U,,(r)) 2—ftl_NfsN_1p(s)dsdt, Vn > nq,
r 0

sincelU, (r) — oo asr /' R, impliesI" (U, (r)) — 0 asr / R,. Therefore,

Rn t
I'(Un(n) </t17N/sN71p(s)dsdt, Vn >ni.
r 0

Lettingn — oo and using (32) we find:

R '
F(U(”)) </llfN/sN71p(s)dsdt,
r 0
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or, equivalently
R t
Ury>r—1 /tlfN/stlp(s)dsdt
r 0
Passing to the limit as ~ R and using the fact that lig o I'1(s) = oo, we deduce:
R t
lim U(r) > lim r~1 ftlfostlp(s)ds dr | = 0.
r/'R r/'R
r 0

But (U, V) is an entire solution so that we concluBle= oo and lim._, o, U (r) = 00. Since
(3) holds andv’(r) > 0 we find:

(9] t
U(r) < a+g(V(r))/tl_N/sN_lp(s)dsdt
0 0
1 o0
< a+g(V(r))N—_2/tp(t)dt, Vr > 0.
0

We deduce lim. V (r) = oo, otherwise we obtain that lim,. ., U (r) is finite, a con-
tradiction. ConsequentlyU, V) is an entire large solution of (1). This concludes our
proof. O
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