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Genetic analysis of polymorphisms in biologically
relevant candidate genes in patients with
abdominal aortic aneurysms
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Background: Abdominal aortic aneurysms (AAAs) are characterized by histologic signs of chronic inflammation,
destructive remodeling of extracellular matrix, and depletion of vascular smooth muscle cells. We investigated the process
of extracellular matrix remodeling by performing a genetic association study with polymorphisms in the genes for matrix
metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and structural extracellular matrix mole-
cules in AAA. Our hypothesis was that genetic variations in one or more of these genes contribute to greater or lesser
activity of these gene products, and thereby contribute to susceptibility for developing AAAs.
Methods: DNA samples from 812 unrelated white subject (AAA, n � 387; controls, n � 425) were genotyped for 14
polymorphisms in 13 different candidate genes: MMP1(nt-1607), MMP2(nt-955), MMP3(nt-1612), MMP9(nt-1562),
MMP10(nt�180), MMP12(nt-82), MMP13(nt-77), TIMP1(nt�434), TIMP1(rs2070584), TIMP2(rs2009196),
TIMP3(nt-1296), TGFB1(nt-509), ELN(nt�422), and COL3A1(nt�581). Odds ratios and P values adjusted for gender
and country of origin using logistic regression and stratified by family history of AAA were calculated to test for association
between genotype and disease status. Haplotype analysis was carried out for the two TIMP1 polymorphisms in male subjects.
Results: Analyses with one polymorphism per test without interactions showed an association with the two TIMP1 gene
polymorphisms (nt�434, P � .0047; rs2070584, P � .015) in male subjects without a family history of AAA. The
association remained significant when analyzing TIMP1 haplotypes (�2 P � .014 and empirical P � .009). In addition,
we found a significant interaction between the polymorphism and gender for MMP10 (P � .037) in cases without a family
history of AAA, as well as between the polymorphism and country of origin for ELN (P � .0169) and TIMP3 (P � .0023)
in cases with a family history of AAA.
Conclusions: These findings suggest that genetic variations in TIMP1, TIMP3, MMP10, and ELN genes may contribute
to the pathogenesis of AAAs. Further work is needed to confirm the findings in an independent set of samples and to study
the functional role of these variants in AAA. It is noteworthy that contrary to a previous study, we did not find an
association between the MMP9 (nt-1562) polymorphism and AAA, suggesting genetic heterogeneity of the disease.
( J Vasc Surg 2005;41:1036-42.)

Clinical Relevance: Abdominal aortic aneurysms (AAAs) are an important cardiovascular disease, but the genetic and
environmental risk factors, which contribute to individual’s risk to develop an aneurysm, are poorly understood.
Histologically, AAAs are characterized by signs of chronic inflammation, destructive remodeling of the extracellular
matrix, and depletion of vascular smooth muscle cells. We hypothesized that genes involved in these events could harbor
changes that make individuals more susceptible to developing aneurysms. This study identified significant genetic
associations between DNA sequence changes in tissue inhibitor of metalloproteinase 1 (TIMP1), TIMP3, matrix
metalloproteinase 10 (MMP10) and elastin (ELN) genes, and AAA. The results will require confirmation using an
independent set of samples. After replication it is possible that these sequence changes in combination with other risk
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factors could be used in the future to identify individuals who are at increased risk for developing an AAA.
About 15,000 individuals die every year because of the
rupture of abdominal aortic aneurysms (AAAs) in the
United States.1,2 An estimated 1% to 6% of the population
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in the industrialized countries harbor aneurysms.1 Despite
the major advances in surgical treatment, the survival rate
after a ruptured AAA is low.1 Early diagnosis of AAA is
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therefore important for improving outcome. However, di-
agnosing AAAs is difficult because most AAAs are asymptom-
atic before rupture and ultrasonography screening can only
tell if the person currently has an AAA but is not able to
estimate the risk of developing an AAA later. If it were possible
to predict who is at risk for developing an AAA, many lives and
health care dollars would be saved. Finding a susceptibility
gene for AAA could lead to a simple DNA test to identify
individuals who are at risk for developing an AAA. Those
individuals would then be screened routinely to detect an
AAA before it reaches a critical size and ruptures.

It has been suggested that AAAs are a complex disease
with both genetic and environmental risk factors.3-6 Two
formal statistical analyses, so-called segregation studies,
favored a genetic model in explaining the familial aggrega-
tion of AAA and suggested the presence of a major gene
effect.3,4 Recently, we reported on a collection of 233
families with at least two individuals affected with AAA,7

and identified two genetic susceptibility loci for AAA on
chromosomes 19q13 and 4q31.8

Several distinct processes contribute to the pathologic
changes observed in AAAs. The most apparent of these are
chronic inflammation, destructive remodeling of the extra-
cellular matrix, and depletion of vascular smooth muscle
cells.9 Our hypothesis was that genes involved in these
events could be considered candidate genes for AAA.

The matrix metalloproteinases (MMPs) are a family of
endopeptidases that degrade extracellular matrix pro-
teins.10 The MMPs have been studied extensively and impli-
cated in the pathogenesis of AAA.9,11-20 Many studies have
measured mRNA and protein levels of various MMPs in the
aneurysmal wall and found them to be elevated.11-14,21,see 15

We hypothesized that such elevated levels could be caused
by genetic differences in the promoter sequences of these
genes influencing transcription. Indeed, functional studies
have shown that many of the promoter variants in MMP
genes show differential binding of transcription fac-
tors.22-27 In a previously published preliminary study, we
described a suggestive genetic association between a
5A/6A polymorphism in the MMP3 gene and AAA, and
found that the transcriptionally more active 5A allele was
more common in AAA cases than in controls.15, 27 Other
investigators found an association between a polymorphism
in the MMP9 gene and AAA.16

Tissue inhibitors of metalloproteinases (TIMPs) are
major inhibitors of MMPs.10 Downregulation of these
inhibitors could lead to an increase in the activity of extra-
cellular matrix degrading enzymes such as MMPs, and
therefore could contribute to the pathogenesis of AAAs. In
fact, two studies have shown decreased mRNA levels of
TIMPs in AAA.21,28 Furthermore, the ratio of MMP
mRNA to TIMP mRNA was higher in AAA than in normal
aortas when assayed using competitive reverse-transcriptase
polymerase chain reaction (RT-PCR).17 We analyzed pre-
viously the coding sequences of TIMP1 and TIMP2 genes
in patients with AAA and observed a significant difference
in the frequency of the nt�573 TIMP2 polymorphism

between AAA patients and controls.29
We have now extended our genetic studies to the
polymorphisms in genes for MMP1,23 MMP2,26

MMP3,15 MMP9,25 MMP10, MMP12,24 MMP13,22

TIMP1,29 TIMP2, TIMP3,30 transforming growth factor
�-1 (TGFB1),31 elastin (ELN),32 and type III procollagen
(COL3A1),33 and genotyped 387 AAA patients and 425
controls. Nine of the 14 polymorphisms under study were
known to be functional based on previous studies.

METHODS

Study population. AAA was defined as an infrarenal
aortic diameter of 3.0 cm or greater.34 Altogether, 387
unrelated AAA cases (male subjects: n � 316, 81.7%), 180
Belgian admitted to the University Hospital of Liège in
Liège and 207 Canadian admitted to Dalhousie University
Hospital in Halifax, were included in the study. Seventeen
patients were admitted for emergency repair of ruptured
AAA, and 335 patients were admitted for elective surgery.
Thirty-five patients were diagnosed with AAA using ultra-
sonography and did not undergo surgery because of old age
or because the size of the aneurysm was relatively small.
Altogether, 152 cases (39.3%) had a family history of AAA.
All patients were white.

Control samples were obtained from 425 white sub-
jects (male subjects: n � 217, 51.1%), 269 Belgian and 156
Canadian, and included spouses of AAA patients (n � 113)
and individuals admitted to the same hospitals as the AAA
patients for reasons other than AAA (n � 312).

The study was approved by the Institutional Review
Boards of Wayne State University School of Medicine and
of each patient recruiting center. All subjects gave informed
written consent to participate in the study.

Genotyping. We isolated genomic DNA from pe-
ripheral blood using a Puregene kit (Gentra Systems,
Minneapolis, Minn). Before performing genotyping us-
ing PCR-based methods, a whole-genome amplification
using primer extension preamplification (PEP) was car-
ried out to increase the amount of template DNA avail-
able for genotyping and to ensure that limited resources
were used cost effectively.35 The PEP products were
diluted 100-fold and used for genotyping.

The PCR conditions and methods used to assay the 14
polymorphisms (Table I) are summarized in Table II, online
only. Five microliters of 100-fold diluted PEP products were
used for each genotyping reaction. The genotyping assays for
MMP1,23 MMP3,15 MMP9,25 MMP12,24 MMP13,22

TIMP1(�434),29 TIMP3,30 TGFB1,31 ELN,32 and
COL3A133 were carried out as described previously. Allele-
specific PCR was used to genotype MMP226 polymorphism
(Table II, online only). Three polymorphisms, dbSNP
rs486055 in MMP10 (MMP10 nt�180), rs2070584 in
TIMP1, and rs2009196 in TIMP2, were identified from the
National Center for Biotechnology Information LocusLink
database (www.ncbi.nih.gov/LocusLink). Two polymor-
phisms, rs2070584 and rs2009196, were genotyped by 5’-
nuclease assay (TaqMan Assay; Applied Biosystems, Foster
City, Calif). Allele-specific TaqMan minor groove binder

(MGB) probes and PCR primers were designed by using

http://www.ncbi.nih.gov/LocusLink
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Primer Express version 1.5 software (Applied Biosystems).
Reactions were carried out in 5-�L volumes in an ABI PRISM
Sequence Detection System 7900 (SDS; Applied Biosystems).
The results were analyzed using SDS software version 1.7
(Applied Biosystems).

Power calculations. Power calculations were per-
formed using the Genetic Power Calculator (http://statgen.
iop.kcl.ac.uk/gpc/cc2.html).36 To compute the power, we
assumed that the polymorphism and the disease locus were in
complete linkage disequilibrium with the same allele frequen-
cies, ie, the polymorphism was the disease locus. The popula-
tion prevalence of AAA was taken as 5%.1 Power was com-
puted for different values of several different model parameters
including mode of inheritance, allele frequency, and genotype
relative risk.36

Statistical analysis. The two populations (Belgians
and Canadians) were tested separately to determine
whether the genotypes were in Hardy-Weinberg equilib-
rium by comparing the observed genotype frequencies in
AAA cases and controls with their expected frequencies at
equilibrium based on the �2 test. Odds ratios (ORs) and P
values adjusted for gender and country of origin using
logistic regression and stratified by family history of AAA
were calculated to test the association between genotype

Table I. Polymorphisms used in this study

Gene* LocusID†
Chromosomal
localization Polymorphism

Nucleotid
position‡

MMP1 4312 11q22.3 G/GG nt�1607

MMP2 4313 16q21 A/C nt�955

MMP3 4314 11q22.3 5A/6A nt�1612

MMP9 4318 20q11.2-13 C/T nt�1562

MMP10 4319 11q22.3 A/G nt�180

MMP12 4321 11q22.3 A/G nt�82

MMP13 4322 11q22.3 A/G nt�77

TIMP1 7076 Xp11.3-11.23 C/T nt�434
TIMP1 7076 Xp11.3-11.23 T/C rs2070584

TIMP2 7077 17q25 G/C rs2009196

TIMP3 7078 22q12.1-q13.2 T/C nt�1296
TGFB1 7040 19q13.2 T/C nt�509

ELN 2006 7q11.23 G/A nt�422
COL3A1 1281 2q31 T/C nt�581

*Gene symbols used are HGNC-approved symbols obtained from www.ge
†LocusID was obtained from www.ncbi.nih.gov/LocusLink.
‡Minus indicates promoter region; plus indicates coding region.
§Polymorphisms located within introns.
and AAA. Next, possible interactions between the polymor-
phism, country of origin, and gender were included in the
model. We modified the input files for the HAPFREQS
program37 to estimate haplotype frequencies via the expecta-
tion-maximization algorithm for two X-linked polymor-
phisms (TIMP1 polymorphisms [nt�434 and rs2070584]).
In this case, female subjects who are heterozygous and have
two different alleles at both polymorphisms have ambiguous
phase, whereas all homozygous female subjects and all male
subjects (who have only one X chromosome and therefore
only one TIMP1 allele) have known haplotypes. Haplotype
frequencies were estimated separately for cases (stratified by
family history of AAA) and controls, and then compared
using the �2 test. Empirical P values were also obtained
using a permutation test, as implemented in the CLUMP
program.38 Linkage disequilibrium (which means nonran-
dom segregation of polymorphisms in a population) be-
tween the two TIMP1 gene polymorphisms used in the
study was estimated by computing the squared correlation
coefficient (r2).39

RESULTS

The observed genotype counts and their frequencies
are shown in Table III, online only. All results, except
TIMP3 in the Belgian cases, were in Hardy-Weinberg

enBank
accession
number

Function based on previous
studies Reference

023338 Different transcriptional
activity

Rutter et al23

6098 Different transcriptional
activity

Price et al26

4732 Different transcriptional
activity

Ye et al27

5070 Different transcriptional
activity

Zhang et al25

7820 Lysine to arginine www.ncbi.nlm.nih.gov/
SNP/snp_ref.cgi?rs �
486055

5346 Different transcriptional
activity

Jormsjo et al24

1640 Different transcriptional
activity

Yoon et al22

1139 No amino acid change Wang et al29

_011568 Not known www.ncbi.nlm.nih.gov/
SNP/snp_ref.cgi?rs �
2070584

_010641 Not known www.ncbi.nlm.nih.gov/
SNP/snp_ref.cgi?rs �
2009196

023282 Not known Beranek et al30

2812 Different transcriptional
activity

Grainger et al31

16983 Glycine to serine Tromp et al32

4420 No amino acid change Tromp et al33

.ac.uk/nomenclature.
e
G

AF
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J0

J0

X0

U2
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D1
§ NT

§ NT
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M
X1
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equilibrium. The minor allele frequencies varied from 0.12
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to 0.46 in the study population (Table III, online only).
The allele frequencies of both Belgian and Canadian con-
trols in our study were remarkably similar to those reported
in previous studies or public databases, suggesting that the
control groups used in our study were representative of the
general population (Table IV, online only).

Our power calculations indicated that in general, the
power was high (�90%) for common alleles (frequency
�0.2). For alleles with lower frequency, a higher genetic
relative risk was required to maintain high power. The
dominant model had the greatest power of the modes of
inheritance that were tested (not shown).

ORs and P values adjusted for gender and country of
origin using logistic regression were calculated (Table III,
online only). This analysis was performed for all polymor-
phisms except TIMP1 (nt�434) and TIMP1 (rs2070584),
which are X-linked, and which genotypes were analyzed

Table V. Odds ratios and P values for tests of association
of origin using logistic regression, and stratified by family h

Gene and position of
polymorphism Genotype OR

MMP1 GG/GG 1.0
nt�1607 GG/G 1.0

MMP2 A/C 1.1
nt�955 C/C 1.3

MMP3 5A/6A 0.7
nt�1612 6A/6A 0.5

MMP9 C/T 1.2
nt�1562 T/T 1.6

MMP10 A/G 0.7
nt�180 G/G 0.6

MMP12 A/G 0.8
nt�82 G/G 0.7

MMP13 A/G 0.8
nt�77 G/G 0.8

TIMP1 male C 1.0
nt�434*

TIMP1 female C/T 1.2
nt�434* T/T 1.5

TIMP1 male G 1.0
rs2070584*

TIMP1 female G/T 1.3
rs2070584* T/T 1.6

TIMP2 C/G 1.0
rs2009196 C/C 1.0

TIMP3 C/T 0.9
nt�1296 C/C 0.8

TGFB1 C/T 0.9
nt�509 C/C 0.8

ELN A/G 1.3
nt�422 G/G 1.9

COL3A1 C/T 1.3
nt�581 C/C 1.8

AAA, Abdominal aortic aneurysm; OR, odds ratio.
*Because the TIMP1 gene is located on the X chromosome, genotyping re
country of origin only. There were 115 male subjects with a family history of
a family history of AAA, and 34 female subjects without a family history of
†Reference group is the homozygous genotype for which OR is not listed.
separately for each gender. None of the polymorphisms
were associated significantly with risk of AAA (Table III,
online only).

We stratified the AAA cases based on family history of
AAA and repeated the analyses. Interestingly, the two poly-
morphisms located in TIMP1 were significantly associated
with AAA in male cases without family history (n � 235) of
AAA (nt�434, P � .0047; rs2070584, P � .015; Table V).

We then proceeded to carry out a haplotype analysis
using the results of the two polymorphisms in the TIMP1
gene (Table VI). The TT haplotype was more common in
the AAA cases without family history than in controls,
whereas the CG haplotype was more common in controls
than AAA cases without family history (TT: AAA 60% vs
control, 47%; CG: AAA 37% vs control, 51%). There was a
significant difference between the AAA cases without family
history and controls (�2 P � .014, and empirical P � .009).
CT and TG haplotypes were rare in both AAA cases and

een genotype and AAA adjusted for gender and country
ry of AAA

family history
(n � 152)

Without family history
(n � 235)

P OR† P

.85 0.82 .48
0.91

.37 1.15 .29
1.32

.025 0.90 .43
0.82

.25 0.97 .89
0.94

.22 1.15 .43
1.32

.61 0.95 .82
0.91

.48 1.06 .64
1.13

.99 0.55 .0047

.37 0.73 .25
0.54

.90 0.59 .015

.31 0.77 .32
0.59

.86 1.14 .36
1.31

.68 1.01 .97
1.01

.60 0.95 .68
0.89

.030 0.89 .34
0.79

.066 1.07 .63
1.15

ere analyzed separately for male and female subjects and were adjusted for
201 male subjects without a family history of AAA, 37 female subjects with
betw
isto

With

†

6
3
4
0
1
0
7
1
9
2
9
9
9
0
0

6
9
3

0
9
3
6
4
8
2
4
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3
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AAA,
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controls. The two polymorphisms in the TIMP1 gene were
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linked together tightly using r2 as a measure of linkage
disequilibrium (Belgians, r2 � .892; Canadians, r2 � .778;
total, r2 � .827).

The final analyses examined possible interactions between
the polymorphisms, country of origin, and gender. We found
a significant interaction between the polymorphism and gen-
der for MMP10 (P � .037) in cases without a family history of
AAA. For male subjects, the adjusted ORs were 1.97 and 1.40
for the GG and AG genotypes compared with the AA geno-
type, respectively, and for female subjects, the adjusted ORs
were .377 and .614 for the GG and AG genotypes compared
with the AA genotype, respectively. We also found a signifi-
cant interaction between the polymorphism and country of
origin for ELN (P � .0169) in cases with a family history of
AAA. For Belgians, the adjusted ORs were .933 and .966 for
the GG and AG genotypes compared with the AA genotype,
respectively, and for Canadians, the adjusted ORs were 4.15
and 2.04 for the GG and AG genotypes compared with the
AA genotype, respectively. Finally, there was a significant
interaction between the polymorphism and country of origin
for TIMP3 (P � .0023) in cases with a family history. For the
Belgians, the adjusted ORs were 2.19 and 1.48 for the CC and
CT genotypes compared with the TT genotype, respectively,
and for the Canadians, the adjusted ORs were .31 and .56 for
the CC and CT genotypes compared with the TT genotype,
respectively.

DISCUSSION

We selected polymorphisms from genes encoding for
proteins important as structural molecules of the aortic wall
or involved in the process of extracellular matrix remodel-
ing. Many of these proteins had been implicated in the
pathogenesis of AAA previously based on protein and
mRNA expression.9,11-20

Few genetic association studies between polymor-
phisms in MMPs and AAA have been reported.15,16,19

Jones et al16 found an association between AAA and
MMP9 (nt-1562) polymorphism in the population of New
Zealand, and we previously reported a borderline associa-
tion between AAA and MMP3 (nt-1612) polymorphism.15

Our current study was designed to replicate these previous

Table VI. Haplotypes for the TIMP1 gene in male subjec

Haplotype
With family

history*

nt�434 rs2070584 n %

T T 48 44
C T 5 5
T G 3 3
C G 53 49

AAA, Abdominal aortic aneurysm.
*�2 P � .016 and empirical P � .053 for comparison between AAA cases w
†�2 P � .014 and empirical P � .0089 for comparison between AAA cases
‡�2 P � .039 and empirical P � .036 for comparison between all AAA case
observations, and it was therefore somewhat surprising that
we did not find an association between these polymor-
phisms and AAA. There was no significant difference be-
tween the allele frequencies of the MMP9 polymorphism in
controls in the study by Jones et al16 and our study, and
both studies had about the same number of cases and
controls. One possible explanation of the differences in the
results may be ethnic variations, although as pointed out in
a recent review article by Colhoun et al,40 other explana-
tions also exist.

Our results showed a significant difference in the fre-
quencies of both two TIMP1 polymorphisms and haplo-
types between AAA cases without a family history and
controls in male subjects. This observation supports the
hypothesis that genetic variations responsible for down-
regulation of TIMPs contribute to the pathogenesis of
AAAs.5,6,14,17 These two TIMP1 polymorphisms, which
have haplotypes that were found to be associated with AAA,
are unlikely to be the causative changes because one of
them is at the third position of a codon and does not change
the amino acid and the other lies within an intron. It is
therefore likely that this haplotype is in linkage disequilib-
rium with other functional sequence changes that contrib-
ute to the disease.

Intriguing findings were the significant interactions
between the MMP10 (nt�180) polymorphism, gender,
and AAA; between the ELN (nt�422) polymorphism,
country of origin, and AAA; and between the TIMP3
(nt-1296) polymorphism, country of origin, and AAA. The
biological significance of these statistical interactions has
yet to be defined.

Because the power of detecting an association was high,
we can exclude the polymorphisms, which did not show an
association with AAA in the study, as important for AAA. A
limitation of our study was that we analyzed only one
polymorphism in most of the genes and could have missed
an association that was to a specific polymorphism not
studied here. It should also be emphasized that the results
obtained here require confirmation in an independent set
of samples before the information can be considered defin-
itive and useful for estimating an individual’s risk for devel-

AAA

Control
out family

history† Total‡

% n % n %

60 166 54 97 47
2 9 3 4 2
1 5 2 0 0

37 125 41 107 51

mily history and controls.
ut family history and controls.
controls.
ts

With

n

118
4
2

72

ith fa
oping an AAA.
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In conclusion, we investigated 14 polymorphisms in 13
biologically relevant candidate genes for AAA and found
evidence for an association between TIMP1 polymor-
phisms and AAA in male subjects without a family history of
AAA. In addition, we identified significant interactions
between MMP10 (nt�180) polymorphism and gender as
well as between TIMP3 (nt-1296) polymorphism or ELN
(nt�422) polymorphism and country of origin and AAA. If
the results are confirmed in another study, further work will
be needed to explain the functional role of these variants in
the pathogenesis of AAA.

We thank Dr. Jane M. Olson for her invaluable input in
the design of the study before she died.
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Table II, online only. Genotyping assays used in the study

Gene Polymorphism Primers Primer sequence

Annealing
temperature

(° C)

Product
size

(base
pair)

Method
of

detection
Restriction

enzyme

Fragment
sizes after
digestion

(base
pair)

MMP1 nt�1607 MMP1-1 5-GTTATGCCACTTAGATGAGG-3 56 148/149 PAGE N/A N/A
MMP1-2 5-TTCCTCCCCTTATGGATTCC-3

MMP2* nt�955 MMP2-7 5-TTTAGGGGCTGAAGTCAGG-3 57 (first
PCR)

399 ASP N/A N/A

MMP2-8 5-AAGAAGCCAGCCAAAACC-3
MMP2-

PROM3
5-AGGAAAGGATTCAAGAGTGAGT-3

MMP2-31 5-ACCAGTGCCATGGCAGTT-3 60 (second
A-specific
PCR)

120

MMP2-32 5-ACCAGTGCCATGGCAGTG-3 63 (second
C-specific
PCR)

120

MMP3 nt�1612 MMP3-3N 5-ACTAGTATTCTATGGTTCTCC-3 57 124/125 PAGE N/A N/A
MMP3-5N 5-GCCACCACTCTGTTCTCC-3

MMP9 nt�1562 MMP9-1562F 5-GCCTGGCACATAGTAGGCCC-3 68 435 RE Nla III C: 435,
T: 244,
191

MMP9-1562R 5-CTTCCTAGCCAGCCGGCATC-3
MMP10 nt�180† MMP10-3 5-CAACCTCGAAAAGGATGTG-3 56 170 RE Mbo II A: 170,

G:
137,
33

MMP10-4 5-AGTGACCAACGTCAGGAAC-3
MMP12 nt�82 MMP12-F82 5-GTCAAGGGATGATATCAGCT-3 50 137 RE Pvu I A: 137,

G:
116,
21

MMP12-
RC82

5-CTTCTAAACGGATCAATTCAG-3

MMP13 nt�77 MMP13-1N 5-GATACGTTCTTACAGAAGGC-3 56 445 RE Bsr I A: 445,
G:
248,
197

MMP13-2 5-GACAAATCATCTTCATCACC-3
TIMP1 nt�434‡ TIMP1-01 5-TGGGGACACCAGAAGTCAAC-3 55 (first

PCR)
653

TIMP1-02 5-TAAGCTCAGGCTGTTCCAGG-3
TIMP1-03 5-AGGCTGTTCCAGGGAGTCGC-3 55 (second

PCR)
339 RE Nru I T:3 39,

C:
320,
19

TIMP1-SP5 5-CCGCCATGGAGAGTGTCTGC-3
rs2070584 Forward

primer
5-

CTATTTGCCCAGGGCTTTCTAGTTA-3
60 91 TaqMan N/A N/A

Reserve primer 5-GCTGGCAAGATGTGTGAATGG-3
FAM probe 5-FAM-AATCACTGCCTTACTGGAA-

MGB-3
VIC probe 5-VIC-AATCACTGCCTTACTGGAA-

MGB-3
TIMP2 rs2009196 Forward

primer
5-

GGCCTATTGGAAACAAGCTTTTCTG-3
60 142 TaqMan N/A N/A

Reserve primer 5-
TCAGGAAAGATGAGAAGAGCTGGAT-3

FAM probe 5-FAM-CCCCCAAACCTAAATA-
MGB-3

VIC probe 5-VIC-CCCCCAAAGCTAAATA-MGB-
3
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Table II, online only. Continued

Gene Polymorphism Primers Primer sequence

Annealing
temperature

(° C)

Product
size

(base
pair)

Method
of

detection
Restriction

enzyme

Fragment
sizes after
digestion

(base
pair)

TIMP3 nt�1296 TIMP3-11A 5-CAAAGCAGAATCAAGATGTCAAT-
3

58 488 RE Alu I T: 204,
128,
69, 55,
32, C:
204,
160,
69, 55

TIMP3-11B 5-CTGGGTTAAGCAACACAAAGC-3
TGFB1 nt�509 TGFB1.31 5-CAGACTCTAGAGACTGTCAG-3 60 265 RE Bsu36 I T: 265,

C:
196,
69

TGFB1.32 5-GTCACCAGAGAAAGAGGAC-3
ELN nt�422 ELN-29 5-GCTTTCCCGGCTTTGGTGTCG-3 59 183 RE Bfa I G: 183,

A: 125,
58

ELN-30 5-CCTGCAGAGCCGAGCAGACAA-3
COL3A1 nt�581 IVS32F 5-CAACACTCCTGGAAAGTAATCG-3 56 326 RE Hae III T: 257,

69, C:
224,
69, 33

IVS32R 5-AGTGCAGGACTGTCCCATATG-3

FAM, 6-Carboxyfluorescein;VIC, ●●●; MGB, minor groove binder; PAGE, polyacrylamide gel electrophoresis; ASP, allele-specific PCR; N/A, not applicable;
RE, restriction endonuclease digestion of PCR products.
*MMP2: The first PCR was performed with primers MMP2-7 and MMP2-8. The second A-specific PCR was performed with primers MMP2-PROM3 and
MMP2-31, and the second C-specific PCR was performed with primers MMP2-PROM3 and MMP2-32.
†dbSNP rs486055.
‡TIMP1(nt�434): The first PCR was performed with primers TIMP1-01 and TIMP1-02. The second PCR was performed with primers TIMP1-03 and
TIMP1-SP5.
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Table III, online only. Genotype and allele counts and frequencies in cases and controls with odds ratios and P values
for tests of association between genotype and AAA adjusted for gender and country of origin using logistic regression

Gene and position
of polymorphism Genotype/allele†

AAA Control

Belgian Canadian Belgian Canadian

n % n % n % n % OR‡ P

MMP1 GG/GG 34 19 33 16 51 19 21 14 1.11 .64
Nt�1607 GG/G 87 49 113 55 140 52 85 56 1.06

G/G 58 32 60 29 77 29 46 30
Allele GG 155 43 179 43 242 45 127 42

MMP2 A/A 13 7 38 19 37 14 31 20 .14
nt�955 A/C 78 44 91 44 115 44 67 43 1.18

C/C 86 49 76 37 112 42 58 37 1.40
Allele A 104 29 167 41 189 36 129 41

MMP3 5A/5A 56 31 53 26 71 28 38 24 .087
nt�1612 5A/6A 87 48 109 54 132 51 74 47 0.82

6A/6A 37 21 41 20 54 21 44 28 0.68
Allele 6A 161 45 191 47 240 47 162 52

MMP9 C/C 131 74 140 72 204 76 107 74 .57
nt�1562 C/T 43 24 49 25 61 23 35 24 1.10

T/T 3 2 5 3 4 1 3 2 1.20
Allele T 49 14 59 15 69 13 41 14

MMP10 A/A 3 2 3 1 11 4 2 1 .81
nt�180 A/G 49 27 59 29 74 28 38 24 0.96

G/G 128 71 143 70 184 68 117 75 0.93
Allele A 55 15 65 16 96 18 42 13

MMP12 A/A 136 78 161 79 204 77 121 78 .77
nt�82 A/G 35 20 38 19 60 23 33 21 0.95

G/G 3 2 5 2 1 0 2 1 0.91
Allele G 41 12 48 12 62 12 37 12

MMP13 A/A 92 52 94 47 136 51 80 52 .99
nt�77 A/G 69 39 81 41 103 39 58 37 0.99

G/G 16 9 25 13 26 10 17 11 0.99
Allele G 101 29 131 33 155 29 92 30

TIMP1 male T 83 53 91 60 86 48 12 38 .063
nt�434* C 74 47 61 40 92 52 20 63 0.70

TIMP1 female T/T 6 33 18 36 29 34 42 34 0.96 .91
nt�434* C/T 9 50 21 42 38 45 60 49 0.98

C/C 3 17 11 22 18 21 21 17
Allele T 21 58 57 57 96 56 144 59

TIMP1 male T 84 54 92 61 89 49 14 44 .116
rs2070584* G 72 46 59 39 91 51 18 56 0.97

TIMP1 female T/T 7 37 20 39 30 35 42 34 1.03 .93
rs2070584* G/T 9 47 19 37 39 42 60 49 1.02

G/G 3 16 12 24 17 20 21 17
Allele T 23 61 59 58 99 58 144 59

TIMP2 C/C 6 3 16 8 13 5 18 12 1.18 .53
rs2009196 C/G 62 35 86 43 73 27 61 39 1.08

G/G 108 61 100 50 183 68 77 49
Allele C 74 21 118 29 99 18 97 31

TIMP3 T/T 87 49 108 53 140 53 66 42 .95
nt�1296 C/T 61 34 74 36 102 38 67 43 0.99

C/C 29 16 21 10 24 9 23 15 0.99
Allele C 119 34 116 29 150 28 112 36
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Table III, online only. Continued

Gene and position
of polymorphism Genotype/allele†

AAA Control

Belgian Canadian Belgian Canadian

n % n % n % n % OR‡ P

TGFB1 T/T 16 9 19 9 26 10 16 10 .66
nt�509 C/T 84 47 93 45 115 43 70 45 0.95

C/C 79 44 93 45 127 47 71 45 0.90
Allele T 116 32 131 32 167 31 102 32

ELN A/A 40 23 35 17 41 15 31 20 .62
nt�422 A/G 77 44 87 42 118 44 85 54 1.05

G/G 60 34 83 40 107 40 40 26 1.11
Allele A 157 44 157 38 200 38 147 47

COL3A1 T/T 83 46 105 51 125 47 84 54 .22
nt�581 C/T 80 45 88 43 122 46 63 40 1.17

C/C 16 9 12 6 19 7 9 6 1.36
Allele C 112 31 112 27 160 30 81 26

AAA, Abdominal aortic aneurysm; OR, odds ratio.
*Because the TIMP1 gene is located on the X chromosome, genotyping results were analyzed separately for male and female subjects and were adjusted for
country of origin only.
†The genotype counts and frequencies of the minor alleles are shown.
‡The reference group is the homozygous genotype for which OR is not listed.
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Table IV, online only. Comparison of minor allele frequencies between controls in the current study and other studies

Other studies

Gene
Minor
allele

Belgian
controls

(n � 269)

Canadian
controls

(n � 156) Frequency n CI Reference

MMP1 GG 0.45 0.42 0.50 100 0.43-0.57 Rutter et al 23

MMP2 A 0.36 0.41 0.40 32 0.26-0.54 Price et al 26

MMP3 6A 0.47 0.52 0.49 266 0.45-0.53 Ye et al 28

MMP9 T 0.13 0.14 0.18 192 0.14-0.22 Zhang et al 25

MMP10 A 0.18 0.13 0.04 36 0.01-0.12 www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?rs � 486055

MMP12 G 0.12 0.12 0.16 367 0.13-0.19 Jormsjo et al 24

MMP13 G 0.29 0.30 0.30 987 0.28-0.32 Yoon et al 22

TIMP1 male T 0.49 0.31 0.48 29 0.35-0.62 Wang et al 29

nt�434 female T 0.45 0.43 0.27 22 0.15-0.43 Wang et al 29

TIMP1 male T 0.50 0.45 0.48* 1186* 0.46-0.50* www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?rs � 2070584

rs2070584
female

T 0.45 0.43

TIMP2 C 0.18 0.31 0.27 304 0.24-0.31 www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?rs � 2009196

TIMP3 C 0.28 0.36 0.39 95 0.32-0.46 Beranek et al 30

TGFB1 T 0.31 0.32 0.33 246 0.29-0.37 Grainger et al 31

ELN A 0.38 0.47 0.42 64 0.34-0.51 Tromp et al 32

COL3A1 C 0.30 0.26 0.29 50 0.20-0.39 Tromp et al 33

CI, 95% confidence interval.
*For TIMP1 rs 2070284 polymorphism, the minor allele frequency, number of individuals studied, and 95% CI included both male and female subjects.

http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%20486055
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%20486055
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%202070584
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%202070584
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%202009196
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs%20=%202009196
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