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a b s t r a c t

We study variants of theα-synchronizer by Awerbuch (1985)within a distributedmessage
passing system with probabilistic message loss. The purpose of a synchronizer is to
maintain a virtual (lock-step) round structure, which simplifies the design of higher-
level distributed algorithms. The underlying idea of an α-synchronizer is to let processes
continuously exchange round numbers and to allow a process to proceed to the next round
only after it has witnessed that all processes have already started the current round.

In thiswork,we study the performance of several synchronizers in an environmentwith
probabilistic message loss. In particular, we analyze how different strategies of forgetting
affect the round durations. The synchronizer variants considered differ in the times when
processes discard part of their accumulated knowledge during the execution. Possible
applications can be found, e.g., in sensor fusion, where sensor data become outdated and
thus invalid after a certain amount of time.

For all synchronizer variants considered,we develop correspondingMarkov chainmod-
els and quantify the performance degradation using both analytic approaches and Monte-
Carlo simulations. Our results allow to explicitly calculate the asymptotic behavior of the
round durations: While in systems with very reliable communication the effect of forget-
ting is negligible, the effect is more profound in systems with less reliable communica-
tion. Our study thus provides computationally efficient bounds on the performance of the
(non-forgetting)α-synchronizer and allows to quantitatively assess the effect accumulated
knowledge has on the performance.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is well-known that reliable communication can be simulated in asynchronous distributed systems with unreliable
links using retransmissions [1], even if up to a minority of the nodes may crash, provided links are fair-lossy, i.e., re-sending
a message infinitely often causes it to eventually be received. Once reliable links are available, a synchronizer like the α-
synchronizer, introduced by Awerbuch [2] as the first in a series of synchronizer algorithms for asynchronous failure-free
message-passing systems, can be used to simulate a synchronous system atop of it. The computation of a synchronous
system evolves in a sequence of rounds, conceptually executed in lock-step, where all nodes (called processes in the sequel)

✩ This research was partially supported by the Austrian Science Fund (FWF), grants NFN RiSE (S11405), PSRTS (P20529), and SIC (P26436).
∗ Corresponding author. Tel.: +43 15880118266.

E-mail addresses: fuegger@ecs.tuwien.ac.at (M. Függer), koe@ecs.tuwien.ac.at (A. Kößler), thomas.nowak@ens.fr (T. Nowak), s@ecs.tuwien.ac.at
(U. Schmid), mzeiner@ecs.tuwien.ac.at (M. Zeiner).

http://dx.doi.org/10.1016/j.peva.2015.08.002
0166-5316/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82671344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.peva.2015.08.002
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2015.08.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fuegger@ecs.tuwien.ac.at
mailto:koe@ecs.tuwien.ac.at
mailto:thomas.nowak@ens.fr
mailto:s@ecs.tuwien.ac.at
mailto:mzeiner@ecs.tuwien.ac.at
http://dx.doi.org/10.1016/j.peva.2015.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. Függer et al. / Performance Evaluation 93 (2015) 1–16

Fig. 1. Messages to process 2 and its resulting round switches without forgetting (black) and with forgetting (gray).

exchange messages that are processed at the end of the round. Obviously, the performance of the simulated synchronous
distributed system is entirely determined by the achieved round durations.

The α-synchronizer’s main idea is to let a process continuously broadcast its current round number together with the
corresponding application data. The next round is started when a process has received the messages of its current round
from all other processes; it also delivers the data received in the current round to the application layer on that occasion.
Note that the original α-synchronizer by Awerbuch uses additional acknowledgment messages, which we omit. Rather, a
message with round number R is treated as an implicit acknowledge for messages with round numbers less than R in our
setting.

A crucial characteristics of a synchronizer algorithm is its precision, i.e., the maximum number of rounds any two
processes can be apart at the same time during any of its executions. The α-synchronizer, and the variants considered in this
paper, guarantee a precision equal to 1, provided every process can communicate with every other process. Note that fault-
tolerant synchronizers, like the ones described in [3] (which can tolerate even Byzantine, i.e., arbitrarily, faulty processes),
usually guarantee a precision >1 only. A synchronizer with precision 1 constructs rounds, which have a duration equal to
the (maximum) end-to-end delay of the messages exchanged over the (simulated) reliable link during the round.

Unfortunately, just knowing that re-sending a message infinitely often causes it to be received eventually over a fair-
lossy link does not guarantee a bounded end-to-end delay of a simulated reliable link. Stronger models for the underlying
unreliable links are hence required in order to assess the round durations and thus the performance of the simulated
synchronous system.

In this paper,1 we consider a system of N non-faulty processes that are pairwise connected by unreliable links that may
lose messages probabilistically. Time elapses in discrete steps, simultaneously at all processes in the system. At every time
step, every process sends a message to every other process. With some fixed probability p, such a message is successfully
delivered before the next step; with probability 1− p, it is lost.2

Fig. 1 shows the beginning of an execution of theα-synchronizer executed in a systemwith three processes in our setting.
For better clarity, only messages to process 2 are shown. Initially, at time 0, all processes start round 1. By time 4, process 2
has received round 1 messages from all processes and thus proceeds to round 2.

It is apparent, though, that the age of the round 1 data handed over to the application layer when switching to round 2
differs significantly per process: while its own data and the data from process 3 is of age 1 (discrete time units), data from
process 1 is of age 3. If this data is time-variant, e.g., the position of a moving object, this may cause problems: Different
processes may receive different data from the same sensor in the same round. For example, time-dependent sensor data
are often represented by an interval (i.e., a value ± some accuracy) that deteriorates with time [5]. A proper deterioration
accounts for themaximumchange of the position since the actual sampling of the data.Whenmerging intervals representing
the same data, from different sources, e.g. using (fault-tolerant) interval-intersection functions like [6,7], relying on old data
obviously yields less accurate results.

A strategy to counteract this problem is to let the synchronizer actively ‘‘forget’’ too old data, by just discarding it. As an
extreme, consider a variant of the synchronizer that discards data at each (discrete) time step, resulting in all the data to be
of age 1 at each round switch. Clearly, however, this results in a performance loss, i.e., longer round durations: The resulting
execution is depicted in gray in Fig. 1, with the difference that process 2 then switches to round 2 only at time 5. Possible
applications of active forgetting could be found in sensor fusion [5], where time-dependent sensor data that is sampled
periodically may also be (detectably) erroneous, e.g., due to measurement or communication errors: If the probability 1− p
of getting erroneous data is large, it may be beneficial in terms of the accuracy of the fused data to discard data received
from some other sensor long ago.
Detailed contributions. In this paper, we consider four variants of the α-synchronizer that differ in the conditions of when
to forget memory content, that is, reset the variables representing the knowledge to their initial values. While three of the
variants, namely the variant I that never forgets ( = the original α-synchronizer), the variant II in which a process forgets

1 A preliminary version of this paper appeared in [4].
2 We thus assume the existence of an underlying mechanism that prevents the processes’ discrete time from diverging, i.e., a synchronous system

underneath.
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when itmakes a round switch, and the variant IV that forgets at each time step, can be implemented in a distributedmanner,
the variant III which forgets when the last process makes a round switch serves as a theoretical bound of low computational
complexity for variants I and II only.

Thanks to the independence of the message loss at every link at every time step, the behavior of our synchronizers is
governed by relatively simple stochastic processes, namely, finiteMarkov chains. Owing to the considerable amount of state
information gathered during a round in some variants (in particular, in variant I), however, the state space may be huge. For
a system of N processes and probability p of successful transmission, we define the expected round duration of process i as
λi(N, p) = E limt→∞ t/Ri(t), where Ri(t) is the round number of process i at time t . Since the synchronization algorithm
guarantees precision 1 regardless of the forgetting strategy, it immediately follows that λi(N, p) = λj(N, p) for any two
processes i and j. We will henceforth refer to this common value as λ(N, p). To distinguish the four proposed conditions on
forgetting, I–IV, we write λI, λII, λIII, and λIV, respectively. We will see that indeed λI 6 λII 6 λIII 6 λIV.

By giving explicit formulas and simulation results for the performance as well as simulation results for the average age of
data when a process makes a round switch, our results can be used to quantify the tradeoff between the different strategies.

For cases III and IV, we obtain two computationally feasible formulas where λIII and λIV can be computed with O(N2) and
O(N) arithmetic operations, respectively:

Theorem 1. The expected round duration when forgetting at every global round switch reads

λIII(N, p) =
N(N−1)

i=1


N(N − 1)

i


(−1)i

(1− p)i − 1
,

and when always forgetting,

λIV(N, p) =
N
i=1


N
i


(−1)i

1
(1− pN−1)i − 1

.

For the remaining cases I and II, we state a finite Markov chain that captures the synchronizer dynamics. Unfortunately,
explicit calculation of λI and λII from the chain’s steady state is prohibitively costly in terms of time and space complexity.

However, the Markovian representation allows us to derive two asymptotic results for synchronizer systems with near
to no message loss (p→ 1) and very high loss (p→ 0):

Theorem 2. For all four conditions on forgetting, d
dpλ(N, p)


p=1 = −N(N − 1).

Theorem 3. For p→ 0,

1. λI(N, p), λII(N, p) and λIII(N, p) are in Θ

p−1


, and

2. λIV(N, p) is in Θ

p−(N−1)


.

Fig. 6 shows, with probability p varying in the unit interval [0, 1], the calculated exact value of the expected round
duration for conditions on forgetting I–IV in a system with N = 3 processes. The figure shows the gap between the cases I,
II, and III, having an asymptotic growth in Θ(1/p) when p approaches 0, and the case IV, which has an asymptotic growth
in Θ(1/pN−1). Furthermore, all the plots have the same slope in the point p = 1: the efficiently computable cases III and IV
thus provide good approximations for the hard to calculate cases I and II in a system with reliable communication.

In settings with unreliable communication, for which the approximation result on the derivative of λ at p = 1 is not
discriminating, cases I and II can be approximated by analytic lower bounds (cf. Section 5.4), and bounded from above by
the λ for case III (Theorem 1). A comparison between the lower bounds and the actual results is also contained in Fig. 6.

As the calculations of the exact values for the expected round duration using theMarkov chainmodel are computationally
very expensive, we used Monte-Carlo simulations to compare them with our bounds. To this end, we simulated systems
with 2 6 N 6 12 processes for 100000 steps and averaged over 30 runs. The simulations were done using three different
values for p. Figs. 2 and 3 show box-and-whisker-plots of the simulated average round durations with the calculated lower
bound and with case III as upper bound. The average round durations for case I (where processes never forget) is shown in
Fig. 2(a)–(c) and the case II (where processes forget after a local round switch) is shown in Fig. 3(a)–(c). Fig. 4(a)–(c) depicts
the calculated expected round duration for case IV, i.e., the synchronizer variant that forgets at each time step. Note that it
is significantly higher than all the other variants when message loss is considerable.

Fig. 5 shows box-and-whisker-plots of the Monte-Carlo simulation results of the average age of data when a process
performs a round switch, for cases I and II, both of which can be implemented in a distributed manner. Case IV, for which
the same holds, by definition has an average age of data of 1. One immediately observes that while the average age of both
cases I and II is significantly higher than in case IV, forgetting at each processes’ round switch only has a marginal effect on
the average age compared to not forgetting at all.
Related work. In distributed computing, notions of a process’ knowledge have been explicitly introduced before, see
e.g., Halpern [8] and Fagin et al. [9]: A process knows a fact if in all locally indistinguishable scenarios the fact also holds.
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(a) p = 0.5. (b) p = 0.9. (c) p = 0.99.

Fig. 2. Monte-Carlo simulation results for case I (represented as boxplots) compared against the calculated lower bound ( ) and the calculated expected
round duration of case III serving as an upper bound ( ).

(a) p = 0.5. (b) p = 0.9. (c) p = 0.99.

Fig. 3. Monte-Carlo simulation results for case II (represented as boxplots) compared against the calculated lower bound ( ) and the calculated expected
round duration of case III serving as an upper bound ( ).

(a) p = 0.5. (b) p = 0.9. (c) p = 0.99.

Fig. 4. Calculated expected round duration for case IV.

(a) p = 0.5. (b) p = 0.9. (c) p = 0.99.

Fig. 5. Boxplots of the average age Monte-Carlo simulation results for case I (blue, upper) and II (green, lower).

Studying the evolution of knowledge has been a promising tool in analyzing agreement protocols, whose purpose is to
establish common knowledge on an agreed upon value. The approach was further generalized by Fagin and Halpern [10] to
include probabilistic facts by assigning probabilities to scenarios. Our notion of knowledge, however, is different from these
notions of knowledge, particularly since it is tailored to the synchronizer problem statement we study in this paper, and we
allow processes to actively forget.
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Fig. 6. Expected round durations for N = 3 and lower bounds for cases I and II.

Mahesh and Varghese [11] have used forgetting in a destructive way to model crashed processes without permanent
storage after rejoining the network. By contrast, we allow processes to explicitly trigger forgetting themselves, using
it in a constructive algorithmic manner. The closest relation to our active forgetting strategies bears the work on self-
stabilizing distributed systems, see e.g. [12]. Since self-stabilizing protocols are required to recover from arbitrary initial
states, processes typically discard status flags and message in-buffers after certain time-outs to prevent deadlocks. While
these protocols also use forgetting in a constructive way, purpose and policies differ: Self-stabilizing protocols clean up
memory with periods depending on system parameters such as message delay bounds to prevent deadlocks. By contrast,
we assume no external corruption of a process i’s state, including its round counter Ri. Processes may thus rely on their local
states, and forgetting strategies only influence timing performance rather than correctness.

Synchronizer performance has been studied under different environmental assumptions in the past. Bertsekas and
Tsitsiklis [13] proved performance bounds for the case of constant processing times and exponentially distributed message
delays. In their work, the authors assumed reliable links without message loss. Rajsbaum [14] presented bounds on the
synchronizer performance for the case of exponentially distributed processing times and transmission delays, still assuming
reliable messages. Rajsbaum and Sidi [15] calculated the exact synchronizer performance in the case of exponentially
distributed processing times and negligible transmission delays.

In contrast to the above work, we assume bounded message delays. Varying delays between sending and successfully
receiving amessage are due tomessage loss and repeated retransmission. The performance of the α-synchronizer in certain
lossy environments has already been considered by Nowak et al. [16]. The authors calculated the expected round duration
of a retransmission-based synchronizer when a single transmission arrives with constant probability p, subject to the
constraint that amessage that was retransmitted at leastM times is guaranteed to arrive. [16] did not investigate the impact
of forgetting on the synchronizer’s performance, and assumedM to be finite, which we do not.

For the computationally difficult forgetting variants I and II, we present finite Markov chains that allow to determine
average round durations λI and λII from the steady states. Hereby, the dominant computational complexity is due to
calculating the steady states. Instead of exactly determining those, there exist also techniques that allow to just sample
the steady state: However, while standard simulation techniques allow to sample the Markov chain’s state at some time
t = T , there is no guarantee that these samples resemble the distribution of the steady state for t →∞. By contrast, Propp
andWilson [17] proposed backward coupling techniques to obtain exact steady state samples for Markov chains. In the case
of monotonic Markov chains, these techniques are computationally efficient. Unfortunately, while our infinite state Markov
chains are monotonic, our reduced finite chains are not. Their method thus requires to explore the complete finite state
space, rendering this method computationally infeasible.

2. Systemmodel and algorithm

We consider a fully-connected message passing system with processes 1, 2, . . . ,N each of which runs a synchronizer
algorithm. Processes take steps simultaneously at all integral times t > 0, but messagesmay be lost. Messages that do arrive
have a transmission delay of 1, i.e., a message sent at time t arrives at time t + 1, or not at all. A step consists in (a) receiving
messages from other processes, (b) performing local computations, and (c) broadcasting a message to the other processes.

The synchronizer variants have two local variables, specified for every process i at time t: The local round number Ri(t)
and the knowledge vector


Ki,1(t), Ki,2(t), . . . , Ki,N(t)


. Processes continuously broadcast their local round number. The

knowledge vector contains information on other processes’ local round numbers, accumulated via received messages. A
process increments its local round number, and thereby starts the next round, after it has gained knowledge that all other
processes have already started the current round. The round increment rule assures a precision of 1, i.e., |Ri(t)− Rj(t)| 6 1
for all t . We write RG(t) = mini Ri(t) and call it the global round number at time t .
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Fig. 7. An execution of the synchronizer.

After updating its local round number, a process may forget, i.e., lose its knowledge about other processes’ local round
numbers. We are considering four different conditions COND, describing the times when process i forgets:

I. Never, i.e., COND := false.
II. At every local round switch, i.e., COND :=


Ri(t) = Ri(t − 1)+ 1


.

III. At every global round switch, i.e., COND :=

RG(t) = RG(t − 1)+ 1


.

IV. Always, i.e., COND := true.

Formally, we write Mi,j(t) = 0 if process j’s message to process i sent at time t was lost, and Mi,j(t) = 1 if it arrives (at
time t + 1). Process i’s computation in its step at time t consists of the following:

1. Update knowledge according to receivedmessages: Ki,j(t)← Rj(t−1) ifMi,j(t−1) = 1, and Ki,j(t)← Ki,j(t−1) otherwise.
2. Increment round number if possible: Ri(t)← Ri(t − 1)+ 1 if Ki,j(t) > Ri(t − 1) for all j, and Ri(t)← Ri(t − 1) otherwise.
3. Conditional forget: Ki,j(t)← 0 if COND is true.

Initially, Ki,j(0) = 0, and no messages are received at time 0. In particular, Ri(0) = 1. In the remainder of this paper, when
we refer to Ki,j(t), we mean its value after step 3.

We assume that the Mi,j(t) are pairwise independent random variables with

P

Mi,j(t) = 1


= p if i ≠ j and P


Mi,i(t) = 1


= 1. (1)

Call the parameter p the probability of successful transmission.
Fig. 7 shows part of an execution for condition I on forgetting. Times are labeled t0 to t10. Processes 1 and 3 start their

local round R at time t4 while process 2 has already started its local round R at time t3. The arrows in the figure indicate
the time until the first successful reception of a message sent in round R: The tail of the arrow is located at time t a process
i starts round R and thus broadcasts R for the first time. The head of the arrow marks the smallest time after t at which a
process j receives a message from i. Messages from processes to themselves are always received at the next time step and
thus are not explicitly shown in the figure. For example, processes 1 and 3 start round R at time t4 sending R for the first time.
While process 2 receives the message from 3 in the next step, it needs an overall amount of 4 time steps and consecutive
retransmissions to receive a message from process 1 at time t8.

3. Performance measure

Clearly, the extent of forgetting influences the expected round duration λ. For case IV, where processes always forget, and
for case III, where processes forget on global round switches, λ can be calculated efficiently with explicit formulas stated in
Theorem 1. For the remaining cases, I and II, we could compute λ(N, p) bymeans of a steady state analysis of a finiteMarkov
chain, with time complexity exponential in N . We show how to do this in Section 5.2. TheMarkov chain model is also useful
to study the behavior of λ, for all four conditions on forgetting, when p→ 1 and p→ 0. We do this in Sections 5.6 and 5.7,
respectively. We derive explicit lower bounds on λI and λII in Section 5.4.

We will repeatedly use the dual of Ri(t), namely Ti(r), the time process i switches to round r . Further set TG(r) =
maxi Ti(r). The next proposition allows to calculate λ dually by:

Proposition 1. For all four conditions on forgetting, λ = E limt→∞ t/Ri(t) = E limr→∞ Ti(r)/r.

Proof. From the equality Ti(r) = inf{t | Ri(t) = r} we obtain Ri(Ti(r)) = r . It follows that (Ti(r)/r)r>1 = (Ti(r)/
Ri(Ti(r)))r>1. Since the latter is a subsequence of (t/Ri(t))t>0, both converge to the same value, which is equal to λ by
definition. �

It is not hard to show, by comparing Ti(r) for every fixed choice of the sequence M = (M(t))t>0, that

λI 6 λII 6 λIII 6 λIV. (2)
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4. Explicit formulas for λIII and λIV

From the expected maximum of geometrically distributed random variables (Proposition 2), we derive explicit formulas
for λIII and λIV in Theorem 1. For that purpose, define

Λ(M, p) = E max
16i6M

Gi, (3)

where the Gi are pairwise independent geometrically distributed random variables with parameter p. We will make use of
the following well-known proposition [18,19], whose proof we state for sake of completeness.

Proposition 2. Λ(M, p) =
M

i=1

M
i


(−1)i 1

(1−p)i−1
.

Proof. Let pk = P

max16i6M Gi 6 k


. Then pk = (1− (1− p)k)M . Thus, with q = 1− p and the binomial formula,

Λ(M, p) =

k>1

k(pk − pk−1) =

k>1

k
M
i=1


M
i


(−1)iqi(k−1)


qi − 1


,

changing the order of summation and shifting the summation index yields

=

M
i=1


M
i


(−1)i


qi − 1


k>0

(k+ 1)qik

=

M
i=1


M
i


(−1)i

1
qi − 1

 . �

Consider case III, i.e., processes forget on global round switches. Initially, all processes i are in round Ri(0) = 1, and their
knowledge is Ki,j(0) = 0. Observe that processes switch to round 2 as messages are received. At time t at which the last
process switches to round 2, it holds that (i) all processes i have Ri(t) = 2, (ii) all processes have knowledge Ki,j(t) > 1 for
all j before forgetting, and (iii) all processes forget, since a global round switch occurred, ultimately resulting in Ki,j(t) = 0.
The only difference between the initial state and the state at time t is the constant round number offset Ri(t) = Ri(0)+1. By
repeated application of the above arguments we obtain that the system is reset to the initial state modulo a constant offset
in round numbers Ri, each time a global round switch occurs. This allows to determine the expected average round duration
by analyzing the expected time until the first round switch.

We will now prove the explicit formulas for the expected round duration in cases III and IV. We will use these formulas
in particular in Section 5.7 when studying the behavior of λ for p→ 0.

Proof of Theorem 1 λIII(N, p). Recall that the events that i receives a message from j at time t are pairwise independent for
all i, j and times t . Thus the smallest time t , at which i receives a message from j is geometrically distributed with parameter
p. Noting that the first global round switch occurs at time TG(2) = maxi(Ti(2)), we obtain

λ(N, p) = E lim
r→∞

TG(r)/r = ETG(2) = E max
16i6N(N−1)

Gi

where the Gi are geometrically distributed with parameter p. The theorem now follows from Proposition 2. �

Proof of Theorem 1 λIV(N, p). Observe that the first global round switch occurs at the minimum time t by which each of
the processes has received messages from all processes simultaneously; and that Ri(t) = 2 as well as Ki,j(t) = 0 holds
at this time. Again the state at time t is identical to the initial state with all round numbers incremented by 1. Repeated
application of the above arguments allows to calculate the expected round duration by λ(N, p) = ETG(2). The first time
i receives a message from all processes simultaneously is geometrically distributed with parameter pN−1. Since we have
N nodes, we take the maximum over N such geometrically distributed random variables. The theorem now follows from
Proposition 2. �

5. Markovian analysis

Determining λI and λII, the expected round duration in the cases that processes never forget or forget at local round
switches, is more involved. In the following, we will calculate λ by modeling the system as a finite Markov chain and
analyzing its steady state distribution. Additionally, we derive the asymptotic behaviors for p → 1 and for p → 0 from
the Markov chain model. As the computation of the chain’s steady state distribution is computationally very expensive, we
will give analytical lower bounds in Section 5.4.

Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j(t) = Ki,j(t) for i ≠ j. It is easy to see that A(t) is a Markov
chain, i.e., the distribution of A(t + 1) depends only on A(t). Since both Ri(t) and Ki,j(t) are unbounded, the state space of
Markov chain A(t) is infinite.
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We therefore introduce the sequence of normalized states a(t), defined by A(t)−mink Ak,k(t) cropping negative entries
to−1, i.e., ai,j(t) = max


Ai,j(t)−mink Ak,k(t), − 1


. Normalized states belong to the finite set {−1, 0, 1}N×N .

The sequence of normalized states a(t) is a Markov chain: The probability that A(t + 1) = Y , given that A(t) = X , is
equal to the probability that A(t + 1) = Y + c , given that A(t) = X + c for any constant c. We may thus restrict ourselves
without loss of generality to considering the system being in state X −mini(Xi,i) at time t . Further, by the algorithm and the
fact that the precision is 1, cropping the entries of X−mini(Xi,i) at−1 does not lead to different transition probabilities: the
probability that A(t+1) = Y given that A(t) = X −mini(Xi,i) is equal to the probability that A(t+1) = Y given that A(t) is
X −mini(Xi,i) cropped at−1. It follows that a(t) is a finite Markov chain, for the algorithm with any of the four conditions
on forgetting.

We will repeatedly need to distinguish whether there is a global round switch at time t or not. Let â(t) be the Markov
chain obtained from a(t) by adding to each state a an additional flag Step such that Step(â(t)) = 1 if there is a global round
switch at time t , and 0 otherwise.

5.1. Markov chains for conditions I and II

In the following we characterize the normalized states of the Markov chain a(t), and their transition probability for the
case that processes never forgets (I) and the case that processes forget at local round switches (II).

For any two states a and a′with nonzero transition probability from a to a′, we introduce the notation of relevantmessages:
Given that a(t) = a, the message from i to j is positively relevant if it is required to be received for a(t + 1) = a′ to hold. It
is negatively relevant if it is required not to be received for a(t + 1) = a′ to hold. Denote by prel(a′ | a) resp. nrel(a′ | a) the
number of positively resp. negatively relevant messages for the transition from a to a′.

5.1.1. Condition I
In case the algorithm never forgets, the Markov chain a(t) can attain exactly those matrices a ∈ {−1, 0, 1}N×N that fulfill

either properties M1–(M4) or (N1)–(N3):

(M1) minj(aj,j) = 0.
(M2) For all i, if ai,i = 1, then minj(ai,j) > 0.
(M3) For all i, if ai,i = 0, then minj(ai,j) = −1.
(M4) For all i, j, ai,j 6 aj,j.

Hereby, (M1) is due to normalization. Letting r be the smallest local round number of a process at time t , (M2) requires a
process i that is ahead, i.e. has Ri(t) = r + 1, having received round r messages from all processes by time t . Property (M3)
requires a process i not being ahead, i.e. Ri(t) = r , not having received round r messages from all processes by time t . (M4)
ensures that no process i has received a message from a process j with round number larger than j’s local round number.

(N1) For all j, aj,j = 0.
(N2) There is exactly one i with ai,j = 0 for all j. For this i, aj,i = −1 for all j ≠ i.
(N3) is equivalent to (M4).

Properties (N1)–(N3) describe states that occur only at times at which a global round switch was performed: Assume that,
at time t , all processes j ≠ i are ahead, and process i receives all messages from all the other processes at time t + 1. Then i
performs a local round switch at time t + 1, and thus a global round switch occurs at time t + 1. The resulting state a(t + 1)
fulfills (N1)–(N3) and is unstable as i can perform a local round switch at time t + 2 without receiving any messages from
other processes.

Define TranI(a′ | a) to be 1 if a transition from state a to state a′ is possible in one time step and 0 otherwise, i.e.,
TranI(a′ | a) equals 1 if and only if, for all i, a′i,i > ai,i and for all i ≠ j, a′i,j = ai,j ∨ a′i,j = aj,j. For the number of positively and
negatively relevant messages it holds that,

prel(a′ | a) = |{(i, j), i ≠ j : a′i,j > ai,j}| and

nrel(a′ | a) = |{(i, j), i ≠ j : a′i,j = ai,j ∧ ai,j < aj,j}|.

Further let P ′(a′ | a) = pprel(a
′
|a)
· (1− p)nrel(a

′
|a) be the probability that every positively relevant message arrives and every

negatively relevantmessage is dropped. A transition from state a to a′ occurswith probability P ′(a′ | a), specified as follows:

• If (M1)–(M4) holds for a′ and maxi,j(a′i,j) 6 0, then

P(a′ | a) = TranI(a′ | a) · P ′(a′ | a)+ TranI(a′ + 1 | a) · P ′(a′ + 1 | a);

note that the first term is the probability of a transition from a to a′ without a global round switch, the second term is the
probability of a transition from a to a′ with a global round switch: in the latter case we have to increment every entry of
a′ by 1 and then to apply our transition rules.
• If (M1)–(M4) holds for a′ and maxi,j(a′i,j) = 1, then P(a′ | a) = TranI(a′ | a) · P ′(a′ | a).
• If (N1)–(N3) holds for a′, then P(a′ | a) = TranI(a′ + 1 | a) · P ′(a′ + 1 | a).
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5.1.2. Condition II
To analyze the case of the algorithm that forgets every local round switch we introduce a variant of the algorithm with

forgetting condition II: we merge the conditional forgetting in step 3 of the algorithm with the update of the knowledge in
step 1, into a step 1′. Process i’s computation in its step at time t now consists of the following steps:

1′. Bounded knowledge update according to received messages: Ki,j(t) ← min(Ri(t − 1), Rj(t − 1)) if Mi,j(t − 1) = 1, and
Ki,j(t)← Ki,j(t − 1) otherwise.

2. Increment round number if possible: Ri(t)← Ri(t − 1)+ 1 if Ki,j(t) > Ri(t − 1) for all j, and Ri(t)← Ri(t − 1) otherwise.

Hereby, a process interprets any round number it receives as at most its own round number, i.e., forgets whether it was
strictly larger. For example, a process i with Ri = 0 only interprets all received messages as 0 messages, whereas a process
with Ri = 1 updates its knowledge according to the content of the message. Observe that both, the original algorithm and
its variant, are equivalent in the sense that they perform local round switches at the same times, given that the received
messages are the same: For both algorithms it holds that, after a process performed a local round switch, the elements of its
knowledge vector are strictly less than its round number. To perform a local round switch a process has to receive the same
set of messages in both algorithms.

Considering the variant of the algorithm, the resultingMarkov chain a(t) can attain exactly those states a ∈ {−1, 0, 1}N×N
with (M1)–(M3) and (M4′), where

(M4′) ai,j 6 min(ai,i, aj,j).

Define TranII(a′ | a) to be 1 if, for all i, a′i,i > ai,i and for all i ≠ j, a′i,j = ai,j ∨ a′i,j = min(ai,i, aj,j); and 0 otherwise.
The number of positively relevant messages is the same as in the case where processes never forget, and for the negatively
relevant messages we obtain

nrel(a′ | a) = |{(i, j), i ≠ j : a′i,j = ai,j ∧ ai,j < min(ai,i, aj,j)}|.

Letting P ′ be as in Section 5.1.1, a transition from state a to a′ occurs with the following probability P(a′ | a):

• If maxi,j(a′i,j) 6 0, then

P(a′ | a) = TranII(a′ | a) · P ′(a′ | a)+ TranII(a′ + 1 | a) · P ′(a′ + 1 | a);

• If maxi,j(a′i,j) = 1, then P(a′ | a) = TranII(a′ | a) · P ′(a′ | a).

5.2. Using the steady state to calculate λ

Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and has a unique steady state distribution. It is
not difficult to see that â(t) is good for all four conditions on forgetting.

A standard method, given the chain’s transition matrix P , to compute the steady state distribution π is by matrix
inversion:

π = e ·

P (n→1)

− I(n→0)−1 (4)

where M(k→x) denotes matrixM with its kth column set to x, I is the identity matrix, and e = (1, 1, . . . , 1).
We will next show how to compute λ from the steady state distribution π .

Theorem 4. Let X(r) be good Markov chain with state space X and steady state distribution π . Further, let g : X → R be a
function such that


X∈X |g(X)| ·π(X) <∞. Then, limr→∞

1
r

r
k=1 g


X(k)


=


X∈X g(X) ·π(X) with probability 1 for every
initial distribution.

Proof ([20, Theorem 17.0.1(i)]). �

We call a processes i a 1-process in state â if âi,i = 1. Likewise, we call i a 0-process in â if âi,i = 0. Denote by #−1(â)
the number of −1 entries in rows of matrix â that correspond to 0-processes in â (note that a row for a 1-process cannot
contain−1).

Theorem 5. For all conditions of forgetting, Ri(t)/t → 1/λ with probability 1 as t →∞. Furthermore,

λ = 1/


â

p#−1(â) · π(â)


= 1/


a

p#−1(a) · π(a)


. (5)

Proof. It holds that RG(t) =
t

k=1 Step

â(k)


. By Theorem 4, with probability 1 it holds that:

lim
t→∞

Ri(t)/t = lim
t→∞

RG(t)/t = lim
t→∞

1
t

t
k=1

Step(â(k)) =

â

Step(â) · π(â).
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Since â(t) is a finiteMarkov chain, the last sum is finite. It follows that Ri(t)/t converges to a constant, say c , with probability
1. Thus t/Ri(t) converges to 1/c with probability 1. By definition of λ, it follows that λ = 1/c. This shows the first part of
the theorem.

The second part of the theorem is proved by the following calculation:

1/λ = E lim
t→∞

Ri(t)/t = E lim
t→∞

RG(t)/t = E lim
t→∞

1
t

t
k=1

Step

â(k)


=


â

lim
t→∞

1
t

t
k=1

P

â(k− 1) = â


· E

Step(â(k)) | â(k− 1) = â


=


â

p#−1(â) lim
t→∞

1
t

t
k=1

P

â(k− 1) = â


=


â

p#−1(â) · π(â).

From π(â) = π((a, 0))+ π((a, 1)) = π(a) the theorem follows. �

5.3. Computational complexity of the Markov approach

Space and time complexity of calculating λ for cases I and II depend on the number of states a(t) of the respective finite
Markov chain. A simple strategy to reduce the number of states is to consider only thosewith sorted diagonal, i.e., processes 1
to some k are 1-processes, and processes k+ 1 to n are 0-processes. We, however, show that asymptotically this reduction
does not lead to improved computational complexities.

Proposition 3. For the variant of the case II synchronizer introduced in Section 5.1.2, the number of states a(t) is

A :=
N−1
i=0


N
i


2i(i−1) 2N−1

− 1
N−i

.

Using the equivalence of states with the same sorted diagonal, the number of states a(t) reduces to

B :=
N−1
i=0

2i(i−1) 2N−1
− 1

N−i
,

where

A ∼ B ∼ 2N(N−1).

Calculating λII thus is in O(23N(N−1)).

Proof. We first show that the number of states is A. For a fixed number i of 1s in the diagonal we have
N
i


possibilities to

place them there. The knowledge one process has of another one, i.e., i(i− 1) entries, can be 1 or 0. For each 0-process each
entry can be 0 and−1 but not all channels can be set to 0.

For proving the asymptotics note that, by only taking the summand for i = 0,

A >

2N−1
− 1

N
∼ 2N(N−1).

Moreover,

A 6

N−1
i=0


N
i


2i(i−1)2(N−1)N

= 2N(N−1)


1+

N−1
i=1


N
i


2−i(N−i)


.

The sum on the right-hand side converges to 0, which completes the proof for A.
If we use stateswith sorted diagonal, clearlywe obtain B from A be just omitting the binomial coefficient. The asymptotics

can be shown analogous to A. �

Proposition 4. For the non-forgetting case I synchronizer, the number of states a(t) is

C :=
N−1
i=0


N
i


2i(i−1) 3i

· 2N−1−i
− 2iN−i

+ N2(N−2)(N−1).

Using the equivalence of states with the same sorted diagonal, the number of states a(t) reduces to

D :=
N−1
i=0

2i(i−1) 3i
· 2N−1−i

− 2iN−i
+ 2(N−2)(N−1),
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where

C ∼ D ∼ 2N(N−1).

Calculating λI thus is in O(23N(N−1)).

Proof. We start with determining C . The sum counts those matrices that fulfill properties (M1)–(M4) (see Section 5.1.1):
For placing i ones in the diagonal we have

N
i


possibilities. The entries corresponding to the i(i − 1) channels between 1-

processes can be 0 or 1. For a 0-process there are 3 possible values: 0, 1, and−1 for the channels incoming from a 1-process,
and 2 possible values, 0 and−1, for the channels incoming from a 0-process. Since there must be at least one entry equal to
−1 we have to subtract all combinations without a−1, i.e., 2i many.

On the other hand, the remaining term N2(N−2)(N−1) counts those matrices that fulfill properties (N1)–(N3): We have N
possibilities to choose the process i from condition (N2). The entries in the corresponding row and column are fixed, and all
the other entries equals−1 or 0.

The term for i = 0 equals

2N−1
− 1

N thus

C >

2N−1
− 1

N
∼ 2N(N−1).

Moreover,

C 6

N−1
i=0


N
i


2i(i−1) 3i

· 2N−1−iN−i
+ N2(N−2)(N−1)

= 2N(N−1)


N−1
i=0


N
i


2−2i(N−i)3i(N−i)

+ N2−2(N−1)


= 2N(N−1)


1+

N−1
i=1


N
i


3
4

i(N−i)

+ N2−2(N−1)


.

The sum on the right-hand side converges to 0, which completes the proof for C . If we use states with sorted diagonal,
clearly we obtain D from C be just omitting the binomial coefficient in the sum and the factor N in the remaining term. The
asymptotics can be shown analogous to C . �

5.4. Lower Bounds on λI and λII

As has been shown, determining the expected round duration for cases I and II by means of the Markov chain a(t) is
computationally expensive, even for small system sizes N . We can, however, efficiently compute lower and upper bounds
on λ(N, p): For both, cases I and II, λIII(N, p) is an upper bound. We will next derive computationally feasible lower bounds
forλI(N, p) andλII(N, p). Bear inmind that in case IIwewill always refer to the simplified variant of our algorithm introduced
in Section 5.1.2.

From Proposition 1 and Theorem 4 follows, by considering the conditional expectation of TG:

λ =
1̂

a
Step(â) · π(â)


â

Step(â) · π(â) · E(TG(2) | â(0) = â),

whereE(TG(2) | â(0) = â) is the expected time until the first global round switch, given that the system initially is in state â.
It holds that E(TG(2) | â(0) = â) = Λ(#−1(â), p), where Λ is the expectation of the maximum of geometrically distributed
random variables as defined in (3).

Denote by #0(â) the number of non-diagonal entries in â equal to 0. Let [n] denote the set of states â with #−1(â) = n
and Step(â) = 1, and denote by


[n] the union of all [n] for 0 6 n 6 N(N − 1). Further let α :=


â Step(â) · π(â) be the

steady-state-probability that the system is in one of the states in which a global round switch was performed, and denote
with π̂(n) = α−1


â∈[n] π(â) the conditioned steady-state-probability thatwe are in one of the stateswith exactly n entries

equal to−1.
Our first observation is that π̂(n) = 0 for n < 2N − 2 in case II and π̂(n) = 0 for n < N − 1 in case I: If a global

round switch occurs at time t , then there exists one process – say j – which does a local round switch at time t (in fact, all
0-processes after time (t − 1) do so). This process must have sent 0-messages to all the other processes. In terms of the
matrices this means that âi,j = 0 for all i ≠ j. Due to the global round switch, the entries of the matrix are reduced by−1,
resulting in âi,j = −1 in â for all i ≠ j. Consequently, after a global round switch we have at least (N−1) entries equal to−1
and π̂(n) = 0 for 0 6 n < N − 1. Moreover, in case II, condition (M4′) implies that also the messages received by process j
are treated as 0-messages, i.e., aj,i = 0 for all i ≠ jwhen processes jmakes a step. After reducing the matrix by 1 we obtain
aj,i = −1 for all i ≠ j and so there are at least 2(N − 1) entries equal to−1.

The basic idea of the bounds on λ is to bound π̂(n). Let P(â ❀ [n]) be the probability that, given the system is in state â at
some time t , for the minimum time t ′ > t at which a global round switch occurs, â(t ′) ∈ [n]. Starting from the steady-state
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equation for π̂(n), we obtain:

π̂(n) =
1
α


â

Step(â) · π(â) · P(â ❀ [n]) =
1
α


â∈

[n]

π(â) · P(â ❀ [n])

=
1
α


â∈[n]

π(â) · P(â ❀ [n])+
1
α


â∈

[n]\[n]

π(â) · P(â ❀ [n])

> π̂(n)min
â∈[n]

P(â ❀ [n])+ (1− π̂(n)) min
â∈

[n]\[n]

P(â ❀ [n])

> π̂(n)cn + (1− π̂(n))dn
for cn, dn suitably chosen. Hence,

π̂(n) >
dn

1+ dn − cn
=: πn.

So, our goal is to find cn and dn, and by that obtain the lower bound πn on π̂(n). Since we will choose different cn and dn for
different conditions on forgetting, we will write dIn and c In in case processes never forget, and dIIn and c IIn if we consider the
case where processes forget on local round switches. The resulting bounds are denoted by π I

n and π II
n respectively. Since Λ

is nondecreasing in its first argument, we can bound λ(N, p) by
1−

N(N−1)
n=N

π I
n


Λ(N − 1, p)+

N(N−1)
n=N

π I
nΛ(n, p) 6 λI(N, p) (6)

in case I. For case II we obtain
1−

N(N−1)
n=2N−1

π II
n


Λ(2N − 2, p)+

N(N−1)
n=2N−1

π II
n Λ(n, p) 6 λII(N, p). (7)

5.4.1. Lower bound on λII

We start our analysis for case II with determining πN(N−1). Since P(â ❀ [N(N − 1)]) is greater than the probability that
â(t + 1) ∈ [N(N − 1)], given that â(t) = â, for arbitrary t , we have P(â ❀ [N(N − 1)]) > p#−1(â). Thus we may choose
c IIN(N−1) = pN(N−1), dIIN(N−1) = pN(N−1)−1 and obtain

πN(N−1) =
pN(N−1)−1

1+ pN(N−1)−1(1− p)
.

Next we turn to the analysis of πN(N−1)−1. Note that it is not possible to make a direct transition from a state â ∈

[n] to

a state in [N(N − 1)− 1], since we need a 0-entry in the matrix after the global round switch. So we need at least two time
steps: We have to generate at least two 1-processes first, and afterwards exactly one 1-message between 1-processes must
arrive (note that due to (M4′) messages from 1-processes to 0-processes are treated as 0-messages). Our lower bounds are
based on the probability that the system is in a state within [N(N − 1) − 1] at time t + 2, given that â(t) = â. In fact, we
restrict ourselves not only to the two-step-probability, but consider only specific transitions for our lower bound.

So fix in â one column j whose all non-diagonal entries equal −1; clearly such a column exists, since Step(â) = 1. For
our bound, we consider the following specific scenario: Given that â(t) = â, assume that at time t + 1, all messages from
processes i ≠ j to all processes i′ with Ki′,i(t) = −1, and exactly one message from process j to some fixed j′ ≠ j, are
received. Moreover, we allow k more (up to (N − 3)) of the remaining (N − 2) messages sent by j to be received. That is,
N(N − 2) + 2 − #0(â) + k messages are received. Moreover, we have that k + 2 of the processes are 1-processes at time
t + 1 (i.e., processes j, j′, and those k processes receiving the additional messages from j). For â(t + 1) ∈ [N(N − 1)− 1] to
hold, it is sufficient that all 0-processes i with âi,j(t + 1) = −1 receive a message from j at time t + 2, and exactly one of
the messages from a 1-process to a 1-process is received. Note that we need not rule out the messages from 1-processes to
0-processes here, as (M4′) implies that they result in −1-entries (after the global round switch). Since at time t + 1 there
are (k+ 2)(k+ 1) messages from 1-processes to 1-processes, we obtain: For all â ∈


[n],

P(â ❀ [N(N − 1)− 1]) >

N−3
k=0


N − 2

k


pN(N−2)+2−#0(â)+k(1− p)N−2−k

· pN−2−k · p · (1− p)(k+2)(k+1)−1 · ((k+ 2)(k+ 1))

= pN(N−1)−#0(â)+1 ·

N−3
k=0


N − 2

k


((k+ 2)(k+ 1))(1− p)N+k

2
+2k−1

=: β(#0(â)).
So we choose c IIN(N−1)−1 = β(1) and dIIN(N−1)−1 = β(0).
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Finally, we turn to the analysis of πn for n = 2(N − 1) + x, where 0 6 x 6 (N − 2)(N − 1) − 2. Again we bound
P(â ❀ [2(N − 1) + x]), for â ∈


[n], by determining the probability that â(t + 2) ∈ [2(N − 1) + x], given that â(t) = â,

under specific transitions. For our purpose, fix a row j of âwith T non-diagonal entries equal to 0. Assume that at time t+ 1,
all messages to processes i ≠ j from all processes i′ with Ki,i′(t) ≠ 0 are received. Additionally, kmore (up to N − T − 2) of
the remaining N − T − 1 messages to j are allowed to be received. That is, (N − 1)(N − 1) − #0(â) + T + k messages are
received. Hence, all processes except process j are 1-processes at time t + 1. Afterwards, at time (t + 2), all the remaining
messages to process jmust arrive. Moreover, from the (N − 2)(N − 1) messages sent by 1-processes to 1-processes exactly
x are not allowed to be received for â(t + 2) ∈ [2(N − 1)+ x] to hold. Thus, for fixed row j and â ∈


[n],

P(â ❀ [2(N − 1)+ x] | row j has T 0-entries)

>

N−2−T
k=0


N − T − 1

k


pk+(N−1)2−#0(â)+T

· (1− p)N−1−k−TpN−1−k−Tp(N−2)(N−1)−x(1− p)x ·


(N − 1)(N − 2)
x


=


(N − 1)(N − 2)

x


(1− p)xpN(N−1)−#0(â)+(N−2)(N−1)−x

·

(2− p)N−1−T − 1


=: γ (#0(â), T , x).

Note that γ is nonincreasing in its second argument. Every state â has at least one row with T = 0 non-diagonal entries
equal to 0. All other rows must have T 6 N − 2 non-diagonal entries equal to 0, since a row must have at least one entry
equal to−1. Thus, we have

P(â ❀ [2(N − 1)+ x]) > γ (#0(â), 0, x)+ (N − 1) · γ (#0(â),N − 2, x) =: γ̃ (#0(â), x).
Wemay thus choose c II2(N−1)+x = γ̃ ((N − 1)(N − 2)− x, x) and dII2(N−1)+x = γ̃ (0, x).

The lower bound on λII follows from (7).

5.4.2. Lower bound on λI

For πN(N−1) we may choose dIN(N−1) = dIIN(N−1) and c IN(N−1) = c IIN(N−1), by the same arguments as in Section 5.4.1.
To determineπN(N−1)−1, we use the same construction as in Section 5.4.1, with themodification that at time t+2, exactly

one of the (k+ 2)(N − 1) messages sent by 1-processes is received. We thus obtain for all â ∈

[n],

P(â ❀ [N(N − 1)− 1]) >

N−3
k=0


N − 2

k


pN(N−2)+2−#0(â)+k(1− p)N−2−kpN−2−kp(1− p)(k+2)(N−1)−1(k+ 2)(N − 1)

= pN(N−1)−#0(â)+1
N−3
k=0


N − 2

k


(k+ 2)(N − 1) · (1− p)N−2−k+(k+2)(N−1)−1

=: β ′(#0(â)).
So we choose c IN(N−1)−1 = β ′(1) and dIN(N−1)−1 = β ′(0).

Next consider πn with n = (N − 1)+ x, and 0 6 x 6 (N − 2)(N − 1)+ 1. Choose an arbitrary â ∈ [n]. It holds that â has
at least N − 1 non-diagonal entries equal to 0. Now fix a row j with T 6 N − 2 non-diagonal entries equal to 0. We use the
same construction as in case II, but note that at time t + 2, the messages received by j lead to 0-entries. Thus,

P(â ❀ (N − 1)+ x | row j contains T 0-entries)

>

N−2−T
k=0


N − T − 1

k


pk+(N−1)2−#0(â)+T · (1− p)N−1−k−TpN−1−k−T

· pN(N−1)−(N−1)−x−(N−1−k−T )
· (1− p)(N−1)

2
−(N(N−1)−(N−1)−x)

·


(N − 1)2 − (N − 1− k− T )

x


> p2N

2
−4N+T−x+2−#0(â)(1− p)x


(N − 1)(N − 2)

x


·

N−2−T
k=0


N − T − 1

k


pk(1− p)N−1−k−T

= p2N
2
−4N+T−x+2−#0(â)(1− p)x


(N − 1)(N − 2)

x


· (1− pN−1−T )

=: γ (#0(â), T , x).
Note that γ is nonincreasing in its second argument. Every state â ∈ [n] has at least one row with ⌈n/N⌉ non-diagonal
entries equal to−1. Such a row must have T 6 N − 1− ⌈n/N⌉ non-diagonal entries equal to 0. Thus, we have

P(â ❀ [(N − 1)+ x]) > γ (#0(â),N − 1− ⌈n/N⌉, x).
Wemay thus choose c In = γ ((N − 1)2 − x,N − 1− ⌈n/N⌉, x) and dIn = γ (0,N − 1− ⌈n/N⌉, x).
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Note that this construction fails in case πn for N(N − 1) − N + 2 6 n 6 N(N − 1) − 2: Since we do not restrict the
number of successfully transmitted message to process j at time (t + 1) it may happen that we generate up to (N − 1) 1-
entries at time (t + 2) (and thus up to (N − 1) 0-entries after the global round switch) and this could violate the condition
N(N − 1) − N + 2 6 n 6 N(N − 1) − 2. To complete our lower bound we just define πn = 0 in this case. Now the lower
bound follows from (6).

5.5. Computational complexity of the lower bounds

The following proposition shows that the computational complexity of the lower bounds is polynomial.

Proposition 5. Both the lower bound for λII and for λI can be computed by O(N4) multiplications/additions.

Proof. We start our analysis by determining the computational complexity for π II
x , with 2N − 1 6 x 6 N(N − 1). Since

computing powers pn is in O(log n), π II
N(N−1) and π II

N(N−1)−1 can be computed in O(logN) and O(N logN), respectively. To
compute π II

2(N−1)+x for 0 6 x 6 (N − 2)(N − 1)− 2 we need to compute γ ((N − 1)(N − 2)− x, 0, x), γ ((N − 1)(N − 2)−
x,N − 2, x), γ (0, 0, x), and γ (0,N − 2, x). For x = 0 each of these four evaluations of γ can be done in O(logN). Having
stored the values for x we can obtain the values for (x + 1) in constant time. Hence, computing all ((N − 2)(N − 1) − 2)
values π II

x is in O(N2).
Moreover, due to (7), we need N2 evaluations of Λ (given in Proposition 2), each of which can be done in O(N2): Note

that we have at most N(N − 1) summands, each of which can be computed in constant time from the previous one. Thus
we can compute the lower bound for case II in O(N4). Analogous arguments hold for the lower bound for case I. �

5.6. Behavior of λ for p→ 1

Theorem 2 provides means to approximate the expected round duration for all conditions on forgetting when messages
are successfully receivedwith high probability. Since this is typically the case for real-world systems, it allows to characterize
their expected round duration very efficiently.

Proof of Theorem 2. Let p ∈ (0, 1). Let πN,p(â) be the steady state probability of state â of Markov chain â(t). From
Theorem 5, 1/λ(N, p) =


â p

#−1(â) · πN,p(â). Then

d
dp

1/λ(N, p) =

â

#−1(â) · p#−1(â)−1 · πN,p(â)+

â

p#−1(â) ·
d
dp

πN,p(â).

Evaluation of the derivative at p = 1 leads to

d
dp

1/λ(N, p)

p=1
=


â

#−1(â) · πN,1(â)+

â

d
dp

πN,p(â)

p=1

.

Observe that as p goes to 1, πN,p(â) goes to 0 for all states â, except for â0, the state with 0 in the diagonal,−1 everywhere
else, and Step(â) = 1. It is #−1(â0) = N(N − 1). Moreover, as p goes to 1, πN,p(â0) approaches 1. Hence,

= N(N − 1)+
d
dp


â

πN,p(â)

 
p=1

= N(N − 1)+ 0,

as the sum of the steady state probabilities over all states a equals 1. The theorem follows from d
dpλ(N, p)


p=1 = −

d
dp1/

λ(N, p)

p=1 · λ

2(N, 1) and λ(N, 1) = 1. �

5.7. Behavior of λ for p→ 0

In systemswith unreliable communication, inwhich Theorem2 is not applicable, Theorem3 characterizes the asymptotic
behavior of the expected round duration for all our conditions on forgetting. It turns out that λI, λII, and λIII have the same
order of growth for p→ 0, namely p−1, while λIV has a higher order of growth.

Proof of Theorem 3. It is (1 − p)i − 1 =
i

j=1

i
j


(−p)j = Ω(p) for p → 0. Hence by Theorem 1, λIII(N, p) = O(p−1) for

p→ 0.
For all conditions on forgetting, all transition probabilities of theMarkov chain â(t) are polynomials in p. Hence by Eq. (4),

all steady state probabilitiesπ(â) are rational functions in p. Theorem5 then in particular implies thatλI(N, p) is also rational
in p. Clearly, λI(N, p)→∞ as p→ 0. Hence λI(N, p) has a pole at p = 0 of order at least 1. This implies λI(N, p) = Ω(p−1).
From the inequalities λI 6 λII 6 λIII, the first part of the theorem follows.
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To show the second part of the theorem, we prove the more general statement

Λ(M, p) ∼ p−1HM for p→ 0, (8)

where HM denotes theMth harmonic number.
It is (1− p)i − 1 = −p

i
j=1

i
j


(−p)j−1 ∼ −p · i for p→ 0. Thus, Proposition 2 shows that

p ·Λ(M, p) ∼
M
i=1


M
i


(−1)i+1

1
i
.

Denoting by SM this last sum, we show SM = HM . This identity is well-known; a proof can be found in the textbook by
Graham et al. [21, (6.72) and (6.73)]. We give a proof, by induction on M , for the sake of completeness. The case M = 1 is
trivial. IfM > 2, then

SM =
M
i=1


M − 1

i


(−1)i+1

1
i
+

M
i=1


M − 1
i− 1


(−1)i+1

1
i

= HM−1 −
1
M

M
i=1


M
i


(−1)i = HM−1 +

1
M
= HM

by the induction hypothesis. This shows (8) and concludes the proof. �

6. Conclusion

We studied the effect of actively discarding memory content on variants of the α-synchronizer with active forgetting.
We obtained asymptotic formulas for the behavior of the expected round duration λ(N, p) as the probability of successful
transmission p→ 0 and p→ 1, as well as means to calculate λ(N, p) for arbitrary N and p, which allow to assess whether
the resulting loss of performance is acceptable for a specific application. In a nutshell (see Section 1 for details), there is not
much difference between variants I (the original α-synchronizer) and II (forgetting at local round switches), neither for the
expected round duration nor for the average age of the messages. By contrast, variant IV (forget at every time step) results
in always fresh messages, albeit at the price of a considerably larger average round duration (in particular, for small values
of p). More aggressive forms of forgetting may hence be a viable alternative for increasing the accuracy in certain sensor
fusion applications.

Our results for variants III and IV also provide computationally feasible and accurate bounds on the performance of the
original non-forgetting α-synchronizer. In fact, due to its huge state space, the explicit calculation of λ for variant I is in
O(23N(N−1)), which is prohibitively expensive even for small system sizes. Thanks to our formulas, accurate predictions of
its performance can be obtained also for large N .
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