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We provide a dynamical interpretation of the recently identified ‘roaming’ mechanism for molecular dis-
sociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyper-
bolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion–
molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roam-
ing region of phase space, in which both reactive and non reactive trajectories can be trapped for arbi-
trarily long times.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Until recently, it was believed that unimolecular dissociations
[1] can occur in either of two ways: (i) passage over a potential en-
ergy barrier or (ii) barrierless dissociation (e.g., bond fission) [2,3].
However, recently a variety of so-called ‘non-MEP’ (Minimum En-
ergy Path) reactions have been recognized [4–9]; for non-MEP
reactions a ‘reaction coordinate’ cannot be defined in the usual
way [10], and statistical theories such as transition state theory
(TST) are not necessarily applicable (see below).

Of particular interest here is the class of ‘roaming reactions’ [3].
The roaming phenomenon was discovered in the photodissociation
of the formaldehyde molecule, H2CO [11]. In this process, H2CO can
dissociate via two channels: H2CO ? H + HCO (radical channel)
and H2CO ? H2 + CO (molecular channel). Above the threshold
for the H + HCO dissociation channel, the CO rotational state distri-
bution was found to exhibit an intriguing ‘shoulder’ at lower rota-
tional levels correlated with a hot vibrational distribution of H2 co-
product [12]. The observed product state distribution did not fit
well with the traditional picture of the dissociation of formalde-
hyde via a well characterized saddle point transition state for the
molecular channel. The roaming mechanism, which explains the
observations of Ref. [12], was demonstrated both experimentally
and in trajectory simulations in Ref. [11]. Following this work,
roaming has been identified in the unimolecular dissociation of a
number of molecules, and is now recognized as a general phenom-
enon in unimolecular decomposition (see [13–15] and references
therein). See also Refs. [16–19]. A quantum mechanical investiga-
tion of the roaming effect for the H + MgH ? Mg + H2 reaction at
low collision energies has recently been published [20].

These studies have highlighted some general characteristics
which a dissociating molecule should have in order to manifest
roaming: the existence of competing dissociation channels, such
as molecular and radical products; the existence of a saddle on
the potential energy surface (PES) just below the dissociation
threshold for radical production; long range attraction between
fragments.

Reactions exhibiting roaming do not fit into conventional reac-
tion mechanistic schemes, which are based on the concept of the
reaction coordinate [10], for example, the intrinsic reaction coordi-
nate (IRC). The IRC is a MEP in configuration space that smoothly
connects reactants to products, and according to conventional wis-
dom it is the path a system follows as reaction occurs. Roaming
reactions, instead, avoid the IRC and involve more complicated
dynamical behavior. The roaming phenomenon seems to arise in
the presence of long range interactions between dissociating frag-
ments, where the possibility of orientational dynamics of the two
fragments can lead to a different set of products and/or energy dis-
tribution than the one expected from MEP intuition. However, de-
spite much work, it is still unclear how general the roaming
phenomenon is and, specifically, which classes of reaction might
show similar behaviors. The unusual nature of roaming reactions
is a challenge for TST, where the aim is to compute reaction rates
for a specific (given) reaction pathway.

https://core.ac.uk/display/82671211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2013.12.051&domain=pdf
http://dx.doi.org/10.1016/j.cplett.2013.12.051
mailto:frederic.mauguiere@bristol.ac.uk
mailto:peter.collins@bristol.ac.uk
mailto:peter.collins@bristol.ac.uk
mailto:gse1@cornell.edu
mailto:farantos@iesl.forth.gr
mailto:stephen.wiggins@mac.com
http://dx.doi.org/10.1016/j.cplett.2013.12.051
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


F.A.L. Mauguière et al. / Chemical Physics Letters 592 (2014) 282–287 283
TST can take various forms, such as RRKM (for Rice, Ramsperger,
Kassel, and Marcus) theory [21] or variational transition state the-
ory (VTST) [22]. The central ingredient of TST is the concept of a
dividing surface (DS), which is a surface the system must cross in
order to pass from reactants to products (or the reverse). Associa-
tion of transition states with saddle points on PES (and their vicin-
ity) has a long history of successful applications in chemistry, and
has provided great insight into reaction dynamics [1,23,24].
Accordingly, much effort has been devoted to connecting roaming
reaction pathways with the existence of particular saddle points on
the PES, as is evidenced by continued discussion of the role of the
so-called ‘‘roaming saddle’’ [25,26].

Klippenstein et al. [27] have produced a statistical theory for the
effect of roaming pathways on product branching fractions in both
unimolecular and bimolecular reactions. This theory uses approxi-
mate dividing surfaces in configuration space, which do not in gen-
eral satisfy any rigorous non-recrossing property [28–30] (unlike
the dividing surfaces investigated in the present Letter). Discrepan-
cies noted in Ref. [27] between this statistical theory and the re-
sults of trajectory simulations can be attributed either to
recrossing effects or to nonstatistical dynamics in the roaming
region.

Generally, reactions proceeding without a clear correlation to
features on the potential energy surface are likely mediated by
transition states that are dynamical in nature, i.e., phase space
structures. The phase space formulation of TST has been known
since the beginning of the theory [28]. Only in recent years, how-
ever, has the phase space formulation of TST reached conceptual
and computational maturity [31]. Fundamental to this develop-
ment is the recognition of the role of phase space objects, namely
normally hyperbolic invariant manifolds (NHIMs) [32], in the con-
struction of relevant DS for chemical reactions. While the NHIM
approach to TST has enabled a deeper understanding of reaction
dynamics for systems with many (P 3) degrees of freedom (DoF)
[31,33], its practical implementation has relied strongly on mathe-
matical techniques to compute NHIMs such as normal form theory
[34]. Normal form theory, as applied to reaction rate theory, re-
quires the existence of a saddle of index P 1 [31] on the PES to
construct NHIMs and their attached DSs. For dynamical systems
with 2 DoF the NHIMs are just unstable periodic orbits, which have
long been known in this context as Periodic Orbit Dividing Surfaces
(PODS) (for a review, see Ref. [29]). As we shall see, these particular
hyperbolic invariant phase space structures (POs/PODS) are appro-
priate for describing reaction dynamics in situations where there is
no critical point of the potential energy surface in the relevant re-
gion of configuration space.

As noted, the roaming effect manifests itself in systems having
long range interactions between the two fragments of a unimolec-
ular decomposition, thus allowing mutual reorientation dynamics.
Ion–molecule reactions are good candidates to exhibit the roaming
effect, as it is well known that long range interactions determine
the dynamics of this type of reactions in the absence of saddle
points on the PES along the MEP [1,13].

There has been much debate concerning the interpretation of
experimental results on ion–molecule reactions [35]. Some results
support a model for reactions taking place via the so-called loose or
orbiting transition states (OTS), while others suggest that the reac-
tion operates through a tight transition state (TTS) (for a review,
see Ref. [35]). To account for this puzzling situation the concept
of transition state switching was developed [35], where both kinds
of DS (TTS and OTS) are present and determine the overall reaction
rate (see also Ref. [36]). Chesnavich presented a simple model
Hamiltonian to illustrate these ideas [37].

In this Letter we revisit the Chesnavich model Hamiltonian [37]
in the light of recent developments in TST. For barrierless systems
such as ion–molecule reactions, the concepts of OTS and TTS can
be clearly formulated in terms of well defined phase space geomet-
rical objects. (For work on the phase space description of OTS, see
Refs. [38–40].) The first goal of the present article is the identifica-
tion of these notions with well defined phase space dividing surfaces
attached to NHIMs. The second and main goal is an elucidation of
the roaming phenomenon in the context of the Chesnavich model
Hamiltonian. The associated potential function, possessing many
features associated with a realistic molecular PES, leads to dynamics
which clearly reveal the origins of the roaming effect. Based on our
trajectory simulations, we show how the identification of the TTS
and OTS DSs with periodic orbit dividing surfaces (PODS) provides
the natural framework for analysis of the roaming mechanism.

2. Chesnavich model Hamiltonian

The transition state switching model was proposed to account
for the competition between multiple transition states in ion–mol-
ecule reactions. Multiple transition states were studied by Chesna-
vich in the reaction CHþ4 ! CHþ3 þ H using a simple model
Hamiltonian [37] (see also Ref. [13]). The model system consists
of two parts: a rigid, symmetric top representing the CHþ3 cation,
and a mobile H atom. We employ Chesnavich’s model restricted
to two dimensions (2D) to study roaming.

The Hamiltonian for zero overall angular momentum is:

H ¼ p2
r

2l
þ p2

h

2
1

ICH3

þ 1
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� �
þ Vðr; hÞ; ð1Þ

where r is the coordinate giving the distance between the centre of
mass of the CHþ3 fragment and the hydrogen atom. The coordinate h
describes the relative orientation of the two fragments, CHþ3 and H,
in a plane. The momenta conjugate to these coordinates are pr and
ph, respectively, while l is the reduced mass of the system and ICH3

is the moment of inertia of the CHþ3 fragment.
The potential Vðr; hÞ describes the so-called transitional mode. It

is generally assumed that in ion–molecule reactions the different
modes of the system separate into intramolecular (or conserved)
and intermolecular (or transitional) modes. The potential Vðr; hÞ
is made up of two terms:

Vðr; hÞ ¼ VCHðrÞ þ Vcoupðr; hÞ; ð2Þ

with:
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Here x ¼ r=re, and the parameters for potential Vðr; hÞ, Eq. (2), fitted
to reproduce data from CHþ4 species are: dissociation energy
De ¼ 47 kcal/mol; equilibrium distance re ¼ 1:1 Å. Parameters
c1 ¼ 7:37, c2 ¼ 1:61, fit the polarizability of the H atom and yield
a stretch harmonic frequency of 3000 cm�1. Ve ¼ 55 kcal/mol is
the equilibrium barrier height for internal rotation, chosen so that
at r ¼ re the hindered rotor has, in the low energy harmonic oscilla-
tor limit, a bending frequency of 1300 cm�1. The parameter a con-
trols the rate of conversion of the transitional mode from angular to
radial mode. By adjusting this parameter one can control whether
the conversion occurs ‘early’ or ‘late’ along the reaction coordinate
r. For our Letter we fix a ¼ 1 Å�2, which corresponds to a late con-
version. The masses are taken to be mH ¼ 1:007825 u, mC ¼ 12:0 u,
and the moment of inertia ICH3 ¼ 2:373409 uÅ2. A contour plot of
the PES Vðr; hÞ is shown in Figure 1.



Figure 1. A contour plot of the Chesnavich potential Vðr; hÞ (Eq. (2)) and a ¼ 1 with
projections of representative periodic orbits. Orange lines are POs of the S2th1
family (definitions of the symbols are given in Figure 2), at energies �0.252 and
4.993 kcal/mol, purple lines are POs of S2FR1 family at energies �0.0602 and
5.005 kcal/mol and yellow line is the period doubling PO (S2FR12) at energy
2.035 kcal/mol. The wine color POs, all at energy 1.392 kcal/mol, belong from the
left to S2th1; S2FR1 and S2FR12 families, respectively. The red and grey periodic
orbits shown in the region of the minimum belong to families of the potential
which drive the molecule to isomerization. Distances in Angstroms, angles in
radians and energies in kcal/mol. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 1
Equilibrium points for potential Vðr; hÞ (a ¼ 1). (CC) means a center-center equilib-
rium point (EP), (CS) a center-saddle EP and (SS) a saddle-saddle EP.

Energy (kcal mol�1) r (Å) h (radians) Stability Label

�47 1.1 0 CC EP1
8 1.1 p=2 CS EP2
�0.63 3.45 p=2 CS EP3
22.27 1.62 p=2 SS EP4

MR1 

S2th1 

S2R1 

S2FR1 

RE 

S2FR12 

Figure 2. Continuation/Bifurcation diagram of periodic orbits for the Chesnavich
potential and a ¼ 1. MR1 denotes the principal family of POs along r that originates
from the minimum of the potential (equilibrium point EP1), whereas S2R1 is the
corresponding family that emanates from the saddle (EP3). S2th1 is the family of
POs with hindered rotor behaviour, acting as the TTS (see text) that emanates from
a center-saddle bifurcation and appears at about E ¼ �0:291 kcal/mol below the
dissociation energy. Similarly, S2FR1 denotes the family of POs with free rotor
behaviour that also originates from a CS bifurcation at energy E ¼ �0:0602 kcal/
mol, while S2FR12 a period doubling bifurcation of S2FR1 family, which is generated
at energy E ¼ 2:715 kcal/mol. At this energy the S2FR1 becomes unstable. RE is the
family of POs which are near free rotors and act as the OTS. They are relative
minima, and have r � const , pr ¼ 0 and ph – 0 also approximately constant. This
family is the unstable branch of a subcritical CS bifurcation with the S2FR1 family
the stable branch, and emerges at energy 6.131 kcal/mol.
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In Table 1, the stationary points of the potential function are
tabulated and are labelled according to their stability. The mini-
mum for CHþ4 (EP1) is of center-center stability type (CC), which
means that it is stable in both coordinates, r and h. The saddle,
which separates two symmetric minima, at h ¼ 0 and p (EP2), is
of center-saddle type (CS), i.e., stable in r coordinate and unstable
in h. The maximum in the PES (EP4) is a saddle-saddle equilibrium
point (SS). The outer saddle (EP3) is a CS equilibrium point.

The MEP connecting the minimum EP1 with the saddle EP2 at
r ¼ 1:1 Å (see Figure 1) describes a reaction involving ‘isomerisa-
tion’ between two symmetric minima. The MEP for dissociation
to radical products (CHþ3 cation and H atom) follows the line
h ¼ 0 with r !1 and has no potential barrier. Broad similarities
between the features of the Chesnavich model and molecules for
which the roaming reaction has been observed can readily be iden-
tified. In the Chesnavich model system we recognize two reaction
‘channels’, one leading to a molecular product, in fact to the same
molecule, by passage over an inner TS, and one to radical products
via dissociation. Moreover, a saddle (EP3) exists just below the dis-
sociation threshold.

3. Results

Examining the potential in Figure 1 it is not difficult to antici-
pate the existence of two classes of reactive events, isomerization
and direct dissociation to radicals, but the occurence of a ‘third
way’ (roaming [3], see below) is difficult to predict, even for this
simple 2D system. Although it is customary to associate aspects
of a molecule’s dynamics with specific features of the PES
landscape [24], recent progress in non-linear mechanics suggests
caution, especially in the interpretation of chemical reactivity. A
method to explore the phase space structure of a non-linear
dynamical system for extended ranges of energy (or other system
parameters) dates back to Poincaré [41], and involves the study of
periodic orbits and their continuation as energy or other parame-
ters vary.

Distinct families of POs emanate from equilibrium points,
where the number of families is at least as large as the number
of DoF [42,43]. POs of the same family can be followed as energy
increases. At critical values of energy bifurcations take place and
new families are born. Continuation/bifurcation (CB) diagrams
are obtained by plotting a property of POs as a function of energy
or some other parameter. One important kind of elementary bifur-
cation is the center-saddle (CS) (saddle-node) [34]. Although peri-
odic orbits, being one dimensional objects, cannot reveal the full
structure of phase space, they do provide a ‘skeleton’ around which
more complex structures such as NHIMs develop. Numerous
explorations of non-linear dynamical systems by construction of
PO CB diagrams have been made (for molecules, see Refs. [44,45]).

In Figure 2 such a CB diagram is shown for the Chesnavich mod-
el system with representative POs depicted in Figure 1. Not all fam-
ilies of POs generated from all equilibria are shown, but only those
which are relevant to the roaming effect. A detailed description of
the various PO families is given in the caption of Figure 2.

The phase space approach to TST requires the identification of
NHIMs which serve as ‘anchors’ for the construction of DSs that lo-
cally minimize the flux. For 2 DoF systems, the NHIM is just a peri-
odic orbit, which we call the NHIM-PO. Normal hyperbolicity of the
NHIM-PO implies that it possesses one stable and one unstable
direction transverse to the PO. The NHIM-PO is a one dimensional
object embedded in the four dimensional phase space. A dividing
surface at a specific energy is a phase space surface that divides
the energy surface into two parts, namely reactants and products.
The NHIM-PO being 1 dimensional does not have the right dimen-
sionality to perform as a DS on the three dimensional energy sur-
face embedded in a four dimensional phase space. Rather, the
NHIM-PO serves as the boundary of the relevant DS, which is the
NHIM-PODS. The NHIM-PODS at a specific energy is a sphere on
which the NHIM-PO is an equator. The NHIM-PO in turn divides
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the NHIM-PODS into two hemispheres, one of which (the forward
hemisphere) intersects all the trajectories which evolve from reac-
tants to products, while the other (the backward hemisphere) inter-
sects all the trajectories which travel from products to reactants.

Our first task is then to identify the TTS and the OTS as DSs at-
tached to appropriate NHIM-POs. For a system with a natural Ham-
iltonian (kinetic plus potential terms), when we plot a suitable PO
in the ðr; hÞ plane we represent simultaneously the NHIM-PO and
the DS constructed from it.

The NHIM-PODS associated with the S2th1 family of periodic
orbits (see Figure 2) are identified with the TTS. Figure 3 is a color
plot of the potential function in the Cartesian (xy) plane and the
two blue lines shown are examples of two such NHIM-PODS pro-
jected on configuration space at an energy corresponding to a ther-
mal energy of 300 K. There are two symmetry-related NHIM-PODS
in Figure 3.
Figure 3. Contour plot of the PES in a Cartesian coordinate system. The red line is
the projection of OTS and the two blue lines are the projections of the TTS. Yellow
and cyan dotted lines represent a roaming reactive and non reactive trajectory
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(a)

(c)

Figure 4. Trajectories initiated on OTS backward hemisphere. The thick black line repre
where kB is Boltzmann’s constant and T ¼ 300 K. (a) Direct reactive trajectories. (b) R
reactive trajectories. (For interpretation of the references to color in this figure legend,
It has been recognised that the OTS is related to the centrifugal
barrier arising from the centrifugal term in the kinetic energy, Eq.
(1). The PO associated with the centrifugal barrier is a relative
equilibrium [40], and this PO belongs to the RE family shown in
Figure 2. These RE POs and higher dimensional analogues have
been studied by Wiesenfeld et al. [40] in the context of capture
theories of reaction rates. An example of such a RE NHIM-PODS
is depicted as the red outer circle in Figure 3 at the thermal energy
of 300 K. We have therefore associated the TTS and OTS with well
defined DSs attached to dynamical objects, i.e., NHIM-PODS.

To investigate the behaviour of the trajectories initiated at the
OTS, we sample the DS at the thermal energy 300 K. We sample
the backward hemisphere of the DS, which intersects all trajecto-
ries passing from large values of r into the interaction region (small
values of r). The result of this trajectory simulation is shown in Fig-
ure 4. Trajectories are initiated on the black line segment at
r � 12 Å, which is the projection of the OTS on configuration space
restricted to the h range ½� p

2 ; p
2�. The DS is sampled uniformly in h

and the conjugate variable ph at effectively fixed r and fixed total
energy. For clarity, we do not impose p-periodicity in angle h on
the plotted trajectories, but rather let this coordinate increase or
decrease freely as the trajectory evolves in time.

We classify the trajectories into four qualitatively different cat-
egories, noting that a reactive trajectory is one which crosses the
(inner) TTS passing from large 2r to smaller r. (Integration of reac-
tive trajectories terminates shortly after they cross the TTS.) The
four different trajectory categories are:

(a) Direct reactive trajectories: these have no turning points in
the r direction, i.e., they react directly without making any
oscillations in the r direction.

(b) Roaming reactive trajectories: these react but exhibit at least
two turning points in the r direction.

(c) Direct non reactive trajectories: these trajectories go to
small values of r and are reflected once and recross.

(d) Roaming non reactive trajectories: these trajectories do not
react, but are not direct trajectories. They never cross the
TTS but eventually recross the OTS to end up at large values
of r. However, before recrossing the OTS they exhibit at least
three turning points in r.
(b)

(d)

sents the OTS and the thick blue line the TTS. All trajectories have energy E ¼ kBT ,
oaming reactive trajectories. (c) Direct non reactive trajectories. (d) Roaming non
the reader is referred to the web version of this article.)



Figure 6. Rotational state distributions for non reactive trajectories initiated on the
OTS. Normalized final rotor angular momentum (ph) distributions for roaming
(blue) and direct (red) non reactive trajectories are shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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These four categories exhaust all possible qualitatively different tra-
jectory behaviors (we ignore measure zero sets of trapped trajecto-
ries that approach POs in the roaming region along stable
manifolds). In Figure 3 in addition to the TTS and OTS we plot
two trajectories, one roaming reactive (yellow dots) and one roam-
ing non reactive (cyan dots).

With this classification of trajectories the existence of the roam-
ing phenomenon is immediately apparent. Panels (b) and (d) of
Figure 4 show trajectories which attempt to react but cannot find
their way through the TTS, and are reflected back. Close to the
TTS exchange of energy between the radial and angular modes
takes place and the hydrogen atom starts to orbit the CHþ3 ion in
the roaming region, which is the region of phase space between
the TTS and the OTS, before perhaps returning and crossing the
TTS to react (panel (b)) or promptly recrossing the OTS and leaving
the interaction region forever (panel (d)).

For the reverse process (photodissociation), we want to know
the behaviour of trajectories initiated on the TTS. Thus, the trajec-
tories in panel (b) of Figure 4 can be thought of as those trajectories
which start at the TTS, roam and then cross the OTS to give
CHþ3 + H. Again, the roaming mechanism finds a natural explana-
tion once we identify the relevant transition states, i.e., the TTS
and the OTS. These two DSs create a trapping region between
them, in which some trajectories may be captured circling for arbi-
trarily long times.

From Figure 4 panels (b) and (d), we can see that trajectories ap-
pear to oscillate in the r direction at r � 3:5 Å. This fact can be ex-
plained by the presence of the S2FR1 family of periodic orbits (see
Figures 1 and 2), where the H atom makes full rotations in the an-
gle h and small oscillations in r. In Figure 5 we plot the same trajec-
tories as in panels (b) and (d) of Figure 4 with the projection of this
PO (orange line) for the same energy (300 K). We see this PO is
actually a 2:1 resonance between the radial and angular modes,
since during the time h covers the range ½0; 2p� there are two oscil-
lations in the r direction. Trajectories are presumably trapped by
the stable and unstable invariant manifold of the S2FR1 PO (and/
or POs created by period-doubling bifurcations, such as POs of fam-
ily S2FR12 in Figure 2), which explains the resemblance of some
trajectories to this PO.

We note that the S2FR1 family originates at an energy below
the threshold energy for dissociation to radical products, whereas
the RE family exists only for positive energies. Hence, we expect
that these periodic orbits will explain roaming effects observed
for total energies below the threshold to radical products as indeed
has been found in formaldehyde [46]. Nevertheless, we emphasize
that, despite the existence of the saddle EP3, the transition state
that controls the dissociation (association) reaction, and especially
(a)

Figure 5. Trajectories of panels (b) and (d) of Figure 4 with the PO (S2FR1) responsible fo
color in this figure legend, the reader is referred to the web version of this article.)
roaming, is that related to the RE periodic orbit. Calculation of ac-
tion integrals for the various periodic orbits shows that for the RE
family the action is smaller than S2FR1 POs. The minimum flux cri-
terion required in TST [29] is thus satisfied by the RE POs. Periodic
orbits of S2FR1 type and its period doubling bifurcations, which
emerge from above the saddle EP3, presumably serve to enhance
the roaming effect by increasing the possibilities for trapping of
trajectories.

Direct and roaming non reactive trajectories exhibit different fi-
nal rotational state distributions (see Figure 6), in line with previ-
ous findings on the roaming mechanism. Direct non reactive
trajectories are more likely to suffer a collision with the inner wall
of the potential and to exit the roaming region with large radial ki-
netic energy, and low final rotor angular momentum. Conversely,
trapped (roaming) trajectories are likely to have lower radial ki-
netic energy and hence larger rotor angular momentum.
4. Discussion

The roaming phenomenon has stimulated much recent research
[15] and has led to the identification of the roaming ‘mechanism’ in
the dissociation dynamics of several polyatomic molecules. The
roaming effect has brought transition state theory once more to
(b)

r trapping of these trajectories (orange line). (For interpretation of the references to
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the frontiers of research in chemical dynamics. Despite substantial
progress in the development of the phase space approach to funda-
mental concepts related to TST, such as dividing surface, activated
complex and reaction pathways [31], much recent work has shown
that adherence to a configuration space viewpoint based on the po-
tential energy surface alone may prohibit the comprehension of
the mechanisms of chemical reactions not directly associated with
minimum energy paths or saddles on the PES (in the context of or-
ganic reaction mechanisms, see, for example, Ref. [47]).

In this article, we have clearly demonstrated that NHIMs and
their stable/unstable manifolds exist and define minimal flux/
non-recrossing phase space dividing surfaces for ion–molecule
association or dissociation reactions. The associated DS rigorously
define a roaming region of phase space, in which both reactive
and non reactive trajectories can be trapped for arbitrarily long
times [36,38,37,27]. Our definition of the roaming region leads nat-
urally to a dynamically based classification of trajectories as either
roaming or non-roaming.

Extension of the concepts developed here to higher dimensional
(n P 3 degrees of freedom) systems is in principle straightforward,
as our framework does not depend essentially on dimensionality.
Nevertheless, substantial technical difficulties need to be overcome
for accurate computation of NHIM-DS for higher dimensional
systems.
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