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Abstract

In this further Letter on the onset of classical behaviour in field theory due to a phase transition, we show that it can be phrased easily in terms
of the decoherence functional, without having to use the master equation. To demonstrate this, we consider the decohering effects due to the
displacement of domain boundaries, with implications for the displacement of defects, in general. We see that decoherence arises so quickly in
this event, that it is negligible in comparison to decoherence due to field fluctuations in the way defined in our previous papers.
© 2007 Elsevier B.V.
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The standard big bang cosmological model of the early uni-
verse, with its period of rapid cooling, gives a strong likelihood
of phase transitions, with concomitant symmetry breaking. This
Letter is a further Letter in a sequence by ourselves and col-
laborators [1–3] in which we explore the way in which such
phase transitions naturally take us from a quantum to classical
description of the universe.

That (continuous) transitions can lead rapidly to classical be-
haviour is not surprising. Classical behaviour has two attributes.
(i) Classical correlations: By this is meant that the Wigner
function(al) W [π,φ] peaks on classical phase-space trajecto-
ries. (ii) Diagonalisation of the decoherence functional, whose
role is to describe consistent histories.

Continuous transitions supply both ingredients. Firstly, the
field ordering after such a transition is due to the growth in
amplitude of unstable long-wavelength modes, which arise au-
tomatically from unstable maxima in the potential. From the
papers of Guth and Pi [4] onwards, it has been appreciated that
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unstable modes lead to correlations through squeezing, and we
shall not consider it further. Secondly, we understand diago-
nalisation to be an almost inevitable consequence of coarse-
graining. The stable short-wavelength modes of the field [9],
together with the other fields with which it interacts, form an en-
vironment whose coarse-graining enforces diagonalisation and
makes the long-wavelength modes decohere. It is how this is
implemented that is the basis of this Letter.

We stress that there is more than one way to formulate diag-
onalisation. In our earlier papers [1–3] we required the density
matrix ρ(t) itself to become diagonal, rather than the decoher-
ence functional. Whichever approach we adopt, there is an issue
as to which field basis we attempt to enforce diagonalisation,
which can only be approximately achieved. For an infinite de-
gree of freedom system field, ideally we should think of diago-
nalisation functionally. In practice this is impossible to achieve,
and we are forced to adopt a piecemeal approach in which we
make ‘mini-superspace’ approximations in which a finite num-
ber of degrees of freedom are isolated as the most significant.
On comparing these, the relevant ones are those which decohere
last. Since we are looking for the onset of classical behaviour,
we take adjacent classical solutions with which to require no
quantum interference. With these caveats we shall see later that
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the two approaches lead to the same results. In each case a prob-
abilistic description is obtained, but the approach given here
permits easier calculation.

Since phase transitions take place in a finite time, causality
guarantees that correlation lengths remain finite. In our previous
work, and this, we use the formation of domains after a transi-
tion to characterise the onset of classicality. To recapitulate, we
showed [1–3], by using the master equation for the reduced den-
sity matrix, that the environment renders the long-wavelength
modes of the order parameter field classical at early times, by or
before the transition is complete. In particular, those modes on
the scale of the domain size will have decohered, even though
the modes on the scale of domain boundary thickness do not. In
this Letter we recreate that result rather more simply and show
that a parallel result holds due to small displacements of do-
main boundaries, in a coarse-graining that is insensitive to their
positions.

This latter result has another consequence. If the symmetry
breaking permits non-trivial homotopy groups the frustration
of the order parameter fields is resolved by the creation of topo-
logical defects to mediate between the different ground states
[5,6]. Since defects are, in principle, observable, they provide
an excellent experimental tool for determining how phase tran-
sitions occur. For the simple theory that we shall consider here,
that of a real scalar field with double-well potential, the domain
boundaries are the defects (domain walls) and we can view our
results as decoherence as induced by small displacements of
defects. The generalisation to a complex field φ is straightfor-
ward, and has been considered elsewhere [7]. This gives more
substance to our preliminary attempts to show that vortex de-
fects are also classical by the time of their production [7].

As in our earlier work, we restrict ourselves to flat space–
time. The extension to non-trivial metrics is straightforward in
principle [8].

We now consider the case of a real quantum field φ with
double-well potential in detail. As we have said, the field or-
dering after the transition begins is due to the growth of long-
wavelength modes. For these modes the environment consists
of the short-wavelength modes of the field, together with all
the other fields with which φ inevitably interacts in the absence
of selection rules [9,10]. The inclusion of explicit environment
fields is both a reflection of the fact that a scalar field in iso-
lation is physically unrealistic, as well as providing us with a
systematic approximation scheme [1]. To be specific, the sim-
plest classical action with scalar and environmental fields χa is

(1)S[φ,χ] = Ssyst[φ] + Senv[χ] + Squ[φ,χ],

where (with μ2, m2 > 0)

Ssyst[φ] =
∫

d4x

{
1

2
∂μφ∂μφ + 1

2
μ2φ2 − λ

4
φ4

}
,

Senv[χ] =
N∑

a=1

∫
d4x

{
1

2
∂μχa∂

μχa − 1

2
m2

aχ
2
a

}
,

and the most relevant interactions between system and environ-
ment are of the biquadratic form

(2)Squ[φ,χ] = −
N∑

a=1

ga

8

∫
d4x φ2(x)χ2

a (x).

Even if there were no external χ fields with a quadratic inter-
action of kind of Eq. (2), the interaction between short- and
long-wavelength modes of the φ-field can be recast, in part, in
this form, showing that such a term is obligatory.

Although the system field φ can never avoid the decohering
environment of its own short-wavelength modes [9], to demon-
strate the effect of an environment we first consider the case
in which the environment is taken to be composed only of the
fields χa. Since environments have a cumulative effect on the
onset of classical behaviour, the inclusion of a further compo-
nent of the environment reduces the time it takes for the system
to behave classically. Thus it makes sense to include the envi-
ronment one part after another, since we can derive an upper
bound on that time at each step.

We have shown elsewhere [1–3] that, in order to make our
calculations as robust as possible, we need a significant part of
the environment to have a strong impact upon the system-field,
but not vice versa. The simplest way to implement this is to
take a large number N � 1 of scalar χa fields with compara-
ble masses ma � μ weakly coupled to the φ, with λ, ga � 1
(for details see Ref. [1]). Thus, at any step, there are N weakly
coupled environmental fields influencing the system field, but
only one weakly self-coupled system field to back-react upon
the explicit environment.

For one-loop consistency it is sufficient, at order of magni-
tude level, to take identical ga = g/

√
N . Further, at the same

order of magnitude level, we take g � λ. This is very different
from the more usual large-N O(N + 1)-invariant theory with
one φ-field and N χa fields, dominated by the O(1/N) (χ2)2

interactions, that has been the standard way to proceed for a
closed system [11]. With our choice there are no direct χ4

interactions, and the indirect ones, mediated by φ loops, are de-
pressed by a factor g/

√
N . In this way the effect of the external

environment qualitatively acts as a proxy for the effect of the
internal environment provided by the short-wavelength modes
of the φ-field, but in a more calculable way.

We shall assume that the initial states of the system and en-
vironment are both thermal, at a high temperature T0 > Tc. We
then imagine a change in the global environment (e.g. expan-
sion in the early universe) that can be characterised by a change
in temperature from T0 to Tf < Tc. That is, we do not attribute
the transition to the effects of the environment-fields.

Given our thermal initial conditions it is not the case that
the full density matrix has φ and χ fields uncorrelated initially,
since it is the interactions between them that leads to the restora-
tion of symmetry at high temperatures. Rather, on incorporating
the hard thermal loop ‘tadpole’ diagrams of the χ (and φ) fields
in the φ mass term leads to the effective action for φ quasipar-
ticles,

(3)Seff
syst[φ] =

∫
d4x

{
1
∂μφ∂μφ − 1

m2
φ(T0)φ

2 − λ
φ4

}
,

2 2 4
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where, in a mean-field approximation, m2
φ(T0) = −μ2(1 −

T 2
0 /T 2

c ) for T ≈ Tc. As a result, we can take an initial fac-
torised density matrix at temperature T0 of the form ρ̂[T0] =
ρ̂φ[T0] × ρ̂χ [T0], where ρ̂φ[T0] is determined by the quadratic
part of Seff

syst[φ] and ρ̂χ [T0] by Senv[χa]. That is, the many χa
fields have a large effect on φ, but the φ-field has negligible
effect on the χa.

Provided the change in temperature is not too slow the ex-
ponential instabilities of the φ-field grow so fast that the field
has populated the degenerate vacua well before the temperature
has dropped significantly below Tc [12]. Since the temperature
Tc has no particular significance for the environment fields, for
these early times we can keep the temperature of the environ-
ment fixed at Tχ ≈ Tc (our calculations are only at the level of
orders of magnitude). Meanwhile, for simplicity the χa masses
are fixed at the common value m � μ.

It is sufficient for our purposes here to take an instantaneous
quench. Slower quenches make the analytic calculations very
much more difficult, without changing the qualitative nature of
the results [1].

The notion of consistent histories provides an alternative ap-
proach to classicality to trying to solve the master equation, as
we have done previously. Quantum evolution can be consid-
ered as a coherent superposition of fine-grained histories. Since
we need to be able to distinguish different classical system-
field configurations evolving after the transition, we work in the
field-configuration basis. If one defines the c-number field φ(x)

as specifying a fine-grained history, the quantum amplitude for
that history is Ψ [φ] ∼ eiS[φ] (we work in units in which h̄ = 1).

In the quantum open system approach that we have adopted
here, we are concerned with coarse-grained histories

(4)Ψ [α] =
∫

DφeiS[φ]α[φ],
where α[φ] is the filter function that defines the coarse-
graining. In the first instance this filtering corresponds to tracing
over the χa degrees of freedom.

From this we define the decoherence functional for two
coarse-grained histories as

(5)

D
[
α+, α−] =

∫
Dφ+Dφ−ei(S[φ+]−S[φ−])α+[

φ+]
α−[

φ−]
.

D[α+, α−] does not factorise because the histories φ± are not
independent; they must assume identical values on a spacelike
surface in the far future. Decoherence means physically that the
different coarse-graining histories making up the full quantum
evolution acquire individual reality, and may therefore be as-
signed definite probabilities in the classical sense.

A necessary and sufficient condition for the validity of the
sum rules of probability theory (i.e. no quantum interference
terms) is [13]

(6)ReD
[
α+, α−] ≈ 0,

when α+ 	= α− (although in most cases the stronger condition
D[α+, α−] ≈ 0 holds [14]). Such histories are consistent [15].

For our particular application, we wish to consider as a sin-
gle coarse-grained history all those fine-grained ones where the
full field φ remains close to a prescribed classical field config-
uration φcl. The filter function takes the form

(7)αcl[φ] =
∫

DJei
∫

J (φ−φcl)αcl[J ].
In the general case, α[φ] is a smooth function (we exclude the
case α[φ] = const, where there is no coarse-graining at all).
Using

(8)Jφ ≡
∫

d4x J (x)φ(x),

we may write the decoherence functional between two classical
histories as

D
[
α+, α−] =

∫
DJ+DJ−eiW [J+,J−]−(J+φ+

cl −J−φ−
cl )

(9)× α+[
J+]

α−∗[J−]
,

where

(10)eiW [J+,J−] =
∫

Dφ+Dφ−ei(S[φ+]−S[φ−]+J+φ+−J−φ−),

is the closed-path-time generating functional [16].
In principle, we can examine adjacent general classical so-

lutions for their consistency but, in practice, it is simplest to
restrict ourselves to particular solutions φ±

cl , according to the
nature of the decoherence that we are studying. Initially, as we
said earlier, we have made a de facto separation into the or-
der parameter field φ and its explicit environmental fields χa

whereby, in a saddle-point approximation over J ,

(11)D
[
φ+

cl , φ
−
cl

] ∼ F
[
φ+

cl , φ
−
cl

]
.

F [φ+, φ−] is the Feynman–Vernon [17] influence functional
(IF) (see Refs. [1,9] for details). The influence functional is
written in terms of the influence action A[φ+

cl , φ
−
cl ] as

(12)F
[
φ+

cl , φ
−
cl

] = exp
{
iA

[
φ+

cl , φ
−
cl

]}
.

As a result,

(13)
∣∣D[

φ+
cl , φ

−
cl

]∣∣ ∼ exp
{− Im δA

[
φ+

cl , φ
−
cl

]}
,

where δA is the contribution to the action due to the environ-
ment.

From this viewpoint, once we have chosen the classical so-
lutions of interest, adjacent histories become consistent at the
time tD , for which

(14)1 ≈ Im δA|t=tD .

As we are considering weak coupling with the environment
fields, we may expand the influence functional F [φ+, φ−] up
to second non-trivial order in coupling strengths for large N .
Higher terms are depressed by powers of N . The general form
of the influence action is then [9,18]

δA
[
φ+, φ−] = {〈

Sint
[
φ+, χ+

a

]〉
0 − 〈

Sint
[
φ−, χ−

a

]〉
0

}
+ i

2

{〈
S2

int

[
φ+, χ+

a

]〉
0 − [〈

Sint
[
φ+, χ+

a

]〉
0

]2}
− i

{〈
Sint

[
φ+, χ+

a

]
Sint

[
φ−, χ−

a

]〉

0
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− 〈
Sint

[
φ+, χ+

a

]〉
0

〈
Sint

[
φ−, χ−

a

]〉
0

}

(15)

+ i

2

{〈
S2

int

[
φ−, χ−

a

]〉
0 − [〈

Sint
[
φ−, χ−

a

]〉
0

]2}
.

As a further step we make a separation of the φ-field itself
into its long wavelength modes with |k| < μ, which determine
the domains, and the short wavelength modes (|k| > μ) which
act as their implicit environment. However, in calculating tD
this latter step only serves to further reduce decoherence times
which, as we shall see, are already short enough.

In reality, even if we ignore this step for the purpose of
bounding tD there is not a unique bound, since it depends on
the class of classical solutions considered. However, in prac-
tice all sensible choices seem, qualitatively, to give the same
upper bound on tD . The reasons for this are the following.
Firstly, for the long wavelength system modes the spatial pro-
file of the classical solution is not particularly relevant, since it
is its exponential growth in time that sets the scale for the on-
set of classical behaviour. Thus, not only is tD insensitive to
wavelength for small-k modes, but it only depends logarithmi-
cally on the parameters of the theory. Further, with the common
mass-scale μ that we assume here, the Compton wavelength
μ−1, both determines the rate of exponential growth and pro-
vides the natural distance scale over which we do not wish to
discriminate between classical solutions. Different choices lead
to differences in μtD of order unity, significantly smaller than
μtD itself, which we ignore. For weak couplings it is relatively
easy to compute the upper bound on this time due to the inter-
actions Sint[φ,χ] of (2). We shall now see that, in our particular
model, it is in general shorter than the time t∗ at which the tran-
sition is complete, defined in terms of the system field as the
time for which

(16)
〈
φ2〉

t∗ ∼ η2 = 6μ2/λ,

where the average is taken over the system field. That is, in
(16) we ignore the contributions from the dominant environ-
ment given by the short wavelength (|k| > μ) modes of φ.
This renders 〈φ2〉t∗ finite. (More explicitly, in the language
of our earlier papers based on the master equation, e.g., [1],
〈φ2〉t∗ = Tr{ρrφ

2}, where ρr is the reduced density matrix ob-
tained on tracing out the environment.) Any ambiguities are
again of order unity in μtD , the timelag for non-linear effects
to occur, in comparison to the exponential runaway of the free
field [19].

Since the effect of the environment is to induce damping, the
classical behaviour of the field is expressed through the classi-
cal Langevin stochastic equations that it satisfies [20,21]. We
are assuming that coupling is sufficiently strong for the system
not to recohere after t∗ [22].

For the biquadratic coupling of Eq. (2), the IF is given by

Re δA = g2

8

∫
d4x

∫
d4y �(x)K(x − y)Σ(y),

Im δA = −g2

16

∫
d4x

∫
d4y �(x)N(x, y)�(y),
where K(x − y) = ImG2++(x, y)θ(y0 − x0) is the dissipation
kernel and N(x − y) = ReG2++(x, y) is the noise (diffusion)
kernel. G++ is the relevant closed-time-path correlator of the
χ -field at temperature T0 [1]. We have defined � = 1

2 (φ+2 −
φ−2) and Σ = 1

2 (φ+2 + φ−2).
We look for classical solutions of the form

φcl(x, s) = f (s, t)Φ(x),

where, in principle, f (s, t) satisfies f (0, t) = φi and f (t, t) =
φf and Φ(x) gives the space-field configuration.

We begin by showing that, using (14), we recreate the re-
sults obtained previously in Refs. [1,2] on using the more com-
plicated master equation, in which the field is spread through
space, and decoherence is due to different field amplitudes.
In anticipation that tD < t∗, it is sufficient to restrict our-
selves to the initial Gaussian free field evolution with negative
(mass)2. In fact, for idealised Langevin equations, this can be
a good approximation for domain formation into the non-linear
regime [12]. We look for classical fields that, after a sudden
quench, have the form [2]

(17)φ±
cl (s, x) = eμsφ±

f cos(k0 x) cos(k0 y) cos(k0 z),

where φ±
f is the final field configuration. This is a single mode

approximation to a regular chequer-board domain structure.
Shorter wavelengths can be introduced without altering the re-
sult significantly. The reader is referred to [1] for more details.
For an instantaneous quench, we will use the late time behav-
iour of the longest wavelengths (k0 = 0), φ±

cl (s, x) ∼ eμsφ±
f .

The exponential factor, as always, arises from the growth of the
unstable long-wavelength modes.

Thus, Im δA[φ+
cl , φ

−
cl ] takes the form

Im δA = g2V T 2
c π

64
�2

f

∞∫
0

dk

(k2 + μ2)2

(18)× 1 + e4μt − e2μt cos (2
√

k2 + μ2 )

(k2 + 2μ2)
,

where �f = 1/2(φ+2
f − φ−2

f ), and Tc is the critical environ-
mental-temperature. As we noted in previous publications, the
volume V is due to the fact we are considering field configu-
rations spread over all space. V is interpreted as the minimal
volume inside which there are no coherent superpositions of
macroscopically distinguishable states for the field. Later, we
shall consider localised configurations where this factor does
not appear.

After assuming μt � 1, the integral in momenta can be done
analytically obtaining,

(19)Im δA ∼ g2V T 2
c π2

256

(3 − 2
√

2 )

μ3
�2

f e
4μt .

With this expression at hand, we are able to evaluate the deco-
herence time tD for amplitude variation as

(20)μtD ∼ 1

2
ln

{
16μ3/2

gTc�fV 1/2π

√
(3 − 2

√
2 )

}
.
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Using a conservative value for the volume, V =O(μ−3), we
get

(21)μtD ∼ 1

2
ln

{
16μ3

gTc�f

}
.

We re-write last expression in terms of �f = φ̄�̄/2, with φ̄ =
φ+

f +φ−
f and �̄ = φ+

f −φ−
f . At the completion of the transition

φ̄2 � η2 ∼ λ−1, and we will adopt, at time tD , φ̄2 ∼O(μ2α/λ).
λ < α < 1 is to be determined self-consistently from the condi-
tion that, at time tD , 〈φ2〉t ∼ αη2. We have shown in Ref. [2]
that the value of α is determined as α ≈ √

μ/Tc. We also set
�̄ ∼ 2μ (i.e. we do not discriminate between field amplitudes
which differ by O(μ)), where μ−1 characterises the thickness
of domain boundaries (walls) as the field settles into its ground-
state values. Additionally, for simplicity we take the couplings
g ∼ λ. Therefore, we obtain an upper bound on tD ,

(22)μtD ∼ 1

2
ln

{
η

Tc

√
α

}
,

which exactly coincides with the result found in Ref. [2] from
the master equation for a sudden quench but, in the present case,
using the decoherence functional approach.

If we now trace over short-wavelength modes, as in [9], but
for unstable modes, we would get a further term in Im δA qual-
itatively similar to (19), which will serve to preserve tD < t∗
by making tD even smaller. We shall not consider this implicit
environment in subsequent analysis.

For comparison, we find t∗, for which 〈φ2〉t ∼ η2, given
by [1,2]

(23)μt∗ ∼ 1

2
ln

{
η√
μTc

}
,

whereby μ−1 < tD < t∗, with

(24)μt∗ − μtD � 1

4
ln

{
Tc

μ

}
> 1,

for weak enough coupling, or high enough initial temperatures.
Having seen that the decoherence functional approach gives

identical conclusions to the solution of master equations, the
new work in this Letter is to evaluate the IF for different field
configurations which, from the point of view of the Master
equation, would be much more taxing analytically. Instead of
the classical solutions used before [1,3], in which the field is
spread in an infinite chequer-board through space, here we are
concerned with a different field configuration; a localised do-
main wall.

The orientation of such a wall is irrelevant, as was the orien-
tation of the chequer-board solution used earlier. Most simply,
we consider classical domain wall solutions (for the k0 = 0
mode) of the form

(25)φ±(s, x) = φ±
f eμs tanh(μx),

which link adjacent domains.
Our main new result is to determine the decoherence in-

duced by a small displacement in the domain wall, by evalu-
ating the influence action for the classical field configurations
φ±(x, s) = ηf (s, t)Φ±(x), where Φ±(x) = Φ(x ± δ/2). We
will consider δ as a small displacement in the position of the
wall, and consequently we expand the classical solution (or,
equivalently, �(x)) in powers of μδ, up to linear order

�(s, x) ≈ μδη2e2μs tanh(μx)sech2(μx).

Doing this, the imaginary part of the influence action can be
written as (after integrating over time and assuming μt � 1),

Im δA ≈ g2T 2
c η4δ2μ2

64(2π)6
e4μt

∫
d3x

∫
d3y

×
∫

d3k

∫
d3p

e−i( p+k)(x−y)

(k2 + μ2)(p2 + μ2)

× tanh(μx)sech2(μx) tanh(μy)sech2(μy)

[(√k2 + μ2 + √
p2 + μ2 )2 + 4μ2] .

These integrations can be exactly evaluated (in part analyti-
cally and in part numerically), to give

(26)Im δA ≈ 0.2
g2T 2

c η4L2δ2

1024

e4μt

μ2
,

where L2 is a surface term, analogous to the volume V in the
chequer-board analysis. This coefficient comes from the fact
that we are considering a one-dimensional kink solution em-
bedded in a three-dimensional space. The L2 coefficient comes
from the “free surface” or wall in two directions of the three-
dimensional kink. Considering very conservative values (such
as to obtain upper bounds for tD), we can set L = O(μ−1) as
the minimum length scale in which there could be not coherent
superpositions of macroscopic states of the field.

If the decoherence time due to displacements is t̄D , let us
suppose that μt̄D > 1. Then t̄D can be evaluated from the last
equation, and its order of magnitude is given by

(27)μt̄D ∼ 1

2
ln

{
74μ

gTcη2Lδ

}
.

Superficially, this result looks similar to previous results, where
the difference between the field amplitudes has been replaced
by the scale of displacement suffered by the domain boundary
wall, δ. The main difference is in the power of η inside the log.
If one takes δ = γμ−1, we may bound t̄D as

(28)μt̄D ∼ 1

2
ln

{
12μ

γTc

}
.

Since Tc � μ (in fact one can show T 2
c /μ2 ∼ 24/λ [1]), this

result puts a bound on the possible value of γ in order to have
μt̄D > 1, i.e. γ � μ/Tc � 1, and hence δ � μ−1. If γ is larger,
at very early times in our model t ∼ μ−1, we get from Eq. (26)
Im δA > 1 immediately. Thus, the system behaves classically
from this earliest permissible time, μt̄D =O(1).

Since the size of the core of the domain wall is O(μ−1),
we take δ ∼ O(μ−1) (i.e. γ = O(1)) as the minimum length
scale in which there could be not coherent superpositions of
macroscopic states of the field. With decoherence occurring at
the earliest possible time it follows automatically that

(29)μt∗ − μt̄D > 0.
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Even if we demand decoherence at scales a fraction of the do-
main wall core thickness (i.e. γ � 1) we can ensure that

(30)μt∗ − μt̄D ∼ 1

4
ln

{
γ 2Tc

λμ

}
> 0.

This result implies that decoherence due to the displacement of
the boundary is a very early time event t̄D < tD .

The outcome of this analysis is that configurations of field
domains with displaced boundaries are less important for deco-
herence than fixed domains in which there are field fluctuations,
which decohere later.

What is more appealing is, if one perform all the calculation
in 1 + 1 dimensions, the coefficient L appears only in our first
example (i.e. the plane-wave); not for the kink-like solutions.

In fact, rather than consider a whole chequer-board of do-
mains as in [1–3], we can restrict ourselves to two adjacent
domains with boundary given by (25). Consider the simple case
where the difference between walls is given by φ+

f = φ−
f − ε,

with ε a small fluctuation around the final value of the field
configuration. We assume that the final field configuration is
φ+

f = √
αη, with α the self-consistent coefficient shown earlier

and ε = O(μ). Perhaps surprisingly, we recreate the result of
(24) exactly. Yet again, we have decoherent behaviour before
the transition is completed.

In addition, the field possesses classical correlations at early
times by virtue of the quasi-Gaussian nature of the regime [7,
23] to give a fully classical picture by time t∗.

Finally, we return to the other view of domain boundaries
mentioned in the introduction, as topological defects. What
does this analysis have to say about the classical behaviour of
defects like vortices, whose separation also measures the size
of domains in simple circumstances [24]? Treating vortices as
having their cores as line zeroes (in the same way that the cores
of our domain walls are sheet zeroes) we have shown elsewhere
that the mechanism for the production of classical vortices has
several parts [7]. Yet again, the environment renders the long-
wavelength modes of the order parameter field classical at early
times, by or before the transition is complete. In particular,
those on the scale of the separation of the line-zeroes that will
characterise the classical domains will have decohered by the
time the transition is complete, even though the field modes on
the scale of classical vortex thickness do not decohere ever. For
line-zeroes to mature into vortex cores the field needs to have
an energy profile commensurate with the vortex solutions to
the ordinary classical Euler–Lagrange equations. This requires
that the field fluctuations are peaked around long-wavelengths,
to avoid fluctuations causing wiggles in the cores and creating
small vortex loops, a related condition satisfied in our models.
The resultant density of line-zeroes can already be inferred in
the linear regime, whose topological charges are well defined
even though close inspection of their interior structure is not
permitted classically. What the analysis of this Letter shows is
that we expect decoherence due to vortex displacement to be ir-
relevant in comparison to decoherence due to field fluctuations.
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