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Abstract
During the last decade the techniques of complex network analysis have found application in
climate research. The main idea consists in embedding the characteristics of climate variables,
e.g., temperature, pressure or rainfall, into the topology of complex networks by appropriate
linear and nonlinear measures. Applying such measures on climate time series leads to defining
links between their corresponding locations on the studied region, whereas the locations are the
network’s nodes. The resulted networks, consequently, are analysed using the various network
analysis tools present in literature in order to get a better insight on the processes, patterns
and interactions occurring in climate system. In this regard we present ClimNet; a complete
set of software tools to construct climate networks based on a wide range of linear (cross
correlation) and nonlinear (Information theoretic) measures. The presented software will allow
the construction of large networks’ adjacency matrices from climate time series while supporting
functions to tune relationships to different time-scales by means of symbolic ordinal analysis.
The provided tools have been used in the production of various original contributions in climate
research. This work presents an in-depth description of the implemented statistical functions
widely used to construct climate networks. Additionally, a general overview of the architecture
of the developed software is provided as well as a brief analysis of application examples.
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1 Introduction

Many techniques of complex network analysis have found application to complex systems. Ex-
amples of these include, but not limited to, applications in airline transportation networks
modelling [?], social interactions [?] or the Internet [?]. The study of network properties have
proven to be vital tools to analyse and predict the behaviour of such complex systems. These
systems share the characteristic that they can be straightforwardly represented in terms of a
well-defined set of nodes coupled via links that have a clear physical interpretation.

In a continuous system, however, like the atmosphere or the ocean, it is not always clear
how to define the relevant network nodes, and there is usually no obvious interaction that can
be used to define links between them. In order to tackle this problem, the so called interaction
networks have been recently used. As such, the observed atmospheric or ocean locations serve
as nodes, and the links are calculated based on statistical measures of similarity (e.g. correlation
coefficient) between pairwise time series of observations at the studied locations.

In like manner, climate networks (CNs) represent a statistical similarity structure of spatio-
temporal resolved climatological variables, which depend on this definition of nodes and links.
Their spatial sampling results in a space-embedded topology, and thus, a careful interpretation
of the inferred network is required.

CNs have been successfully employed to analyse climate features, for instance the analysis of
significant correlations [?, ?] and atmospheric teleconnections [?], the study of local phenomena
as El Niño-Southern Oscillation (ENSO) [?]. Other CNs techniques have been applied to inves-
tigate the connections between sea surface temperature (SST) variability and the global mean
temperature [?] and to study the possible collapse of the meridional overturning circulation
(MOC) [?] on the north Atlantic.

On a related note, climate system is known for its multi-scale interactions and hence one
would like to explore the interaction of processes over the different scales. Data are available
through high-resolution ocean/atmosphere/climate observational and model simulations but
they lead to networks with a big number of nodes (∼ 10000) making the process of network
construction computationally demanding. Moreover, when high-resolution model data are used,
constructing such networks becomes very challenging using currently available software tools.
For such scales, parallel climate network construction and analysis tools have been developed,
e.g. Par@Graph [?]. However, these tools are not usually based on information theoretic
techniques, but rather on linear correlation calculations.

In contrast, ClimNet enables the construction of directed and non-directed climate networks
based on state of the art Information-theoretic tools, besides ordinary correlation coefficient
measures. As well, ordinal analysis technique is implemented to analyse time scales directly
from the data. Additionally, robust statistical analysis are in place to assure the significance of
the results.

The provided features of ClimNet have been used in previous works [?, ?, ?] to construct
and analyse climate networks from correlations in surface air temperature (SAT) time series.
More precisely, the software have been used to process the interdependencies between the time
series and use this information – together with a statistical significance test – to create an
adjacency matrix suitable to be explored and analysed by conventional network analysis tools
and interpreted from a climatological point of view (see section 5).

In this paper the software to construct complex climate networks is described, mainly from
a functional (features) perspective, with special attention to the implemented statistical and
Information-theoretic measures. The software functions have been computationally optimised
and safe multithreading has been also introduced to enable parallel processing on multi-core
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machines. However, since our major focus here is on the usability and application of the
tools, their application to real climate data will be addressed here, whereas the scalability and
performance of ClimNet will be discussed elseweher in a coming work.

On a different matter, It should be mentioned that knowledge in climate dynamics is neces-
sary in order to understand the patterns calculated by the the presented software. However, the
analysis of the networks are done by running common graph theory algorithms to find network
metrics including degree distribution, closeness and betweenness centrality.

2 Measures for Climate Networks Construction

The software is equipped with functions to produce Information-theoretic measures - non linear
correlation and information transfer between time series. All the measures (except entropy) are
pairwise, i.e. based on the similarity found between each pair of time series. The list of these
measures are described as follows:

2.1 Cross Correlation

It is implemented for benchmarking and for comparison with information theoretic techniques.
The Pearson correlation coefficient [?] is defined as:

E[(X − μX)(Y − μY )] =
1

(n− 1)

n∑

i=1

(xi − μx)(yi − μy) (1)

where xi and yi are X and Y are two random variables with expected values μX and μY and
standard deviations σX and σY and E is the expected value.

2.2 Entropy

The Shannon’s definition of entropy is generally defined in terms of the probability density
function (PDF) pi, of the system to be in state x out of a possible set of states A:

H = −
∑

i∈A
pi logb pi. (2)

Here, pi is the probability of the value number i to appear in a sequence of characters of a given
time series. This measure can be used to better understand the characteristics of the series. It
is an univariate measure and the result of the calculations does not yield a network.

2.3 Mutual Information

Mutual information is computed from the probability density functions (PDFs) that characterise
two time series in two nodes, pi and pj , as well as their joint probability function, pij [?]:

Mij =
∑

m,n

pij(m,n) log
pij(m,n)

pi(m)pj(n)
. (3)

Mij is a symmetric measure

Mij = Mji (4)
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of the degree of statistical interdependence for the time series i(t) and j(t); if they are indepen-
dent:

pij(m,n) = pi(m)pj(n) (5)

and thus Mij = 0.

2.4 Directionality Index

The directionality index (DI) is defined as:

DIXY (τ) =
IXY (τ)− IY X(τ)

IXY (τ) + IY X(τ)
, (6)

where the IXY (τ) and IY X(τ) are called conditional mutual information and are defined as:

IXY (τ) = I(X;Y |Xτ )

= H(X|Xτ ) +H(Y |Xτ )−H(X,Y |Xτ ); (7)

IY X(τ) = I(Y ;X|Yτ )

= H(Y |Yτ ) +H(X|Yτ )−H(Y,X|Yτ ), (8)

with Xτ = X(t− τ), Yτ = Y (t− τ) and H(X|Y ) being the conditional entropy [?].
The directionality index, DIXY , then quantifies the net information flow. From the definition

of DIXY , Eq.(6), it is clear that DIXY = −DIY X . Also, −1 ≤ DIXY ≤ 1: DIXY = 1 if and
only if IXY �= 0, IY X = 0 (i.e., the information flow is X → Y and there is no back coupling
Y → X) and DIXY = −1 if and only if IXY = 0, IY X �= 0 (i.e., the information flow is Y → X
and there is no back coupling X → Y ).

Naturally, τ > 0 is a parameter that has to be tuned appropriately to the time-scales relevant
to the particular dataset.

2.5 Symbolic Ordinal Patterns

For the information theoretic measures (entropy, MI and DI) the PDF of the time series has to
be approximated. This can be done in several ways, the most usual is by means of histograms
of the data.

ClimNet provides two way to calculate the PDFs pi, pj and pij : by histograms of the original
values (this case will be referred to as MIH) and by using a symbolic transformation, in terms
of probabilities of ordinal patterns [?] (this case will be referred to as MIOP).

MIOP allows time scale selection, which can be used in any information theoretic measure.
The procedure for this calculation is the following: Ordinal Patterns are calculated by pointing
out the value of a data point relative to other values in the series. Using e.g. three symbols
(letters) 3! = 6 different patterns exist, for four symbols there will be 4! = 24 patterns, and so
forth – see Fig. 1 (a) and (b) respectively. The possibility of two equal adjacent values is not
considered, partly due to the presence of noise in the time series.

As shown in Fig. 1 OPs of length 3 are formed by 3 symbols in the following way: if a
value (xi(2)) is higher than the previous one (xi(1)) but lower than the next one (xi(3)), it will
yield the pattern ’123’ (Fig. 1 (1)), while the opposite case (xi(3) < xi(2) < xi(1)) will give the
pattern ’321’ (Fig. 1 (6)), etc. This symbolic transformation allows to detect correlations in the
sequence of values which are not taken into account when using histograms of values as they
do not consider the order in which the values appear in the time series. As a drawback, this
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Figure 1: Ordinal patterns are computed from the comparison between (not necessarily ad-
jacent) points on a time series. The number of possible patterns depend on the number of
“letters” considered. In the general case they grow as n!. [?]

technique does not contain information about the relative magnitudes; this is usually useful as
a natural robustness under low to moderate noise embedding.

After constructing time series of the OPs, histograms can be calculated from them. In this
symbolic approach, the number of bins is naturally defined by the number of possible patterns,
which in turn is determined by the number of symbols in the ordinal pattern. As explained
above, if the OP word is of length n, there will be n! possible patterns, and this will be the
number of bins used for computing the probabilities associated with the symbolic sequences.
This eliminates the binning problems which frequently appear when using histograms.

Ordinal patterns do not need to be constructed with immediately adjacent data points only.
It is possible to construct them with data points that are separated in time, and in this way
different time scales are considered. This symbolic transformation keeps the information about
correlations present in a time series at the selected time scale, but does not keep information
about the absolute values of the data points. Therefore, the e.g. Mutual Information computed
from ordinal patterns (MIOP) can be expected to provide complementary information with
respect to the standard method of computing the mutual information (MIH).

3 Statistical Significance

In any experiment or observation that involves drawing a sample from a population there is
always the possibility that an observed effect would have occurred due to sampling error or
chance alone. However if the probability of obtaining an extreme result – large difference
between two or more sample means – given the null hypothesis is true, is less than a pre-
determined threshold (e.g. 5% chance), then it is possible to conclude that the observed effect
is not due to chance[?].

To address the significance of the values, ClimNet uses bootstrap (BS) algorithm [?]. This
algorithm randomly resamples with replacement from the original datasets using blocks of data
of approximately the size of the autocorrelation time of the time series, and then computes the
estimators (MI and DI) from the resampled data. Doing so, both the statistics (histogram) and
the power spectrum of the original time series are approximately preserved. In this way, an
empirical distribution can be obtained for each link, and significance thresholds can be extracted
from them.
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4 ClimNet Architecture

ClimNet is equipped with wide range of necessary functions to construct climate networks from
raw time series. In line with the described measures in the previous section, the processing
time series sequence carried out by ClimNet is shown in fig. 2. The core functionality of the
software is to compute the adjacency matrix from time series. To do so, various options are
possible: from the linear cross correlation, used mostly for benchmarking and for comparison
to the other measures, through entropy (an univariate measure which estimates the amount of
variability a certain region has) to Mutual information and the directionality index, which can
be calculated both using histograms or using the more sophisticated method of ordinal analysis.
Each link is repeated a number of times by using the bootstrap algorithm in order to assure the
statistical significance of the result. Insignificant links are discarded, whereas significant ones
are accepted and thus included in the resulted adjacency matrix.

Time series (input)

Statistical Measures

Cross 
Correlation

Mutual 
Information

Directionality 
Index

Mutual 
Information 

OP

Directionality 
Index 
OP

Entropy

Pre-processing tools [Python]

Correlation / Directionality Matrix

Adjacency Matrix

Statistical analysis

Post-processing/plotting tools [Python]

Figure 2: Software description. ClimNet provides an interface to read and pre-process climate
time series. Afterwards, the user is given the choice to select the type of network based on a
statistical measure(s). The resulting network (adjacency matrix) is subject to further analysis
by graph analysis by common graph analysing algorithms/libraries.
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Having produced the adjacency matrix (network), it can be processed consecutively by
any graph analysing algorithm(s) in order to obtain more advanced measures as betweenness
centrality and community detection. Accordingly, the general architecture of ClimNet is gown
in fig. 3.

netCDF files ASCII files

User Interface

Core Functions C++

Interface with Graph Algorithms

Figure 3: ClimNet architecture. The software core is implemented in C++ with python tools
for pre-processing (removal of the seasonal cycle, or trends from the time series, normalisation,
among others) and post-processing (calculating some basic network properties and graphing the
network as a map in order to be interpreted by climatologists). ClimNet’s interface is provided
with routines to read netCDF files (self-describing, machine-independent data formats - very
popular in climate science) and simple ASCII files.

5 Applications - Climate Networks’ Examples

The software presented in this paper has been used in various climatological studies through
its development. Some of the results obtained with these techniques is shown below. All the
maps shown are statistically significant.

In fig. 4 Mutual information using ordinal patterns is shown for the SAT field. This
technique allows to select the time scales of the phenomena directly, something harder to achieve
using traditional methods. The figures (left) show networks for shorter time scales while in the
right longer time scales are displayed. The top maps are of connectivity while the bottom maps
are of connections to a given point (in the central Pacific ocean). Note that for longer time
scales the connectivity is higher and there are longer connections than for shorter timescales.
This is compatible with the current understanding of climatological patterns, dominated by
inter annual time scales like ENSO.

Figure 5 show the comparison between the mutual information and the directionality index.
Both calculated without ordinal patterns. MI show that the Pacific ocean is a highly clustered
area for the SAT field while DI show that information is flowing from east to west in the equator,
probably following the trade winds. All this information is inferred directly from the data and
can be of big help for climatologists in order to analyse non linear relationships and the flow of
the information hinting (but not proving) causal effects.
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Figure 4: Example of Mutual information using ordinal patterns (MIOP). The Area weighted
connectivity (equivalent to the degree of the network over a sphere) is shown in the top maps.
Bottom maps show one column of the matrix showing the connections to the point shown with
an x. First row: mostly time scales, second row, seasonal time scales, third row, yearly time
scales [?].

Figure 5: Columns of the Adjacency matrix, showing connections for a point in the central
Pacific ocean (marked with a green triangle), for (left) Mutual information and (right) Direc-
tionality Index. Notice the similarities in the shape of the patterns and the new structure
unveiled by DI showing the direction of the flow of information, not present in the figure on the
left. [?]

The Class File Deza and Ihshaish

411



6 Conclusions

The presented software tools in ClimNet allow the construction of relatively large climate net-
works from linear and non-linear statistical measures. ClimNet is equipped with easy-to-use
user interface to facilitate the reading and the pre-processing of climate time series. The devel-
oped techniques to evaluate linear and the nonlinear relationships between variables at different
timescales has been addressed in detail. Additionally, we have discussed examples on its ap-
plication to real climate data, resulting in recent findings and original contributions in climate
research. We believe ClimNet will help researchers in various complex sciences domains, and it
is hoped that it will contribute to further findings in the investigation of complex systems as
well as in climate research
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