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The Drosophila homolog of methionine sulfoxide reductase A extends lifespan
and increases nuclear localization of FOXO
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a b s t r a c t

Methionine sulfoxide reductase A (msrA) was previously found to increase resistance to oxidative
stress and longevity in animals. We identified Drosophila msrA (dmsrA), a Drosophila homolog of
human msrA, as a downstream effector of forkhead box O (FOXO) signaling in Drosophila, which
enhances resistance to oxidative stress and increases survival under stressed conditions. Addition-
ally, overexpression of dmsrA in neurons extended the lifespan of flies. Moreover, overexpression of
dmsrA in fat body cells caused FOXO to translocate to the nucleus, implying that this possible posi-
tive feedback loop between dmsrA and FOXO could potentiate the antioxidant activity of dmsrA and
increase the lifespan in Drosophila.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Methionine sulfoxide reductases (msrs), which are found in
most organisms from bacteria to humans, are thioredoxin-depen-
dent repair enzymes that reduce methionine sulfoxide to form
methionine [1–3]. Methionine sulfoxide reductase A (msrA) and
msrB are specific for the S- and R-forms of methionine sulfoxide,
respectively. Msrs are unique antioxidant enzymes that can repair
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should be considered co-first
oxidative damage to proteins [4–6]. The accumulation of oxidative
damage, particularly to proteins, has been suggested as an impor-
tant determinant of mammalian lifespan [4,7]. The important bio-
logical functions of msrA are well documented. Lack of msrA in
Escherichia coli and yeast causes increased sensitivity to oxidative
stress [8,9]. MsrA knockout mice display increased susceptibility
to oxidative damage that results in either a 40% reduction in
lifespan and neurological abnormalities [7] or in an undiminished
lifespan accompanied by maintained neuromuscular function [10].
By contrast, overexpression of msrA in yeast and mammalian
cell lines increases their resistance to oxidative stress [11–13].
Additionally overexpression of bovine msrA in Drosophila neurons
resulted in increased lifespan, fertility, and resistance to paraquat-
induced oxidative stress [14].

The mechanisms of Drosophila msrA (dmsrA) regulation and the
identity of downstream signals that confer protection against oxi-
dative stress and aging remain unknown. By reducing methionine
sulfoxide groups on many enzymes and proteins to methionine,
msrA may serve as a catalytic antioxidant system without any spe-
cific direct repair targets [15]. However, several targets of msrA
lsevier B.V. All rights reserved.
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Fig. 1. Overexpression of Drosophila msrA (dmsrA) suppresses oxidative stress-induced lethality. (A) When oxidative stress was induced using 20 mM paraquat (PQ) in wild-
type Drosophila melanogaster, the expression level of dmsrA increased compared to the control in the real-time RT-PCR analysis. Overexpression of dmsrA in the whole body
(Arm-Gal4/UAS-dmsrA) suppressed the oxidative stress-induced lethality at 24 h (B) and increased the survival rate (C) compared to the Arm-Gal4 control. However, the
survival rate of dmsrA inhibition (Arm-Gal4/+;UAS-dmsrA Ri/+) was similar to that of the control (C). Data is represented as mean ± S.E. from three independent experiments
(n = 50 for B; *P < 0.05, Student’s t-test).
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have been identified, including the small heat shock protein, Hsp-
21 [4], ribosomal protein L12 [16], calmodulin [17], and a-synuc-
lein [18]. Recently, Minniti et al. [19] demonstrated that msrA-1
might be regulated by DAF-16/FOXO3a, a conserved protein that
regulates longevity in Caenorhabditis elegans. This finding sug-
gested a possible regulatory mechanism for msrA-1 that links its
biochemical activity of repairing oxidative damage with its role
in organism’s lifespan.

In Drosophila, neuronal activation of c-Jun N-terminal kinase
(JNK)/forkhead box O (FOXO) signaling is known to confer resistance
to oxidative stress and extend lifespan [20,21]. FOXO transcrip-
tion factors are key regulators of growth, metabolism, lifespan,
and stress resistance in various organisms, including Drosophila
[22,23]. FOXO is regulated by the insulin signaling pathway and
the stress-induced JNK signaling pathway [21,24]. Oxidative stress
activates JNK, which promotes FOXO nuclear localization, resulting
in increased expression of antioxidant proteins [25,26].

We recently demonstrated that neuronal expression of Jafrac 1,
a Drosophila homologue of human Prx II(hPrxII), is regulated by
JNK/FOXO signaling, promotes resistance to oxidative stress, and
extends lifespan [27]. In the present work, we studied whether
JNK/FOXO signaling can control the expression of dmsrA in the
presence or absence of exogenous stress. We also investigated
the role of dmsrA in oxidative stress resistance and lifespan
extension.
2. Materials and methods

2.1. Drosophila culture and stocks

Drosophila melanogaster were kept at 25 �C and cultured using
standard methods. Wild-type Oregon-R, Arm-Gal4 (ubiquitous),
Elav-GS-Gal4 (pan-neuron Gene Switch), GMR-Gal4 (eye), UAS-
DJNK-DN, and UAS-dFOXO flies were obtained from the Bloomington
Stock Center (Bloomington, IN). Dcg-Gal4 was a gift from J. Suh.
dFOXO21/TM6B and dFOXO25/TM6B lines [28] were provided by
E. Hafen. UAS-dmsrA Ri was obtained from the Vienna Drosophila
RNAi Center (VDRC, Vienna, Austria). UAS-dmsrA transgenic flies
were generated by P-element mediated germline transformation
with the dmsrA coding sequences.

2.2. Paraquat treatment

To test the resistance of Drosophila to oxidative stress, adult flies
(5 days old) were exposed in 20 mM paraquat. The flies were starved
for 6 h in vials containing 1 ml of 1% agar and transferred to vials con-
taining a 22 mm filter paper disks soaked with 20 mM paraquat
(methyl viologen, Sigma Chemical Co, St Louis, MO) in a 5% sucrose
solution. The number of dead flies was scored after 24 h.

2.3. Semi-quantitative reverse transcription-PCR analysis

First strand cDNA was generated using 2 lg of total RNA, the
oligo(dT) primer and SuperScriptTM III reverse transcriptase (Invitro-
gen, Carlsbad, CA). 1 ll of the cDNA was used for each PCR reaction
(Fig. 3B). PCR conditions were as follows: 94 �C for 5 min, 26 cycles
of 94 �C for 30 s, 56 �C for 30 s, 72 �C for 30 s, and a final extension
at 72 �C for 5 min using a Thermal Cycler (Applied Bioscience). PCR
products were resolved in 1.2% agarose gels and visualized by
ethidium bromide staining. The rp49 gene was used as the control.

2.4. Quantitative RT-PCR analysis

Twenty flies were collected for RNA preparation. Total RNA was
extracted using the easy-BLUE (TM) reagent (iNtRON biotechnology,



Fig. 2. Overexpression of dmsrA in neurons extends lifespan in Drosophila. Flies
carrying ElavGS-Gal4/+;UAS-dmsrA/+ or ElavGS-Gal4/Y;UAS-dmsrA/+ were treated
RU486 to activate the Elav gene switch (ElavGS) and express dmsrA. Flies expressing
dmsrA had extended lifespan in females (A) and males (B) compared to controls
without RU486, in which dmsrA was not overexpressed (Log rank test, ElavGS-gal4
versus ElavGS- dmsrA/+, Gal4/+;UAS-dmsrA/+, v2 = 27.2515, P < 0.0001; ElavGS-Gal4/
Y versus ElavGS-Gal4/Y;UAS- v2 = 9.2798, P < 0.0023).
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Seoungnam, Korea). All RNA samples were treated with RNase-free
DNase (Promega, Madison, WI). cDNA was synthesized using a
SuperScript™ III First-Strand Synthesis System (Invitrogen). For
quantitative RT-PCR analysis, ABI Prism 7900 Sequence Detection
System (Applied Biosystems, Foster, CA) and SyberGreen PCR Core
reagents (Applied Biosystems) were used. mRNA levels were ex-
pressed as the relative fold change against the normalized rp49
mRNA. The comparative cycle threshold (Ct) method (User Bulletin
2, Applied Biosystems) was used to analyze the data.

2.5. Western blot analysis

Antibodies against JNK (Santa Cruz Biotechnology, Santa Cruz,
CA) and phospho-JNK (Cell Signaling Technology, Beverly, MA)
were used to detect JNK activation. A b-actin antibody (Abcam,
Cambridge, USA) was used as the internal control. Total protein
from 30 fly heads was prepared by lysing in RIPA buffer (50 mM
Tris–Cl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% DOC) and
precipitating with acetone. Western blot analyses were performed
as described previously [29].

2.6. Immunostaining

An antibody against Drosophila FOXO (dFOXO) (a gift from O.
Puig) was used to detect dFOXO translocation to the nucleus. For
immunostaining, larval fat bodies from third instar larvae were
dissected and fixed in 4% paraformaldehyde in PBS for 30 min at
room temperature. Samples were incubated with dFOXO antibody
(1:500) overnight at 4 �C and with Alexa Fluor 594-conjugated
anti-rabbit IgG (1:200, Molecular Probes) for 2 h at room tempera-
ture. The tissues were mounted in Vectasheild mounting medium
with DAPI (Vector Laboratories, Burlingame, CA) to stain DNA.
Fluorescence images were acquired using an Axiovert 200 M
microscope (Carl Zeiss, Oberkochen, Germany).

2.7. Lifespan assay

For longevity experiments, 1–2 day old adult male or female
flies were collected and placed in vials (10 flies per vial). The flies
were moved to every 3–4 days to fresh medium containing 200 lM
RU486 (Sigma Chemical Co, St Louis, MO) and deaths were re-
corded. The starting population for each genotype was 50 flies.
Three replicates were tested at 22 �C.

2.8. Scanning Electron Microscopy (SEM)

Flies were anaesthetized, mounted on the stage, and observed
using the Leo 1455VP Environmental Scanning Electron Micro-
scope (KBSI, Korea) in the low vacuum mode.
3. Results

3.1. Overexpression of dmsrA suppresses oxidative stress-induced
lethality and extends lifespan

We measured changes in dmsrA mRNA levels in response to
treatment with paraquat, an oxidative stress-inducing compound.
Levels of dmsrA mRNA increased after exposure to 20 mM paraquat
for 24 h in the real-time RT-PCR analysis (Fig. 1A). To test the effect
of dmsrA on oxidative stress, we generated transgenic flies carrying
an inducible dmsrA gene. When dmsrA was expressed ubiqui-
tously, using Arm-Gal4, oxidative stress-induced lethality declined
(Fig. 1B). Increased expression of the msrA mRNA in Arm-Gal4/
UAS-dmrsA, as compared to the control, was verified by RT-PCR
(Supplementary Fig. 1A). Next, we determined the ability of dmsrA
to increase viability of Drosophila in the presence of paraquat-in-
duced oxidative stress. Median survival rate, following exposure
to paraquat, was higher for flies overexpressing dmsrA (Arm-Gal4/
UAS-dmsrA) than for the Arm-Gal4 or Arm-Gal4/+;UAS-dmsrA Ri/+
flies following exposure to paraquat (Fig. 1C). When neuronal
dmsrA was overexpressed (ElavGS-Gal4/+;UAS-dmsrA/+ or ElavGS-
Gal4/Y;UAS-dmsrA/+) by adding RU486 to activate the Elav gene
switch (ElavGS), lifespan (females, Fig. 2A and male, Fig. 2B, respec-
tively) was extended compared with control. Increased expression
levels of the dmsrA mRNA were observed in ElavGS-Gal4/+;UAS-
dmsrA/+ flies treated with RU486 compared to the untreated con-
trol flies (Supplementary Fig. 1B). We showed that the Drosophila
homolog of human msrA (dmsrA) confers resistance to oxidative
stress and that antioxidant function of dmsrA may be linked to
the increased survival. Moreover, expression of dmsrA plays a role
in determining Drosophila lifespan.

3.2. FOXO signaling regulates dmsrA expression

We previously showed that oxidative stress activated JNK and
FOXO in Drosophila neurons [26]. In that study, we demonstrated
that Jafrac 1, a Drosophila homologue of human Prx II(hPrxII),
functions as a downstream effector of JNK/FOXO signaling in neu-
rons, increases stress resistance, and extends lifespan. Recently,
msrA-1 was found to be regulated by DAF-16/FOXO3a in C. elegans



Fig. 3. dmsrA is a target gene of FOXO in fat body cells. (A) In the real-time RT-PCR analysis, overexpression of FOXO in fat body cells (Dcg-Gal4/UAS-foxo) increased the
expression level of dmsrA compared to the Dcg-Gal4 control while the expression level of dmsrA was reduced in the fat body cells of FOXO21/25 mutant animals. Data is
represented as mean ± S.E. from three independent experiments (*P < 0.05, Student’s t-test). (B) Expression of FOXO was regulated by the FOXO overexpression and FOXO21/25

mutants. (C) Sequences of primers used for PCR are listed.

Fig. 4. Subcellular localization of FOXO in fat body cells of dmsrA overexpression and inhibition. When dmsrA was overexpressed in the fat body cells (Dcg-Gal4/UAS-dmsrA),
FOXO was primarily localized in the nucleus (D–F). In control cells (Dcg-Gal4) FOXO was found equally in the nucleus and cytoplasm (A–C). In contrast, when dmsrA was
inhibited in fat body cells (Dcg-Gal4/+;UAS-dmsrA Ri/+) FOXO did not relocalize to the nucleus (G–I), but instead resembled the Dcg-Gal4 control (A–C) (scale bar, 100 lm).
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[19]. To investigate whether FOXO signaling regulates dmsrA
expression in Drosophila, we overexpressed dFOXO in fat body cells
using Dcg-Gal4. Overexpression of FOXO in fat body cells (Dcg-Gal4/
UAS-FOXO) increased the expression level of dmsrA compared to
the Dcg-Gal4 control while the expression level of dmsrA was
reduced in the fat body cells of FOXO21/25 mutant flies (Fig. 3A).
Expression of FOXO was verified to be regulated by the FOXO
overexpression and FOXO21/25 mutants (Fig. 3B). These results
indicate that expression of dmsrA is regulated by dFOXO in
Drosophila.



Fig. 5. dmsrA does not activate JNK in Drosophila eyes. Neither overexpression nor
inhibition of dmsrA in eyes (GMR-Gal4/UAS-dmsrA and GMR/+;UAS-dmsrA Ri/+)
activated JNK in the Western blot analysis.
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3.3. dmsrA increases nuclear translocation of dFOXO

In our previous study, overexpression of Jafrac1 in neurons sup-
pressed JNK activation in the presence of oxidative stress [27].
However, unlike Jafrac1, dmsrA overexpression did not suppress
JNK phosphorylation in response to oxidative stress (data not
shown). We speculated that, unlike Jafrac1, dmsrA not only func-
tions as a effector protein, but also has other regulatory functions.
We found that dFOXO expression was equal in the cytoplasm and
the nucleus of wild type larval fat body cells. However, overexpres-
sion of dmsrA in fat body cells (Dcg-Gal4/UAS-dmsrA) increased
nuclear localization of dFOXO. Inhibition of dmsrA (Dcg-Gal4/
+;UAS-dmsrA Ri/+) prevented nuclear localization of dFOXO
(Fig. 4). We observed increased expression levels of the dmsrA
mRNA in Dcg-Gal4/UAS-dmsrA as compared to control flies (Supple-
mentary Fig. 1C). This result suggests a positive feedback loop be-
tween antioxidant enzyme dmsrA and transcriptional factor
dFOXO may amplify resistance to oxidative stress and extend life-
span in flies.

3.4. Manipulation of dmsrA levels did not activate JNK in Drosophila
eyes

Overexpression or inhibition of dmsrA in fly eyes (GMR-Gal4/
UAS-dmsrA or GMR-Gal4/+;UAS-dmsrA Ri/+) did not change the
level of phopho-JNK or JNK (Fig. 5). Overexpression of dmsrA in
Drosophila eye, using a GMR driver (GMR-Gal4/UAS-dmsrA), re-
sulted in increased irregularity and a rough eye phenotype. As
shown in Supplementary Fig. 2B, eye size and cell number was
increased in eyes overexpressing dmsrA. Flies with JNK reduction
and overexpression of dmsrA (GMR-Gal4/UAS-dmsrA;UAS-JNK-
DN/+) (Supplementary Fig. 2C) had a phenotype similar to that
caused by dmsrA overexpression (GMR-Gal4/UAS-dmsrA) (Supple-
mentary Fig. 2B). These results indicate that JNK signaling may
not regulate dmsrA expression in Drosophila.

4. Discussion

In this study, we demonstrated that dFOXO is required for the
expression of dmsrA in flies. We also showed that overexpression
of dmsrA reduces oxidative stress-induced lethality. Furthermore,
ubiquitous overexpression of dmsrA extended the lifespan. These
results support the hypothesis that the FOXO pathway protects
Drosophila from oxidative stress and extends lifespan by induction
of antioxidant genes, including dmsrA. We did not find the de-
creased resistance to oxidative stress in flies with UAS-dmsrA Ri.
We speculate that other backup and redundant antioxidant sys-
tems function to compensate the decreased level of dmsrA. The
lack of difference in the sensitivity to oxidative stress between con-
trol and flies with UAS-dmsrA Ri is not because dmsrA has not been
reduced (Supplementary Fig. 1D).

MsrA is an important antioxidant enzyme that has a role in the
maintenance of protein structure and function by repairing oxi-
dized methionine residues [5,6,10]. Although msrA-1 expression
was known to be regulated by the DAF-16/FOXO3a in C. elegans
[19], we showed that dmsrA may also be modulated by dFOXO in
Drosophila.

JNK is known to activate FOXO in mammalian cells and flies
[21,24,30]. JNK also plays an important role in cytoprotection
and adaptive response to stress [31]. However, in this study, we
found that JNK did not directly regulate the expression of dmsrA,
although it may be the upstream regulator of dFOXO in cellular re-
sponse to oxidative stress in Drosophila [20,21,26,28,32].

We demonstrated for the first time that dmsrA increased nucle-
ar translocation of dFOXO. Few reports have shown that the over-
expression of antioxidant enzymes might influence the level of
transcription of other proteins or enzymes. This finding suggests
that the resistance to the oxidative stress and prolonged lifespan
caused by dmsrA may be due to both its antioxidant activity and
of its regulation of dFOXO activity [21,28,33]. Several negative
feedback regulations of dFOXO, including the insulin-PI3K-PKB sig-
naling cascade, have been reported [28,33,34]. However, a possible
positive feedback loop between dmsrA and dFOXO, which could
potentiate the antioxidant activity of dmsrA, has not been studied
previously. FOXO provides tolerance against oxidative insults [28].
Under stressful condition such as oxidative stress or starvation,
FOXO translocates to the nucleus and activates target genes re-
quired for stress protection, damage repair, decreased cellular
metabolism and growth arrest [21,28,33].

In conclusion, our findings indicate that dmsrA may extend life-
span by acting an antioxidant enzyme and by regulating dFOXO
under normal and oxidative stress conditions.
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