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a b s t r a c t

In this paper a combined approximating and interpolating subdivision scheme is presented.
The relationship between approximating subdivision and interpolating subdivision is
derived by directly performing operations on geometric rules. The behavior of the
limit curve produced by our combined subdivision scheme is analyzed by the Laurent
polynomial and attains C2 degree of smoothness. Furthermore, a non-uniform combined
subdivision with shape control parameters is introduced, which allows a different tension
value for every edge of the original control polygon.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Subdivision is a very popular geometric modeling tool. In general, subdivision can be distinguished into two categories:
interpolating schemes and approximating schemes. Although approximating schemes yield smoother curves with higher
order continuity [1–3], interpolating schemes are more useful for engineering applications, especially the schemes with the
shape control [4,5]. The approximating schemes and interpolating schemes are related by a deep connection. Maillot et al.
[6] and Zhang [7] introduced a push-back method to progressively interpolate the control vertices. To obtain interpolating
refinement rules from approximating ones, Rossignac [8] used aweak operation and Li et al. [9] used a sequence of weighted
averaging operations. Lin et al. [10] proceededwith relationship between the cubic B-spline and four-point curve subdivision
scheme. Beccari et al. [11] employed generating functions to extend a unified univariate subdivision. All the considered
methods only produced C1-continuous limit function.

In this paper,we focus on constructing combined subdivision schemewith higher order continuity by directly performing
some simple operations on geometric rules. We also offer a method of intuitively modifying the approximating or
interpolating tension of the limit shape. The new combined approximating and interpolating four-point C2 subdivision
scheme is defined as follows:
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where
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with ω =
3
2 (1 + µ), ν =

3
2 (1 − µ), µ is free parameter. If α = 0, (1) generates the interpolating subdivision; if α = 1,

(1) generates approximating subdivision; and if 0 < α < 1, (1) generates the subdivision that produces the limit curves
intervening between approximating subdivision and interpolating subdivision. It is also proved that the proposed combined
subdivision generates curves with C2 continuity when 1/5 < µ < 1/3 and 0 ≤ α ≤ 1.

2. Preliminaries

In this section some fundamental definitions and results are recalled as the basis of the theory developed in the
remainder of this paper. For their derivation the reader is referred to [12,13]. Start from a set of initial control vertices
P0

= {p0i ∈ R, i ∈ Z}, the set of control vertices Pk+1
= {pk+1

i , i ∈ Z} at the (k + 1)th level generated by a ternary
subdivision scheme is defined by

Pk+1
i =


j∈Z

ai−3jPk
j , i ∈ Z. (2)

The set of coefficients a = {ai ∈ R, i ∈ Z} determines the subdivision rule. Let S be a convergent subdivision scheme with
a mask a. Then

i∈Z

a3i+j = 1, j = 0, 1, 2. (3)

The generating function associated with the set of coefficients can defined as the following Laurent polynomial:

a(z) =


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aiz i. (4)

A necessary Cm-continuity condition for the subdivision scheme is
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with am+1(z) denoting the (m + 1)th divided difference of a(z). In particular, if av+1(z) satisfies relation (3) for all v ∈

Z ∩ [0,m] and there exists an integer L > 0 such that ∥SL
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Let Sk be k-th refinement of the subdivision and13Sk+1


∞

=
1
3
max


i∈Z

|ak+1
3i |,


i∈Z

|ak+1
3i+1|,


i∈Z

|ak+1
3i+2|


, (6)

where
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j
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If ∥ 1
3S

k+1
∥∞ < 1 for all given initial control vertices P0, then S∞P0

∈ Ck.

3. Combined approximating and interpolating four-point ternary subdivision scheme

In this section, we deduce our combined four-point ternary subdivision scheme by directly performing operations on

geometric rules. Given a set of initial control vertices {P0
i ∈ R, i ∈ Z}, as shown in Fig. 1(a). First, insert two vertices P

1
2
3i+1
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Fig. 1. Relationship between ternary approximating and interpolating subdivision.

and P
1
2
3i+2 into the control polygon respectively at 1/3 and 2/3 parametric positions between P0

i and P0
i+1, as shown in Fig. 1(b).

Let

∆0
i = −

1
27

P0
i−1 +

2
27

P0
i −

1
27

P0
i+1, (8)

then move P
1
2
3i+1 and P

1
2
3i+2 to the new position P1

3i+1 and P1
3i+2 with displacement of ∆0

i and ∆0
i+1, while move P0

3i to the new
position P1

3i with displacement of 4∆0
i , as shown in Fig. 1(c). After k-th refinement iterations, Pk+1 can be deduced by the

ternary approximating scheme as follows:
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Based on (9), the corresponding interpolating subdivision curves can be deduced in this way: keep all the vertices P0
i

fixed and move the two inserted vertices P
1
2
3i+1 and P

1
2
3i+2 to a new position P
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3i+2 with ∆
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in Fig. 1(d). ∆
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where ω =
3
2 (1 + µ), ν =

3
2 (1 − µ), µ is free parameter. Thus the new interpolating four-point ternary subdivision can be

written in the form
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By adding a parameter α, we can formalize the connection between (9) and (11) as
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(12)

(12) is called the combined approximating and interpolating ternary subdivision scheme. It is obvious that both the
approximating subdivision defined by (9) and the interpolating subdivision defined by (11) are the special cases of the
combined subdivision scheme defined by (12). If α = 1, (12) generates the approximating subdivision and if α = 0, (12)
generates the interpolating subdivision scheme. From (8) and (12), we can get the combined ternary approximating and
interpolating subdivision in the formof (1). Fig. 2 illustrates a family of curves produced by our combined ternary subdivision
schemewith different α. In Section 4, wewill prove that our combined approximating and interpolating subdivision scheme
yields C2 limit curves when 1/5 < µ < 1/3 and 0 ≤ α ≤ 1.
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Fig. 2. A family of limit curves generated by our combined subdivision scheme from approximation to interpolation with α = 1.0, 0.8, 0.6, 0.4, 0.2, 0
from inside to outside, respectively.

4. Smoothness analysis

Theorem 1. The scheme defined by (1) converges and has smoothness C2 when 0 ≤ α ≤ 1 and 1/5 < µ < 1/3.

Proof. The generating function corresponding to the proposed combined ternary subdivision defined by (1) has the
following sequence of coefficients:

a = (ai) = (. . . , b3, b0, a0, b2, b1, a1, b1, b2, a0, b0, b3, . . .). (13)

The Laurent polynomial a(z) here can be written as:

a(z) = b3z−5
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In order to prove the smoothness of this scheme to be C2 according to (5), let
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where
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When 1/5 < µ < 1/3 and 0 ≤ α ≤ 1, the norm of subdivision 1
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When 1/5 < µ < 1/3 and 0 ≤ α ≤ 1, the norm of subdivision 1
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The calculation of b(4) does not give us a Laurent polynomial, i.e., the Laurent polynomial is disconverge everywhere ex-
cept at the origin. So, for 1/5 < µ < 1/3, we have ∥

1
3S1∥∞, ∥ 1

3S2∥∞, ∥ 1
3S3∥∞ < 1. It is easy to verify that a(0), a(1), a(2), a(3)

all satisfy


i∈Z a3i+j = 1. Hence, the limit curve produced by our ternary combined subdivision is C2. �

5. Non-uniform combined subdivision with shape control parameters

Let αi and βi be a substitution of α in (12), the non-uniform combined subdivision scheme can be defined by
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where
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with ω =
3
2 (1 + µ), ν =

3
2 (1 − µ), µ is free parameter.

The parameter αi controls the interpolating property of the subdivision curve and the parameter βi controls the
approximating property of the subdivision curve. The two parameters can intuitively modify the approximating or
interpolating tension of the limit shape. If 0 ≤ αi ≡ βi ≤ 1 and 1/5 < µ < 1/3 for the adjacent vertices, it keeps the
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(a) αi = 0, βi = 0. (b) αi = 0, βi = 0.25. (c) αi = 0, βi = 0.5. (d) αi = 0, βi = 1. (e) αi = 0, βi = 2. (f) αi = 0, βi = 3.

(g) αi = 0, βi = 1. (h) αi = 0.25, βi = 1. (i) αi = 0.5, βi = 1. (j) αi = 1, βi = 1. (k) αi = 2, βi = 1. (l) αi = 3, βi = 1.

Fig. 3. µ =
3
10 . Top row: limit curves obtained by the combined subdivision scheme with αi ≡ 0 and βi = 0, 0.25, 0.5, 1, 2, 3, respectively. Bottom row:

limit curves obtained by the combined subdivision scheme with βi ≡ 1 and αi = 0, 0.25, 0.5, 1, 2, 3, respectively.

Fig. 4. The effect of local interpolation by our combined subdivision with µ =
3
10 and different αi , βi .

limit curve near these vertices is C2-continuous. The parameter µ is the free parameter. It is obvious that µ only has the
influence to the interpolation situation, because if the scheme is the approximation mode with βi ≡ 1, it means µ would
have no contribution to the shape of curves. In the interpolation mode, if 1/5 < µ < 1/3, the limit subdivision curve is
convergent; if µ ≤ 1/5, the curvature of curve becomes very large and if µ ≥ 1/3 the curvature becomes discontinuous
[12]. Fig. 3 shows some subdivision curves of fitting a square produced by (26) with different control parameters αi and βi.
Fig. 4 shows that one can easily interpolate the control vertices in a local manner and change tension value for every edge
of the original control polygon.

6. Conclusion

This paper presents a new combined approximating and interpolating subdivision scheme for designing curves. Our
combined subdivision scheme can produce limit curves intervening between approximating subdivision and interpolating
subdivision. Our combined subdivision scheme attains C2 degree of smoothness. Furthermore, a non-uniform combined
subdivision with shape control parameters is introduced, which allows a different approximating or interpolating tension
value for every edge of the original control polygon.
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