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1. INTRODUCTION

In this paper we give a proof of the following

THEOREM 1.1. Let C be an algebraically closed field of characteristic zero,
G a connected linear algebraic group defined o¨er C, and k a differential field
containing C as its field of constants and of finite, nonzero transcendence
degree o¨er C; then G can be realized as the Galois group of a Picard]Vessiot
extension of k.

w xPrevious work by Kovacic 17, 18 reduced this problem to the case of
powers of a simple connected linear algebraic group. Our contribution is
to show that one is able to realize any connected semisimple group as a

Ž .Galois group and, when k s C x , x9 s 1, to control the number and
types of singularities when one constructs a system Y 9 s AY, A g

Ž Ž ..M C x , realizing an arbitrary connected linear algebraic group as itsn
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Galois group. More precisely, we give a constructive, purely algebraic
proof of the following. Let G be a connected linear algebraic group and let

w xR be its unipotent radical and P a Levi factor 27 . The groupu
Ž . Ž . Ž .R r R , R , where R , R is the closed commutator subgroup, is au u u u u

commutative unipotent group and so is isomorphic to a vector group C n.
The group P acts on R by conjugation and this action factors to an actionu

Ž . Ž . n1 n son R r R , R . Therefore we may write R r R , R s U [ ??? [ U ,u u u u u u 1 s
where each U is an irreducible P-module. We shall assume that U is thei 1

Ž .trivial one-dimensional P-module and so allow the possibility that n s 0 .1
We may write P s T ? H, where T is a torus and H is a semisimple group.
Let m s n if the action of H on U is trivial and let m s n q 1 if thei i i i i
action of H on U is nontrivial. Let N s 0 if H is trivial and N s 1 if H isi

Ž .nontrivial. We define the defect d G of G to be the number n and the1
Ž . � 4excess e G of G to be max N, m , . . . , m . We note that any two Levi2 s

factors are conjugate so that these numbers are independent of the choice
Ž . Ž .of P. Furthermore, one can show that d G is the dimension of R r G, Ru u

Ž .see the Appendix .

THEOREM 1.2. Let G be a connected linear algebraic group defined o¨er
an algebraically closed field C of characteristic zero. Then G is the Galois

Ž .group of a Picard]Vessiot extension of C x corresponding to a system of the
form

A A1 dŽG.
Y 9 s q . . . q q A Y`ž /x y a x y a1 dŽG.

Ž .where A , i s 1, . . . , d G , are constant matrices and A is a matrix withi `

Ž .polynomial entries of degree at most e G . In particular, the only possible
Ž .singularities of this system are d G regular singular points in the finite plane

Ž .and a possibly irregular singular point at infinity.

For example, this result implies that for any connected reductive group
G, there exists constant matrices A and B such that G is the Galois group

Ž .of an equation of the form Y 9 s A q xB Y.
We now give a brief history of work on the inverse problem in differen-

tial Galois theory. An early contribution to this problem is due to Bialy-
w xnicki-Birula 3 who showed that, for any differential field k of characteris-

tic zero with algebraically closed field of constants C, if the transcendence
degree of k over C is finite and nonzero then any connected nilpotent
group is a Galois group over k. This result was generalized by Kovacic,

wwho showed that the same is true for any connected solvable group. In 17,
x18 Kovacic introduced powerful machinery to solve the inverse problem.

ŽIn particular, he made extensive use of the logarithmic derivative see
.below and he developed an inductive technique that gave criteria to lift a
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solution of the inverse problem for GrR to a solution for the full groupu
G. Using this, Kovacic showed that to give a complete solution of the
inverse problem, one needed only solve the problem for reductive groups
Ž .note that GrR is reductive . He was able to solve the problem for toriu

Žand so could give a solution when GrR is such a group i.e., when G isu
.solvable . He also reduced the problem for reductive groups to the

problem for powers of simple groups. We will use logarithmic derivatives
Ž .and the inductive technique in a very simple explicit form below.

� 4w y1 xWhen one considers specific fields, more is known. If K s C x x ,
w xthe quotient field of convergent series, Kovacic 17 showed that a neces-

sary and sufficient condition for a connected solvable group G to be a
Galois group over K is that the unipotent radical of the center of

Ž .Gr R , R have dimension at most 1, where R is the unipotent radicalu u u
of G. Using analytic techniques, Ramis showed that any connected

Ž w x.semisimple group is a Galois group over K cf. 28 . Recently, Ramis
extended this result to show that a necessary and sufficient condition for a
linear algebraic group to be a Galois group over K is that it have a local

Ž w x.Galois structure cf. 29 , a condition expressed in terms of the Lie algebra
w xof the group. This condition was restated in 26 in more group theoretic

terms: a necessary and sufficient condition for a linear algebraic group G
Ž . 0 Ž . Ž 0.to be a Galois group over K is that i GrG is cyclic, ii d G F 1, and

Ž . 0 Ž 0.iii GrG acts trivally on R r R , G . For connected groups this reducesu u
Ž .to the condition that d G F 1. Ramis also shows how solving the inverse

problem over K is equivalent to solving the inverse problem on the sphere
where the differential equation has a regular singularity at 0 and an
arbitrary singularity at `.

w xTretkoff and Tretkoff 37 have shown that any linear algebraic group is
Ž .a Galois group over C x when C s C, the field of complex numbers.

Their result depends on the solution of a weak version of the 21st Hilbert
1 w xProblem. For arbitrary C, Singer 34 showed that a class of linear

Žalgebraic groups including all connected groups and large classes of
. Ž .nonconnected linear algebraic groups are Galois groups over C x .

Singer’s proof used the result of Tretkoff and Tretkoff and a transfer

1Tretkoff and Tretkoff needed the fact that given a finitely generated group H of matrices,
there exists a homomorphism of the fundamental group of the sphere minus a finite set of
points onto this group and that this representation is the monodromy representation of a
Fuchsian equation. Letting one of the generators be the identity matrix, and mapping the
homotopy classes of loops around distinct points to distinct generators, one can use the

Žclassical solutions of Plemelj or Birkhoff to produce a system with simple poles they need
one of the matrices to be diagonalizable to insure that all poles are simple yet a careful
examination of their techniques shows that their results still yield a Fuchsian system, without

Ž w x.any hypothesis on the matrices cf. 1 . This is not in conflict with the recent work of
w xBolibruch 1 .
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principle to go from C to any algebraically closed field of characteristic
w xzero. Recently, Magid 22 claimed to have proved that all connected

groups having no subgroups of codimension one must be Galois groups
Ž .over C x . In particular, this would have implied that any connected

Ž .semisimple group not having PSL 2, C as a quotient could be realized as a
Ž . 2Galois group over C x . Regretably, Magid’s proof is flawed. Finally,

w xRamis 29 has shown that any linear algebraic group defined over C is the
Ž .Galois group of a Picard]Vessiot extension of C x . Ramis’s proof relies

� 4w y1 xon his solution of the inverse problem for the local field C x x and a
technique for gluing solutions of the local problem to form a solution of
the global problem. Ramis is also able to bound the number and type of
singularities.

Another approach to the inverse problem was given by Goldman and
w xMiller. In 10 , Goldman developed the notion of a generic differential

equation with group G analogous to what E. Noether did for algebraic
equations. He showed that many groups have such an equation. In his

w xthesis 23 , Miller developed the notion of a differentially Hilbertian
differential field and gave a sufficient condition for the generic equation of
a group to specialize over such a field to an equation having this group as
Galois group. Regrettably, this condition gave a stronger hypothesis than
in the analogous theory of algebraic equations. This condition made it
difficult to apply the theory and Miller was unable to apply this to any
groups that were not already known to be Galois groups.

Finally, many groups have been shown to appear as Galois groups for
classical families of linear differential equations. The family of generalized
hypergeometric equations has been particularly accessible to computation,

w x w xeither by algebraic methods as in Beukers and Heckmann 2 , Katz 14 ,
w xand Boussel 6 , or by mixed analytic and algebraic methods as in Duval
w x w xand Mitschi 8 or Mitschi 24, 25 . These equations in particular provide

classical groups and the exceptional group G . Other examples were2
w xtreated algorithmically, as in Duval and Loday-Richaud 7 or Ulmer and

w xWeil 38 using the Kovacic algorithm for second order equations, or in
w xSinger and Ulmer 35, 36 using a new algorithm for third order equations.

The rest of this paper is organized as follows. In Section 2 we recall
some of the results of differential Galois theory and Kovacic’s program for
solving the inverse problem. In Section 3 we present proofs of the
Theorems 1.1 and 1.2.

We thank J. Kovacic for pointing out mistakes in a previous attempt at
proving Theorem 1.2 and for showing us that Theorem 1.2 implies Theo-

2 We had previously given a ‘‘proof’’ of theorem 1.2 based on Magid’s ideas and, in
w x w xparticular, on Proposition 7.13 of 22 . Kovacic 20 showed us a counterexample to this

proposition invalidating our previous argument.
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rem 1.1. We also thank Jean-Pierre Ramis for stimulating conversations
concerning the inverse problem and for sharing his ideas with us.

2. DIFFERENTIAL GALOIS THEORY AND
KOVACIC’S PROGRAM

w x w xThe material of this section comes from 17 and 18 . Let k be a
differential field of characteristic zero with algebraically closed field of
constants C. Given a connected C-group G we wish to construct

Ž .Picard]Vessiot extensions of k of the form k g where g is a point of G.
Such a field is called a G-primitï e extension of k. We say that a G-primi-
tive extension is full if g is a k-generic point of G. Let V be a finite

Ž .dimensional faithful G-module. We denote by GG ; gl V the Lie algebra
Ž . Ž .of G ; GL V . For any field extension K of C we denote by G K the

Ž . Ž .group of K-points of G and by GG the Lie algebra Lie G s Lie G mK K C C
K of G over K.

The following summarizes some of the material found in Chapters I and
w xII of 17 .

PROPOSITION 2.1. Let G, V, and GG be as abo¨e.

Ž . y11. If k g is a G-primitï e extension of k, then g 9g g GG and thek
Ž .Galois group H of k g o¨er k is an algebraic subgroup of G. The action of H

Ž .on k g is gï en by g ¬ gh for any C-rational point h of H. In particular,
Ž .k g is a full G-primitï e extension if and only if its Galois group o¨er k is G.

Ž .2. If A g GG ; gl V m k, then there exists a G-primitï e extensionk C
Ž .k g of k such that g is a solution of Y 9 s AY.

Kovacic refers to the element g 9gy1 as the logarithmic derï atï e of g
Ž .and denotes it as ld g . He, in fact, shows that if k is a universal field over

Ž . Ž .C , the field of constants of k, and g g G k , then the map g ¬ ld gk
Ž .maps G k onto GG . We shall only need the fact as stated in Propositionk

Ž . Ž . Ž . y12.1. Note that ld gh s ld g q gld h g .
We shall need the following corollary of this result in the next section.

Ž .COROLLARY 2.2. Let k s C x and G, V, and GG be as abo¨e. Let
Ž .A g GG . If k g is a G-primitï e extension of k ha¨ing connected Galoisk

Ž .group H ; G and g 9 s Ag, then there exists an element g g G k such that˜

w x y1 y1g A s g 9g q gAg g HH˜ ˜ ˜ ˜ ˜ k

where HH ; GG is the Lie algebra of H.
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wProof. Since k is a cohomologically trivial field, one knows 15, Corol-
xlary 1, p. 426 that any Picard]Vessiot extension of k with connected

Ž . Ž .Galois group H is an H-primitive extension of k. Therefore, k g s k h
for some point h of H. The Galois group leaves g s hgy1 fixed so g is a˜ ˜
Ž . Ž . Ž .y1C x -rational point of G. Calculating gg 9 gg we have˜ ˜

y1y1 y1 y1w xg A s g 9g q gAg s gg 9 gg s h9h .Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ ˜
y1Proposition 2.1.1 implies that h9h g HH .k

We now recall Kovacic’s program. Any connected linear algebraic group
can be written as a semidirect product R i P where R denotes theu u
unipotent radical of G and P is a maximal reductive subgroup of G. This
is called a Le¨i decomposition of G and P is called a Le¨i factor. It is
known that any connected reductive subgroup is contained in a Levi factor

Ž w x.and that any two Levi factors are conjugate cf. 27 . Kovacic showed that
one can make several reductions of the inverse problem. First, he showed
that one can assume that R is commutative and so must be of the formu
C m. Since P is reductive and acts on C m, one can further write C m as a
sum of irreducible P-modules. Kovacic further reduced the inverse prob-
lem to the case where R is the direct sum of copies of a uniqueu
irreducible P-module. Second, Kovacic gave a method for selecting a
solution of the inverse problem for P that will lift to a solution of the
inverse problem for G s R i P. In general terms, he showed that au
solution of the inverse problem for P will lift provided that an appropri-
ately chosen ‘‘inhomogeneous inverse problem’’ for R can be solved.u
Finally, Kovacic described the obstructions to solving this inhomogeneous
inverse problem for R . Since we will need to keep a careful accounting ofu
the singularities we introduce in each of these reduction steps in order to
prove Theorem 1.2, we shall now describe these reductions in detail. It is
convenient to have the following:

DEFINITION 2.3. A connected linear algebraic group G defined over an
algebraically closed field C of characteristic zero is realizable over a
differential field k whose field of constants is C if there exists a full

Ž . Ž .G-primitive extension k g of k. Let A s ld g g GG . We say that Ak
realizes G.

Note that Proposition 2.1 implies that given A g GG there is always ak
Ž . Ž .G-primitive extension k g such that ld g s A. The above definition of

realizability requires that the Galois group be the full group G.

2.1. Reduction to Commutatï e Ru

Let G be a connected linear algebraic group defined over an alge-
Ž . Ž .braically closed field C and let G s Gr R , R , where R , R denotesu u u u
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Ž .the closed subgroup of commutators of R . Let GG be the Lie algebra ofu
G, GG be the Lie algebra of G, and dp : GG ª GG be the canonical map.
Using the fact that the only algebraic subgroup of G that maps surjectively

Ž wonto G is G, Kovacic shows cf. 17, Lemma 2; 18, Lemma 7, Proposition
x18 :

PROPOSITION 2.4. Let A , . . . , A g GG; f , . . . , f g k; and A , . . . , A g1 t 1 t 1 t
Ž .GG satisfy dp A s A . If ÝA m f realizes G o¨er k, then ÝA m f realizesi i i i i i

G o¨er k.

2.2. Lifting Solutions of the In¨erse Problem

We shall assume that G is a connected linear algebraic group defined
over C and that the unipotent radical of G, which we denote here by U,
is abelian. For any Levi decompositions G s U i P we will describe
Kovacic’s method for lifting a solution of the inverse problem for
the reductive group P to a solution of the inverse problem for G.

Let us first consider what happens when we have a full G-primitive
Ž . Žextension K s k g of a differential field k with algebraically closed field

.of constants . We may write g s up with u g U, p g P. Since U is normal
Ž . Ž .in G and k GrU s k P is the fixed field of U, we can use Galois

Ž .correspondence and Proposition 2.1 to show that k p is a full P-primitive
extension of k. Let GG, UU, PP be the Lie algebras of G, U, P respectively.

Ž . Ž .Note that ld g s A g GG and that ld p s A g PP . Calculating weG k P k
find

y1ld g s up 9 upŽ . Ž . Ž .
y1y1 y1s p ? p up 9 p ? p upŽ . Ž .

s p9py1 q p ld py1 up py1 .Ž .Ž .
Ž .Kovacic shows that if p is an element of P such that k p is a˜ ˜

Ž . Ž . Ž Ž y1 .. y1P-primitive extension of k with ld p s ld p , then p ld p up p s˜ ˜ ˜ ˜ ˜
Ž Ž y1 .. y1p ld p up p . We therefore define

l d u s p ld py1 up py1Ž . Ž .Ž .A p

Ž .where p is any element of P such that ld p s A and the constants ofP
Ž .k p are the same as the constants of k. Note that UU is left fixed by any

Ž .automorphism of GG so l d u g UU. The following result of KovacicA P
Ž wshows that one can reverse this process cf. 17, Proposition 13; 18,

x.Proposition 19 .

PROPOSITION 2.5. Let G be a connected linear algebraic group defined
o¨er an algebraically closed field C and let k be a differential field with field of
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constants C. Assume that the unipotent radical U of G is abelian and let
G s U i P be a Le¨i factor decomposition. Let A g PP realize P andP k
A g UU be such thatU k

Ž . Ž .1. there exists an element p g P with ld p s A such that k p is aP
full P-primitï e extension of k,

Ž .2. there exists an element u g U with l d u s A , such that the fieldA Up
Ž .of constants of k u, p is C,

y1 y1 Ž .3. the map s ¬ p u s u p is a C-isomorphism from the differential
Ž Ž . Ž .. Ž .Galois group Gal k up rk p onto U C .

Ž . Ž .Then ld up s A q A and k up is a full G-primitï e extension of k.U P

Ž .The condition l d u s A can be described in a simple way. To doA UP

this note that U being a commutative unipotent group is the isomorphic
image, via the exponential map, of the vector group of its Lie algebra UU

Ž w x. Ž .cf. 4, 7.3 and it is easy to show that exp g 9 s g 9 exp g for any g g UU .k
Ž .This implies that ld exp g s g 9 and if we identify U with the vector

Ž .group of UU via the exponential map, we have that ld g s g 9 for all
Ž .g g U k .

Via the identification of U with UU the action of P on U by conjugation
Ž . Ž .induces the adjoint representation r : P ª GL U and the correspond-

Ž .ing representation dr : PP ª gl U on the Lie algebras. For A , A , u, pU P
as in Proposition 2.5, we have

l d u s p ld py1 up py1Ž . Ž .Ž .A p

s r p ? r py1 ? u 9Ž . Ž .Ž .
s u9 y ld r p ? uŽ .Ž .
s u9 y dr A ? u.Ž .P

Ž .EXAMPLE 1. Let k s C x where x9 s 1 and C is algebraically closed.
Let G s C i C* s

b a
b / 0, a g C .y1½ 5ž /0 b

We identify the Lie algebra UU of C with

0 a a g C½ 5ž /0 0
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and the Lie algebra PP of C* with

b 0 b g C .½ 5ž /0 yb

0 a b 0Ž . Ž . Ž .We therefore seek elements A s and A s , a, b g C xU P0 0 0 yb

such that:

b 0Ž . Ž .y11. There is a full C*-primitive extension k p , p s where0 b

b 0Ž . Ž .ld p s . This is equivalent to demanding that the Galois group of0 yb

Ž .k b over k is C* where b9 s bb.
1 aŽ . Ž .2. There exists an element u s with I d u s A , such thatA U0 1 P

Ž .the field of constants of k u, p is C. Note that

y1 y1
b 0 b 0 b 0 b 01 al d u s ldŽ .A y1 y1 y1 y1p ž /ž / ž / ž / ž /0 1ž /0 b 0 b 0 b 0 b

y1
y2b 0 b 01 b as ldy1 y1ž /ž /ž / ž /0 b 0 b0 1

y1
y2b 0 b 00 b a 9Ž .s y1 y1ž /ž / ž /0 b 0 b0 0

0 b 2 by2a 9Ž .s ž /0 0

0 a 9 y 2bas .ž /0 0

Ž .Therefore the condition l d u s A is equivalent to a 9 y 2ba s a.A UP

b 0 y1 y1 b 01 a 1 aŽ . Ž . ŽŽ ..Ž .y1 y13. The map s ª s is a C-isomorphism0 b 0 b0 1 0 1

b 01 aŽ ŽŽ .Ž .. Ž .. Ž .y1from Gal k rk b onto U C . This latter condition is equiva-0 b0 1

Ž .lent to the condition that the map s ¬ s a y a is a C-isomorphism of
Ž Ž . Ž ..Gal k ab rk b onto C.

Ž .Therefore to realize G as a Galois group over C x , we must find
Ž . Ž .a, b g C x and a , b such that

b9 y bb s 0

a 9 y 2ba s a
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Ž .and such that k b is a Picard]Vessiot extension of k with Galois group
Ž . Ž .C* and k ab is a Picard]Vessiot extension of k b with Galois group C.

If we let b s x and a s 1 then b s e x 2 r2 and a s e x 2
H eyx 2

. We will show
in the next section that this selection meets our needs and discuss how this
choice was made. Note that in this example the representation r is given

Ž . 2by r b s b .

Kovacic is able to refine Proposition 2.5 in the following way. Since P is
reductive we may write U as a sum of irreducible P-modules. Grouping
isomorphic copies, we write U s U r1 [ ??? [ U rs, where the U are noniso-1 s i

Ž .morphic P-modules. Let r : P ª GL U be the representation of P oni i
Ž .each simple module and dr : PP ª gl U be the representations on theiri i

Lie algebras. We denote by r r i and dr r i the representations on theiri i
powers. As before, we shall identify each U and its Lie algebra UU withi i

n i w xsome C . Kovacic shows 18, Proposition 19 :

PROPOSITION 2.6. Let G be a connected linear algebraic group defined
o¨er an algebraically closed field C and let k be a differential field with

Ž r1 rs.constants C. Assume that G s U [ ??? [ U i P as abo¨e. Let A g PP1 s P k
Ž r i.and A g UU be such thati i k

Ž . Ž .1. there exists an element p g P with ld p s A such that k p is aP
full P-primitï e extension of k,

r i X r iŽ .2. there exists an element u g U with u y dr A u s A , suchi i i i P i i
Ž .that the field of constants of k u , p is C,i

r iŽ y1 . Ž Ž . .3. the map s ¬ r p ? s u y u is a C-isomorphism fromi i i
Ž Ž . Ž .. r iŽ ..Gal k u p rk p onto U C .i i

Ž . Ž .Then for u s u q ??? qu , ld up s A q ??? qA q A and k up is a full1 s 1 s P
G-primitï e extension.

2.3. Selecting A and AU P

Let G s U i P as above. We shall first show that the inverse problem
can be reduced to the case where P is a direct product T = H where T is
a torus and H is a semisimple group. We note that any connected
reductive linear algebraic group P is of the form T ? H where T is a torus
and coincides with the center of P, H is semisimple, and T l H is finite.
We therefore have a homomorphism p : T = H ª P with finite kernel.
Let TT, HH, PP be the Lie algebras of T , H, P respectively and let
dp : TT = HH ª PP be the Lie algebra homomorphism associated to p .

ŽPROPOSITION 2.7. If A q A realizes a semidirect product U i T =U T , H
. Ž . Ž .T where A g UU , A g TT [ HH , then A q dp A realizes U i PU k T , H k U T , H

o¨er k.
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The proof of this proposition is contained in the proof of Proposition 9
w x Žin 17 note that the condition concerning the kernel of p in this latter

proposition is not needed in the part of the proof that verifies the above
.proposition . This proposition allows us to assume that our group is of the
Ž .form U i T = H . The next proposition shows that to realize T = H, we

Ž w x.need only realize T and H separately cf. 17, Proposition 12 .

PROPOSITION 2.8. Let G and G be connected groups such that the only1 2
common homomorphic image of both groups is the trï ial group. If A and A1 2

Žrealize G and G respectï ely, then A q A realizes G = G here we1 2 1 2 1 2
identify the Lie algebra of G = G with the direct sum of the Lie algebras of1 2

.G and G .1 2

COROLLARY 2.9. With notation as abo¨e, if A realizes T and A realizes1 2
H, then A q A realizes T = H.1 2

Proof. T and H have no common homomorphic image other than the
trivial group.

We do not know a general criterion for realizing a semisimple group
over an arbitrary differential field, but in the next section we will show how

Ž .to realize such a group over C x . The following is a criterion for realizing
Ž w x.tori over any differential field cf. 17, Proposition 15 . It is a consequence

Ž w x.of the Kolchin]Ostrowski theorem cf. 16 . If T is a torus defined over
Ž .C, we identify T C with the m-fold product C* = ??? = C* and the Lie
Ž .algebra TT of T C with the m-fold sum C [ ??? [ C. With this identi-C

fication, the logarithmic derivative of an element in T becomes
Ž . Ž X X .ld a , . . . , a s a ra , . . . , a ra .1 m 1 1 m m

PROPOSITION 2.10. Let T be as abo¨e and F a differential field containing
Ž . mC. Let a , . . . , a g TT s F . A necessary and sufficient condition that1 m F

Ž .a , . . . , a realize T o¨er F is that there exists no relation of the form1 m
n a q ??? qn a s f 9rf with n g Z not all zero and f g F.1 1 m m i

Finally, Kovacic gives a criterion for finding elements satisfying Proposi-
m m Ž .tion 2.6. Let L : k ª k be the map defined by L ¨ s ¨ 9 yA , r A , rP p

Ž . m m Ž m.dr A ? ¨ and let p : k ª k rL k be the quotient homomor-P A , rp
Ž w x.phism of C-vector spaces. Kovacic shows cf. 18, Proposition 20 :

PROPOSITION 2.11. With notations as in Proposition 2.6, assume that
Ž . rs s 1. If A g PP satisfies condition 1 abo¨e, then A s a , . . . , a g UUp k 1 1 r 1

satisfies conditions 2 and 3 if and only if p a , . . . , p a are linearly indepen-1 r
dent o¨er C.

Ž .EXAMPLE 1 bis . Propositions 2.10 and 2.11 allow us to verify the
claims at the end of the exposition of Example 1. Using the notation of
that example, we apply Proposition 2.10 to b s x. Let nx s f 9rf for some
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Ž .f g C x . For any finite zero or pole g of f , f 9rf will have a simple pole
at g . Since nx has no poles, we must have that f is a constant and so
n s 0. Therefore x realizes the torus C*. To use Proposition 2.11 we must

Ž . Ž .show that a 9 y 2 xa s 1 has no rational solutions a g C x . Let a g C x
be a solution. At any finite pole of a , the order of a 9 is larger than the
order of 2 xa , so there can be no cancellation. Therefore a must be a
polynomial. Let n be the degree of this polynomial. The degree of 2 xa is
larger than the degree of a so the degree of the right-hand side of this
equation is larger than the degree of the left hand side, a contradiction.

3. PROOFS OF THE THEOREMS

3.1. Reductï e Groups

We start by showing that any connected semisimple group can be
Ž .realized over C x by a system Y 9 s AY where the entries of A are

polynomials of degree at most one.

LEMMA 3.1. Let G be a connected semisimple linear group defined o¨er C.
There exists a faithful finite-dimensional G-module V such that

1. V contains no one-dimensional G-modules.
2. Any proper connected closed subgroup H ; G lea¨es a one-dimen-

sional subspace W ; V in¨ariant.H

Ž w x.Proof. Recall that Chevalley’s theorem cf. 12, p. 80 states that for
any proper algebraic subgroup H ; G there is a G-module V such that H
is the stabilizer of a line L in V. Since G is semisimple, we can write V asH
the sum of irreducible G-modules. The projection of L into one of theseH

Ž .irreducible components of dimension necessarily greater than 1 must be
non-trivial, so we can assume that H stabilizes a line in some irreducible
G-module V. Note that any subgroup conjugate to H will also stabilize

w xsome line in V. Dynkin’s theorem 9 implies that there are only a finite
number of conjugacy classes of maximal proper connected closed sub-
groups in G. Selecting a V as above for each of these we can now leti
V s V [ ??? [ V . If need be, we can take the direct sum of this with a1 m
faithful irreducible G-module of dimension greater than 1 to assume that
V is faithful.

We will refer to a faithful G-module satisfying the conclusions of the
Ž .above lemma as a Che¨alley module for G. For example, if G s SL 2 ,

then any irreducible G-module is a Chevalley module for G since any
proper connected subgroup is solvable and will leave some line invariant.
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LEMMA 3.2. Let G be a connected semisimple linear group o¨er C with
w xLie algebra GG and let V be a Che¨alley module for G. Let A g GG m C x . IfC

Ž .Ž . Ž .C x g is a G-primitï e extension of C x with g 9 s Ag whose Galois group
Ž .is a proper subgroup of G then there exist ¨ g V, ¨ / 0, c g C x , and

Ž Ž ..g g G C x such that˜

w xg A ? ¨ s c ? ¨ .˜

Proof. Note that since A has polynomial entries the monodromy group
Ž w x.is trivial. Gabber’s Lemma cf. 14, Proposition 1.2.5 implies that the

Galois group is connected.3 Corollary 2.2 implies that there exists a g g G˜
w xsuch that g A g HH , where HH is the Lie algebra of H. Since V is a˜ k

Chevalley module for G, there exists a line left invariant by H and
therefore by HH. The conclusion now follows.

LEMMA 3.3. Let G be a connected semisimple linear group o¨er C with
w xLie algebra GG and let V be a Che¨alley module for G. Let A g GG m C xC

and let t be the maximum degree of the polynomials appearing in A. If
Ž .Ž . Ž .C x g is a G-primitï e extension of C x with g 9 s Ag whose Galois group

w xis a proper subgroup of G then there exists w g V m C x , w / 0, andC
w xc g C x with deg c F t such thatx

w9 y A y cI w s 0.Ž .

Ž .Proof. By Lemma 3.2 we know that there exists ¨ g V, ¨ / 0, c g C x ,
Ž Ž .. Ž y1 y1.and g g G C x such that g 9g q gAg ¨ s c¨ or, equivalently,˜ ˜ ˜ ˜ ˜

g 9gy1 q gAgy1 y cI ¨ s 0.Ž .˜ ˜ ˜ ˜Ž .
y1 y1 Ž y1 .If we differentiate gg s I we get that g 9g s yg g 9. Therefore we˜̃ ˜ ˜ ˜ ˜

have

yg gy1 9 q gAgy1 y cI ¨ s 0.Ž . Ž .˜ ˜ ˜ ˜Ž .
If we let w s ygy1 ¨ we get˜

gw9 y gA y cIg w s 0.Ž .˜ ˜ ˜Ž .

Multiplying through by gy1 gives us an equation of the form˜

w9 y A y cI w s 0.Ž .

3Strictly speaking this is not an algebraic argument but it can be replaced by a tedious
algebraic proof.
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We now must show that there exists an equation of this form with
w x w xw g V m C x , w / 0, and c g C x with deg c F t. We first will showC x

that we can assume that c is a polynomial. Let a be a finite pole of c and
write

n nq1c s c x y a q c x y a q . . . ,Ž . Ž .n nq1

m mq1w s w x y a q w x y a q . . . ,Ž . Ž .m mq1

where n F y1, w g V, and c g C. Substituting these expressions intoi i
Ž .w9 y A y cI w s 0 and comparing leading terms, we see that n s y1

and c s ym. Therefore we have thatn

yma
c s q pÝ x y a

where p is a polynomial. Letting
ym aw s w ? x y aŽ .Ł1

we have
ymaym ymX X a aw y AypI w sw ? xya qw ? zyaŽ . Ž . Ž .Ł Ł Ý1 1 ž /x y a

ym ay A y pI w ? x y aŽ . Ž .Ł
ym as w9 y A y cI w x y aŽ . Ž .Ž . Ł

s 0.
Therefore we may replace w by w and assume that c is a polynomial.1
Again by comparing leading terms, we see that the entries of w have no
finite poles. Let c s c q c x q ??? qc x m and w s w q w x q0 1 m 0 1
??? qw x n. If m ) t then the term of highest power in x appearing inn

mq nŽ .w9 y A y cI w is c w x , which is not zero. Therefore, m F t.m n

When t F 1, we can state the conclusion of this result even more
concretely. Let A s A q A x and c s c q c x be as above. Any0 1 0 1

Ž . mprospective solution w of w9 y A y cI w s 0 is of the form w s w xm
Ž .q ??? qw where the w are in V. Substituting into w9 y A y cI w s 00 i

we have

0 s w9 y A y cI wŽ .
s mw x my 1 q m y 1 w x my 2 q . . . qwŽ .m my1 1

y A q xA y c q c x I w x m q . . . qwŽ . Ž .Ž .0 1 0 1 m 0

mq 1 ms c I y A w x q c I y A w q c I y A w xŽ . Ž . Ž .1 1 m 0 0 m 1 1 my1

my 1q c I y A w q c I y A w q mw xŽ . Ž .0 0 my1 1 1 my2 m
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...

q c I y A w q c I y A w q 2w xŽ . Ž .0 0 1 1 1 0 2

q c I y A w q w .Ž .0 0 0 1

Therefore Lemma 3.3 states that if the Galois group is a proper
connected subgroup of G then there exists a nonnegative integer m and

Ž .constants c , c such that the above system has a solution w , . . . , w in0 1 m 0
V mq 1 with w / 0.m

Ž . Ž .EXAMPLE 2. Consider the usual representation of SL 2 in GL 2 . We
2 Ž .have already noted that this makes C into a Chevalley module for SL 2 .

Let

1 0A s1 ž /0 y1

0 1A s .0 ž /1 0

For a given m let us consider the coefficients of x mq 1, x m, and x my 1 in
the above system. The coefficient of x mq 1 must vanish so c is an1

Žeigenvalue and w is an eigenvector of A . Let us assume that c s 1 them 1 1
.proof when c s y1 is similar . Since we can multiply w by any nonzero1

Ž .Telement of C, we can furthermore assume that w s 1, 0 . Let w sm my1
Ž .T mu, ¨ . Setting the coefficient of x equal to zero, we have

c y10 1 0 0 0uq q .ž /ž / ž / ž /¨ž /y1 c 0 0 2 00

1 TŽ .Equating entries, we get c s 0 and ¨ s . Let w s y, z and,0 my22

setting the coefficient of x my 1 equal to zero, we have

u0 y1 0 0 1 0yq q m s .1 ž /ž / ž / ž / ž /ž / zy1 0 0 2 0 02

1This implies that m s , contradicting the fact that m is an integer.2

Therefore we can conclude that the Galois group of the differential
system

x 1Y 9 s Yž /1 yx

Ž .is SL 2 .
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Note that in the above example A is a regular element of a Cartan1
Ž .subalgebra of SL 2 and A is the sum of generators of the root subspaces0

Ž .of SL 2 with respect to this Cartan algebra. We shall now show how one
can generalize this example to deal with any connected semisimple linear
group.

Let GG be a semisimple Lie algebra and let

GG s HH [ GG@ a

where HH is a Cartan subalgebra and GG are the root spaces. Let V be aa

GG-module and let

s

V s V[ b i
is1

where the b are distinct weights of HH on V and the V are thei b i
� 4corresponding weight spaces. Let ¨ , . . . , ¨ be a basis of V , and1 r b1 1w 4 Ž Ž .¨ , . . . , ¨ be a basis of V for i s 2, . . . , s so dim V s r y rr q1 r b b i iy1iy1 i i i

. � 4where r s 0 . We then have that ¨ is a basis of V.0 i 1F iF dimŽV .

LEMMA 3.4. Let a be a root of GG and X g GG , X / 0.a a a

1. If b is a weight of HH on V and ¨ is an element of V thenb b

Ž .X ¨ g V .a b aqb

Ž . � 42. The matrix x of X with respect to ¨ has the property thati j a i
Ž .x s 0 for each l, 0 F l F s, r F i F r , and r F j F r , that is, xi, j l lq1 l lq1 i j

has s blocks of zeroes along the diagonal.

Ž . Ž . w xProof. 1 We note that for any A g HH we have a A X s A, X .a a

Ž . Ž . Ž . Ž . Ž . Ž .Therefore a A X ¨ s AX ¨ y X A ¨ s AX ¨ y b Aa b a b a b a b

Ž . Ž . Ž Ž . Ž .. Ž .X ¨ . This implies that AX ¨ s a A q b A X ¨ .a b a b a b

Ž . Ž . Ž .2 We know by 1 that X ¨ lies in V for every 1 F l F s,a i, j aqb l

r F i, j F r . Since a is a root, V / V . Therefore, the V -compo-l lq1 aqb b bl l l
Ž .nent of X ¨ must be 0.a i, j

We now select two special generators of GG. Let A s ÝX where we0 a

sum over all roots of GG and each X is a nonzero element of GG . Let Va 0
be a G-module. Lemma 3.4 implies that the matrix of A with respect to0

� 4the basis ¨ of V, as before, has s blocks of zeroes along the diagonal.i
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Ž .In gl V

0 . . . 0 a . . . . . . . . . . . . a¡ ¦1, r q1 1, n1
. . . . . . . . .. . . . . . . . .. . . . . . . . .
0 . . . 0 a . . . . . . . . . . . . ar , r q1 r , n1 1 1

a ??? a 0 ??? 0 a ??? ar q1, 1 r q1, r r q1, r q1 r q1, n1 1 1 1 2 1A s .. . . . . . . . .0 . . . . . . . . .. . . . . . . . .
a . . . a 0 . . . 0 a . . . ar , 1 r , r r , r q1 r , n2 2 1 2 2 2

. . . . . . . . .. . . . . . . . .. . . . . . . . .¢ §a . . . . . . . . . . . . . . . . . . . . . 0n , 1

Let A be a regular element of HH such that distinct roots take distinct,1
Ž .non-zero values on A and furthermore distinct weights of HH in V take1

distinct values on A . The set of such elements is Zariski dense in HH. Note1
Ž .that there are d g C such that A s diag d , . . . , d where d s ??? si 1 1 n 1

Ž .d , d s ??? s d , etc. We shall refer to such a pair A , A as ar r q1 r qr 0 11 1 1 2

regular pair of generators of GG. The fact that A and A generate GG is0 1
w xshown in 5, Chap. 8, Sect. 2, Ex. 8, p. 221 .

PROPOSITION 3.5. Let G be a connected semisimple linear algebraic group
and GG its Lie algebra. Then there exists a faithful GG-module V and a regular

Ž . Ž .pair of generators A , A of the Lie algebra GG ; gl V such that0 1

Y 9 s A q A x YŽ .0 1

has Galois group G.

Ž .Proof. Let V be a Chevalley module for G and let A , A be a0 1
regular pair of generators of GG. We will show that there exist non-zero

Ž .t g C such that the Galois group of Y 9 s tA q A x Y is G.0 1
Let A s tA q A x, with t / 0. Lemma 3.3 implies that if the Galois0 1

group of Y 9 s AY is not G, then there exists x s c q c x, c g C, and0 1 i
w s w x m q ??? qw where the w are in V and w / 0, such thatm 0 i m

Ž .w9 y A y cI w s 0. Substituting into this equation we have

0 s w9 y A y cI wŽ .
s mw x my 1 q m y 1 w x my 2 q ??? qwŽ .m my1 1

y tA q xA y c q c x I w x m q ??? qwŽ . Ž .Ž .0 1 0 1 m 0

mq 1 ms c I y A w x q c I y tA w q c I y A w xŽ . Ž . Ž .1 1 m 0 0 m 1 1 my1

my 1q c I y tA w q c I y A w q mw xŽ . Ž .0 0 my1 1 1 my2 m
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...

q c I y tA w q c I y A w q 2w xŽ . Ž .0 0 1 1 1 0 2

q c I y tA w q w .Ž .0 0 0 1

Setting the coefficients of x mq 1, x m, and x my 1 equal to zero, we have

c I y A w s 0 1Ž . Ž .1 1 m

c I y tA w q c I y A w s 0 2Ž . Ž . Ž .0 0 m 1 1 my1

c I y tA w q c I y A w q mw s 0. 3Ž . Ž . Ž .0 0 my1 1 1 my2 m

Ž .Equation 1 implies that w is an eigenvector of A . We will assumem 1
that c s d . Since any constant multiple of w is again a solution of1 1

Ž . Ž .Tw9 y A y cI w s 0, we can assume that w s 1, 0, . . . , 0 . Substitutingm
Ž . Ž .Tthis into Eq. 2 and letting A be as above, w s u , . . . , u , and0 my1 1 n

r s r , we have1

c 0 . . . 0 yta . . . yta¡ ¦0 1, rq1 1n 1¡¦
00 c . . . 0 yta . . . yta0 2, rq1 2, n .. . . . . . . .. . . . . . . .. . . . . . . ..0 0 . . . c yta . . . yta .0 r , rq1 1n ..yta . . . . . . . . . . . . . . . tarq1, 1 rq1, n .

. . . . . . . .. . . . . . . .. . . . . . . .¢§¢ §yta . . . . . . . . . . . . . . . ta 0n1 n , n

u¡ ¦0 . . . 0 0 . . . 0¡ ¦ 1
. . . . . . .. . . . . . .. . . . . . .
0 . . . 0 0 . . . 0 urq s 0.0 . . . 0 d y d . . . 01 rq1 urq1. . . . . . .. . . . . . .. . . . . . .¢ §¢ §0 . . . . . . . . . 0 d y d u1 n n

This yields the system of equations:

c q 0u s 00 1

0 q 0u s 02
. . .. . .. . .

0 q 0u s 0r

yta q d y d u s 0Ž .rq1, 1 1 rq1 rq1
. . .. . .. . .

yta q d y d u s 0.Ž .n , 1 1 n n
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This implies that c s 0. Since each d y d / 0 for i ) r, we also have0 1 i
that

tai1
u si d y d1 i

Ž .for i s r q 1, . . . , n. We now consider Eq. 3

u¡ ¦0 0 . . . 0 yta . . . yta¡ ¦ 11, rq1 1n

u0 0 0 . . . yta . . . yta 22, rq1 2, n
.. . . . . . . .. . . . . . . .. . . . . . .
..0 0 . . . 0 yta . . . ytar , rq1 1n .
.yta . . . . . . . . . . . . . . . ta .rq1, 1 rq1, n .. . . . . . . .. . . . . . . .. . . . . . . .¢ §¢ §yta . . . . . . . . . . . . . . . ta un1 n , n n

0 . . . 0 0 . . . 0¡ ¦ m¡ ¦). . . . . . .. . . . . . 0.. . . . . . .. .0 . . . 0 0 . . . 0 .) .q q s 0.0 . . . 0 d y d . . . 0 .1 rq1 ) .. . . . . . . .. . . . . . . .� 0. . . . . . . .¢ §¢ § )0 . . . . . . . . . 0 d y d1 n 0

The first row of this matrix equation is

yta u y ??? yta u q m s 0.1, rq1 rq1 1n n

Substituting the values for u we havei

a arq1, 1 n12yt a q ??? qa q m s 0.1, rq1 1nž /d y d d y d1 rq1 1 n

If
a arq1, 1 n1

a q ??? qa s 0,1, rq1 1nd y d d y d1 rq1 1 n

then we must have that m s 0. This means that w g V. Since 0 s w9 y
Ž . Ž .A y cI w s cI y tA y A x w, this implies that A and A have a0 1 0 1
common eigenvector and since A and A generate GG, this contradicts the0 1
fact that V is a Chevalley module. Therefore, we have that

a arq1, 1 n1
a q ??? qa / 01, rq1 1, nd y d d y d1 rq1 1 n
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and again we get a contradiction if we select t g C such that

a arq1, 1 n , 12yt a q ??? qa1, rq1 1, nž /d y d d y d1 rq1 1 n

is not an integer. The set of such t in Q, the algebraic closure of the
Žrationals, is a dense open set. For these t the Galois group of Y 9 s tA q0

.A x must be G.1

The above result gives a very simple system that realizes a connected
semisimple group. In order to realize a Levi factor of a connected linear
algebraic group in such a way that we may utilize Propositions 2.5 and 2.11,
we may need a system with polynomial entries of higher degree.

PROPOSITION 3.5. Let G be a connected semisimple linear algebraic group
and GG its Lie algebra. Let n ) 1 be an integer. Then there exists a faithful

Ž .GG-module V and a regular pair of generators A , A of the Lie algebra0 1
Ž .GG ; gl V such that

Y 9 s A q A x n YŽ .0 1

has Galois group G.

Ž .Proof. We again let V be a Chevalley module for G and A , A be a0 1
Ž n.regular pair of generators of GG. If the Galois group of Y 9 s A q A x Y0 1

Ž . nis not G, then Lemma 3.3 implies that there exists c x s c x q ??? qn
w x Ž . m w 4c g C x and W x s w x q ??? qw g V m C x such that0 m 0

w9 y A q A x n y cI w s 0.Ž .0 1

We shall deal with three cases:
n ) m: Setting the coefficients of x mq n, . . . , x n equal to zero we have:

c I y A w s 0Ž .n 1 m

c I y A w q c Iw s 0Ž .n 1 my1 ny1 m

c I y A w q c Iw q c Iw s 0Ž .n 1 my2 ny2 my1 ny1 m
. . .. . .. . .

c I y A w q c Iw q . . . qc Iw s 0Ž .n 1 ny1 2 nymq1 m

c I y A w q c Iw q . . . qc Iw s 0.Ž .n 1 0 ny1 1 nym m

The first equation implies that c is an eigenvalue of A and w is ann 1 n
eigenvector of A . Let W denote the c -eigenspace of A . We have that1 n 1

Ž .the image of c I y A intersects W trivially. Therefore the secondn 1
equation implies that c s 0 and that w g W. Considering eachny1 my1
equation in turn, we have that c s ??? s c s 0 and w , . . . , w gny1 nym m 0
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W. We now set the coefficients of x ny1, . . . , x m equal to zero:

c Iw q . . . qc Iw s 0ny1 0 nymy1 m
. . .. . .. . .

c Iw q . . . qc Iw s 0mq 1 0 1 m

c Iw q . . . q c I y A w s 0.Ž .m 0 0 0 m

Considering all but the last of these equations in order, we see that
c s ??? s c s 0. The final equation then implies that w is annymy1 1 m
eigenvector of A . This implies that A and A have a common eigenvec-0 1 0
tor, a contradiction.

n - m: Setting the coefficients of x mq n, . . . , x m equal to zero, we
have:

c I y A w s 0Ž .n 1 m

c I y A w q c Iw s 0Ž .n 1 my1 ny1 m

c I y A w q c Iw q c Iw s 0Ž .n 1 my2 ny2 my1 ny1 m
. . .. . .. . .

c I y A w q c Iw q . . . q c I y A w s 0.Ž . Ž .n 1 myn ny1 mynq1 0 0 m

The first equation implies that c is an eigenvalue of A and w is ann 1 n
eigenvector of A . Let W denote the c -eigenspace of A . Arguing as1 n 1
above we see that c s ??? s c s 0 and w , . . . , w g W. Using theny1 1 m nym
form of A established in Lemma 3.4, the last equation implies that0
c s 0 as well. Note that unlike the situation in Proposition 3.5, we can0
conclude at this point that w g W. We use here the fact that n ) 1.my 1
Setting the coefficient of x my 1 equal to zero we have that

mw q c I y A w q c I y A w s 0.Ž . Ž .m n 1 myny1 0 0 my1

Since w g W and c s 0, we have that the W-component ofmy 1 0
Ž .c I y A w s A w is 0. Furthermore, the W-component of0 0 my1 0 my1
Ž .c I y A w must also be 0. Therefore this latter equation impliesn 1 myny1
that m s 0. This contradicts the fact that m ) n ) 1.

m s n: Setting the coefficients of x mq n, . . . , x m equal to zero we
have:

c I y A w s 0Ž .n 1 m

c I y A w q c Iw s 0Ž .n 1 my1 ny1 m

c I y A w q c Iw q c Iw s 0Ž .n 1 my2 ny2 my1 ny1 m
. . .. . .. . .

c I y A w q c Iw q . . . q c I y A w s 0.Ž . Ž .n 1 0 ny1 1 0 0 m
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As before we can conclude that c s ??? s c s 0 and w , . . . , w g W.ny1 0 m 0
Setting the coefficient of x my 1 equal to zero we have that

mw q c I y A w s 0.Ž .m 0 0 my1

Since c s 0 and the W-component of A w is 0, we must have that0 0 my1
m s 0. This contradicts the fact that m s n ) 1.

We now turn to the case of a torus. Let T be a torus of dimension r and
Ž . Ž . r rTT its Lie algebra. We identify T C with C* and TT with C .C

� 4PROPOSITION 3.7. Let c , . . . , c ; C be linearly independent o¨er Q.1 r
Ž n n. Ž .For any n G 0, the element c x , . . . , c x g TT realizes T o¨er C x .1 r CŽ x .

Proof. By Proposition 2.10, it is enough to show that if n c x n q1 1
n Ž .. . . qn c x s f 9rf with n g Z and f g C x , then all the n s 0. If suchr r i i

Ž .m ja relation exists, let f s Ł x y d , d g C, m g Z. We then have thatj j j
Ž Ž ..f 9rf s Ý m r x y d . Therefore, each m s 0. Since the c are Q-lin-j j j i

early independent, we have that each n s 0.i

We now combine Propositions 3.6 and 3.7 with Proposition 2.4, Proposi-
tion 2.7, and Corollary 2.9 to yield:

PROPOSITION 3.8. Let G be a connected reductï e linear algebraic group.
Let m ) 1 be an integer. Then there exists a differential equation of the form

Y 9 s A q Bx m Y ,Ž .
with A, B constant matrices, with Galois group G.

For later use, we recall that if G s T = H, where T is a torus and H is
Ž .a semisimple group, then we can select B s D q E where A, D , for

some A, is a regular pair of generators of the Lie algebra of H and E is a
diagonal matrix whose non-zero entries are linearly independent over Q.

Ž .Note that we can select a basis so that both D and E and therefore B
are diagonal.

3.2. Proof of Theorem 1.2

In order to use the lifting results of Kovacic we will need the following
technical lemma.

LEMMA 3.9. Let A, B be s = s square matrices with entries in an algebra-
ically closed field C. Assume that

1. B is diagonal.
Ž s.2. If C is the eigenspace of B corresponding to eigen¨alue 0, then0
Ž s. Ž s.for any w g C the C -component of Aw is zero.0 0

3. A and B share no nonzero eigen¨ectors.
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Then for any integer m ) 0 there exists a nonzero subspace V of C s such that
if c , . . . , c g V andmy 2 0

Y 9 y A q Bx m Y s c x my 2 q ??? qc 4Ž . Ž .my 2 0

Ž Ž .. shas a solution T g C x , then c s ??? s c s 0.my 2 0

Proof. Note that by comparing the orders of poles, one can see that any
Ž . Ž w x. s Ž s. � 4solution Y of 4 must lie in C x . Now assume that C s 0 and let0

s n s Ž .V s C . Let Y s w x q ??? qw , w g C , be a solution of 4 . Comparingn 0 i
coefficients of x mq n we see that Bw s 0 so w s 0. Therefore Y s 0 andn n
so c s ??? s c s 0.my 2 0

Ž s. � 4 Ž s. nNow assume that C / 0 and let V s C . Let Y s w x q0 0 n
s Ž .??? qw , w g C , w / 0 be a solution of 4 . We will deal with three0 i n

cases:
nqm Ž .m ) n: Comparing coefficients of x in 4 we see that Bw s 0 son

Ž s. n Ž .w g C . Comparing coefficients of x in 4 , we see that Aw s yc .n 0 n n
Ž s. Ž s.Since c g C and the C -component of Aw is 0, we have thatn 0 0 n

c s 0 so Aw s 0. Therefore w would be a common eigenvector of An n n
and B, a contradiction.

mq n 2 m Ž .m s n: Comparing coefficients of x s x in 4 we see that
mq ny1 2 my1 Ž .Bw s 0. Similarly, comparing coefficients of x s x in 4 wem

my 1 Ž .see that Bw s 0. Comparing coefficients of x in 4 we see thatmy 1
Ž s. Ž s.Aw q mw s 0. Since w g C and the C -component of Awmy 1 m m 0 0 my1

is 0, we must have m s 0, a contradiction since m ) 0.
m - n: Considering the coefficients of x mq n and x mq ny1 as above,

Ž s. ny1we see that w , w g C . Comparing coefficients of x , we see thatn ny1 0
Ž s.nw q Bw q Aw s 0. Since the C -component of Bwn nymy1 ny1 0 nymy1

and Aw is 0, we have that n s 0, contradicting that n ) m ) 0.ny1

We now give the proof of Theorem 1.2. Let G be a connected linear
algebraic group defined over C with defect d and excess e. Proposition 2.4

Žimplies that we may assume that R is commutative note that the defectu
Ž . .and excess of the groups G and Gr R , R are the same . Furthermore,u u

Ž .Proposition 2.7 implies that we may assume that G s U i T = H where
U is a commutative unipotent group, T is a torus, and H is a semisimple

Ž .group note that e and d are unchanged under id = p . We identify the
Ž . l Ž .Lie algebra TT of T C with C and let c , . . . , c g TT , where the c areC 1 l C i

Ž e e.Q-linearly independent. Proposition 3.7 implies that c x , . . . , c x real-1 l
Ž . Ž .izes T over C x . If A , A is a regular pair of generators of the Lie0 1

Ž . ealgebra HH of H C , then Propositions 3.5 and 3.6 imply that A q x AC 0 1
Ž e e.realize H. Therefore Corollary 2.9 implies that A s c x , . . . , c x q AP 1 l 0

q x eA realizes T = H. We shall now use Propositions 2.6 and 2.11 to1
realize G. Let U s U r1 [ ??? [ U rs be the unipotent radical where each U1 s i
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is an irreducible P s T = H-module and assume that U is the one-dimen-1
sional trivial module. Fix some i and let U s U , r s r , and r s r .i i i
Proposition 2.11 implies that it is sufficient to show that for the above

Ž . r Ž .choice of A , there exists a , . . . , a g UU such that if ¨ 9 y dr A ? ¨P 1 r CŽ x . P
Ž .s a a q ??? qa a has a solution ¨ g C x , for some a g C, then all a1 1 r r j j

must be zero.
Let us first assume that i s 1, i.e., that U is the trivial one-dimensional

module and r s d. In this case dr ' 0. Let g , . . . , g be distinct elements1 d
Ž .of C. If any ¨ g C x satisfies

a a1 d¨ 9 s q ??? q ,
x y g x y g1 d

Ž Ž . Ž ..then clearly each a s 0. Therefore A s 1r x y g , . . . , 1r x y gj 1 1 d
satisfies Proposition 2.11.

We now consider the case where i ) 1. In this case U is a nontrivial
irreducible T = H-module. Since T is diagonalizable and H commutes
with T , we have that H preserves each eigenspace of T. Therefore, each
element of T acts as a constant matrix on U. This furthermore implies that
U is an irreducible H-module. We now consider two subcases.

The first is the case when U is the one-dimensional trivial H-module.
Ž . Ž . Ž e e. ŽIn this case, dr A s dr A s 0 and dr c x , . . . , c x s q c q0 1 1 l 1 1

. e??? qq c x for some integers q , not all zero. Note that our assumptionsl l i
on the c imply that this latter expression is nonzero. Let a s 1, . . . , a si 1 r
x ry1 and note that r y 1 - e. We must show that if

¨ 9 y q c q ??? qq c x e ? ¨ s a q ??? qa x ry1Ž .1 1 l l 1 r

Ž .has a solution ¨ g C x , then all the a s 0. To see this note that aj
solution ¨ cannot have finite poles and so must be a polynomial. Compar-

Ž ry1.ing degrees we get r s 0 so A s 1, . . . , x satisfies Proposition 2.11.i
The second case is the case when the action of H on U is non-trivial. In

Ž . Ž .this case, both dr A and dr A are non-zero and the matrices A s A0 1 0
ŽŽ .. Ž .and B s dr c , . . . , c q dr A satisfy the hypotheses of Lemma 3.9.1 l

Let a s 1, . . . , a s x ry1. Since r y 1 F e y 2, Lemma 3.9 implies that1 r
Ž ry1.A s 1, . . . , x satisfies Proposition 2.11.Ui

In all cases we have introduced no more than d finite simple poles and
polynomials of degree at most e.

Ž .EXAMPLE 3. Consider the group G s C = C i C*, where the action
of G on the first factor of C = C is trivial and the action of c g C* on the
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second factor is given by multiplication by c2. In concrete terms this is the
group:

¡ ¦1 b 0 01

0 1 0 0~ ¥a, b , b g C , a / 0 .1 20 0 a b2� 0¢ §y10 0 0 a

The unipotent radical is C = C and d s 1 and e s 1. We can let A s1
1, A s 1, and A s x. In terms of matrices, we see that2 P

0 1 0 0
0 0 0 0Y 9 s Y
0 0 x 1� 0
0 0 0 yx

realizes this group. The solution of this equation is

log x
1

2 2Y s .x r2 yxe H e� 02yx r2e

Ž .We end this section by showing that the bound of d G q 1 singular
points is sharp. We do not know if the bound on the degrees of the entries
of A is sharp.`

r Ž .PROPOSITION 3.10. If G s C , then d G s r and G cannot be realized
Ž .by a differential equation o¨er C x with fewer than r q 1 singular points.

Ž .Proof. Assume not and let k s C x and K be a Picard]Vessiot
Ž .extension corresponding to the system. We know that K s k G so we can

Ž . Ž .write k G s k t , . . . , t where the action of the Galois group is given by1 r
Ž . Xs t s t q c for s g G and c g C. This implies that each t is lefti i i g i g i

invariant by the Galois group G and so must be in k. Therefore each t isi
Ž .of the form t s Ý c log f q g , where f , g g k. The assumption on thei j i j j i j i

Ž . Žsingularities implies that any element in k G has singularities except for
. � 4poles in some fixed set p , . . . , p , p . Making a change of variables we1 ry1 r

Ž . ry1 Žcan assume that p s `. Therefore we may write log f s Ý n log x yr j is1 i j
.p . This gives us r linear equations in the r y 1 logarithms and so the ti i

Ž .will be algebraically dependent over C x , a contradiction.

3.3. Proof of Theorem 1.1

Theorem 1.1 follows from the following proposition, whose statement
w x w xand proof are due to Kovacic 19 . In 18 he attacked the inverse problem
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Ž .for arbitrary connected not necessarily linear algebraic groups. He showed
that one could reduce this problem to the inverse problem for connected
linear groups and for abelian varieties. Kovacic also showed that if G is an
abelian variety and F is a differential field of finite but nonzero transcen-
dence degree over its algebraically closed field of constants, then there
exists a strongly normal extension of F whose differential Galois group is

Ž . wG strongly normal generalizes the notion of Picard]Vessiot, cf. 15, 17,
x18 ; a strongly normal extension whose Galois group is linear is a

.Picard]Vessiot extension . The following proposition is stated and proved
in such a way that it holds in this generality but so that readers unfamiliar
with strongly normal extensions can restrict themselves to Picard]Vessiot
extensions and follow the proof as well. In general, a connected algebraic
group is realizable over F if there is a strongly normal extension K of F
whose Galois group is isomorphic to the given group.

PROPOSITION 3.11. Let H be a connected C-group such that for any
n Ž .natural number n, H is realizable o¨er C x . Then for any differential field F

of finite but non-zero transcendence degree o¨er C, the group H is realizable
o¨er F.

Proof. Choose any x in F not in C and note that x is transcendental
y1Ž .over C. Let d be the derivation d s dx d, where d is the derivation

Žon F. Then any d-extension K a differential extension of F, with deriva-
.tion d is also a d-extension K. We also have that K is strongly normal if

Ž . Ž .and only if K is, and Gal KrF s Gal KrF . Thus we may replace d by d
Ž .and thereby assume that C x ; F.

Let n be the transcendence degree of F over C. Choose an extension K
Ž . n Ž . Ž .of C x that realizes H K need not contain F . Since C x is cohomo-

Ž . n Ž .Ž .logically trivial, there exists a s a , . . . , a g H such that K s C x a1 n
Ž n. Ž Ž .Ž . Ž ..and ld a g Lie H . Note that trdeg C x a rC x s n dim H.CŽ x .

Ž . nChoose b s b , . . . , b g H such that ld b s ld a and such that the1 n
Ž . Ž .n Žfield of constants of F b is C. Then there exists c in H L where

.L is the field of constants of some universal differential field with
Ž Ž .Ž . Ž .. nb s ac. Since Gal C x a rC x s H , there is a differential isomor-

Ž .Ž . Ž . y1 Ž . Ž .phism, s , of C x a over C x such that c s a s a . So b s s a . Thus
Ž Ž .Ž . Ž ..tr deg C x b rC x s n dim H.

Ž .Evidently, for each i, F b is a strongly normal extension of F. Wei
Ž Ž . .claim that Gal F b rF s H for at least one i. Suppose not. Theni

Ž . Ž .tr deg F b rF F dim H y 1, for all i s 1, . . . , n. So tr deg F b rF Fi
Ž . Ž . Ž Ž .n dim Hyn and tr deg F b rC x Fn dim Hy1 since tr deg FrC x s

. Ž .Ž . Ž . Ž .Ž . Ž .n y 1 . But C x b ; F b and tr deg C x b rC x s n dim H. This
contradiction proves the theorem.

COROLLARY 3.12. Let F be of finite, but non-zero, transcendence degree
o¨er C. Let G be any connected C-group. Then G is realizable o¨er F.
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APPENDIX

Let G be a connected linear algebraic group and let R be its unipotentu
Ž .radical and P a Levi factor. We shall verify that d G is the dimension of

Ž .R r G, R . We shall use the notation of the Introduction and writeu u
Ž . n1 n sR r R , R s U [ ??? [ U where each U is an irreducible P-moduleu u u 1 s i

Ž . Ž .and U is the trivial one-dimensional P-module. Since R , R ; G, R1 u u u
Ž .we have a canonical surjective homomorphism p : R r R , R ªu u u

Ž .R r G, R . We shall show that the kernel of this homomorphism isu u
n2 n s Ž . Ž .U [ ??? [ U and so d G s n s dim R r G, R .2 s 1 u u

Ž . Ž .First note that the kernel of p is G, R r R , R and that this lat-u u u
Ž . Ž .ter group is P, R r R , R . To see this second statement noteu u u

that for g g G we may write g s pu, p g P, u g R . For any w g R ,u u
y 1 y 1 y 1 y 1 y 1 Ž y 1. y 1Ž y 1 y 1.Ž y 1 y 1.gwg w s puwu p w s p uwu p uw u uwu w .

Ž . Ž . Ž . Ž .Therefore G, R r R , R ; P, R r R , R . The reverse inclusion isu u u u u u

clear.
Ž . Ž . n2 n sNext we will show that P, R r R , R s U [ ??? [ U . The groupu u u 2 s

Ž . Ž . n1 n sP, R r R , R is the subgroup of U [ . . . [ U generated by theu u u 1 s

elements p¨py1 y ¨ where p g P, ¨ g U n1 [ ??? [ U n s. Since the action1 s

of P on U via conjugation is trivial, we see that any element p¨py1 y ¨1
as above must lie in U n2 [ ??? [ U n s. Furthermore, note that for each i,2 s

Ž . y1the image of the map P = U ª U given by p, u ¬ pup y u generatesi i

a P-invariant subspace of U . For i G 2, this image is nontrivial so, since Ui i

is an irreducible P-module, we have that the image generates all of U .i
This implies that the elements p¨py1 y ¨ , where p g P, ¨ g U n1 [ ??? [1
U n s, generate all of U n2 [ ??? [ U n s, and completes the proof.s 2 s
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