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Abstract-This paper provides an alternative viewpoint of multidimensional bisection global 
optimization methods of Wood. A dual coordinate representation of convex bodies is introduced 
which leads to an easy implementation and eliminates the need to see the geometry of intersecting 
simplexes. Although developed in the context of global optimization, the techniques deal more 
generally with regions represented as the union of convex bodies. With this dual framework the 
algorithm can be implemented efficiently using any multiattribute index data structure that allows 
for quick range queries. A C version using a “multi-key double linked skip list” based on Pugh’s skip 

list has been implemented. 

Keywords-Multidimensional bisection, Global optimization, Skip lists, Convex bodies. 

1. INTRODUCTION 

This paper provides a simple description and an easy implementation of multidimensional bisec- 

tion global optimization methods of Wood [l]. This is achieved by a dual coordinate representation 

of the convex bodies used in the algorithms. This representation uses the right hand vector in the 

matrix inequality Ax 2 s which specifies these bodies. The multidimensional bisection methods 

have the salient features of the usual “root finding” bisection, in that they produce a nested family 

of bracketing regions for the global minimum. They can be viewed as a geometric realization of 

Piyavkii’s general approach [2,3] which uses a lower envelope of a function to estimate the global 

minimum, although as pointed out in [4], they can be used without building lower envelopes. 

This paper builds on Wood’s work. Its emphasis is on implementation. It provides the view- 

point behind the implementation used in [5] and supplies details of the techniques given in [1,6]. 

The theory, context and performance of the optimization techniques can be found in [1,4-61. For 

completeness, Section 2 provides a brief review of multidimensional bisection. Section 3 presents 

the dual coordinate representation. Section 4 starts with an example of the main processes. It 

gives a simple description of the algorithms in this new framework and provides justifying theo- 

rems. Section 5 describes the required procedures, justifies key steps, and discusses data structure 
requirements needed for an implementation. Details of an available C-program are given. An 

Appendix contains computational details and extensions to the formuke provided in [1,5] covering 

complete and spherical acceleration. 

*F&search was supported in part by an Erskine grant from the University of Canterbury. 
The author wishes to thank Graham Wood for sharing his work on multidimensional bisection and his encour- 
agement with the development of the implementation. He would also like to thank Zelda Zabinsky and Ivone 
Sasmitra for their helpful comments. 
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2. A REVIEW OF MULTIDIMENSIONAL BISECTION 

A brief review extracted from [l] is given here. Refer to [1,5] for more details. The problem is 

the following: given f : Wn + W and K a compact domain in lRn, find the points on the graph 

of f where min f(z) over z E K is realized. It is assumed that a constant it4 is known for which 

the function f belongs to L(M), the set of Lipschitz continuous functions, or SG(M) a class of 

functions described in [4]. 

The approach taken by Wood starts by bracketing all global minima in a simplex. At each 

iteration regions are cut away from this initial simplex in such a way as to leave a system of 

simplexes, the union of which gives an improved bracket. 

Let v be the infinite cone of slope M with a simplex base, as shown in Figure 1. The two 

mathematical facts (see [l] for L(M) and [4] for SG(M)) th a insure a convergent algorithm are t 

the following. For each (5, y) on the graph of f, (1) no point inside (z, y) - v and (2) no point 

above (z, J/I) can be a global minimum of f. 

Figure 1. The simplex based cone v, 

These two facts allow an algorithm to be set up in a very simple way. A version of multidi- 

mensional bisection with complete reduction [l, p. 1661 is described now. 

At the outset the initial system consists of one standard simplex , TO, which brackets all global 

minima over K. Here a standard simplea: is a translate of a cap of the cone v. For each function 

evaluation, cut from every simplex in the system the interior of -v, with apex moved to the 

evaluation point on the graph of f. Also cap all the simplexes at the height of the lowest known 

evaluation. These processes are termed reduction and elimination in [l], or cutting and cupping 
in [4]. When these are done to a standard simplex, at most n + 1 standard simplexes of smaller 

height than the original are left. After each iteration, the algorithm brackets all global minima 

over K in the union of the standard simplexes belonging to the current updated system. Figure 2 

shows such a system for a function of two variables. All simplex tops, shaded in the figure, lie at 
the height of the least evaluation to date. The process continues until the maximum height of all 
simplexes in the system (the variation) is small enough. Properties (1) and (2) above guarantee 

no global minimum is removed. The key to the understanding of multidimensional bisection is 
what happens to one standard simplex as shown in Figure 3. 

Proceeding more formally, let {ui, . . . , un+l} comprise the unit vectors from the origin to the 
vertices of some regular simplex, with centroid the origin, in IV. Thus, ~1 + . . . + u,+l = 0 and 
‘,‘k’?‘r = -l/n for all distinct pairs k and 1 (see Appendix for details of finding these vectors). So v 
is the cone in IV‘+’ with apex the origin and cross-section co{ui, . . . , un+l} at height M along the 

(n+l)st axis, where “co” denotes the convex hull. Formally, v = pOS{(Uk, M) : k = 1,. . . , n+l}, 
where “pod’ denotes all positive linear combinations. 



Multidimensional Bisection 13 

Figure 2. System of standard simplexes 

Figure 3. Cutting and capping a standard simplex. 

The standard simplex in W+’ with apex (x, y) E IF??+’ and height h E W has the form 

T(x,y,h) =co (x,~), 
1 ( 

x+ $uk,y+h : 
> 

k= l,... ,n+l . 
> 

The top of T(x, y, h) is the face opposite the apex. The usual coordinate representation of the 

standard simplex is (x, y, h). Points can be viewed as “degenerate simplexes” with height 0. The 
degenerate simplex corresponding to a function evaluation will be denoted by E(x, f(x), 0). 

A system of simplexes S in If@’ is a finite set of standard simplexes. It is a uniform system if 

all tops lie in the same hyperplane of IEn+‘. The variation of S, V(S), is the difference between 

the highest and lowest points in the system. 
The results in this paper primarily concern the bracket. The strategy for choosing the next 

function evaluation is important and covered in [l]. Here is an outline of “sequential deepest 
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point with complete reduction” (A” in [l]) described in geometric terms: 

Initialization: Choose an initial simplex TO. So = {TO} . 

Get Next Point: Find lowest apex (Q, yf) of all simplexes in S. Compute f(~i). 

Cupping: Lower all tops to the lowest value so far. 

Cutting: From each simplex in S, remove the interior of (xi, f(~)) - v. 

Stopping Test: If V(S) is small enough, terminate, otherwise go to Get Next Point step. 

The formula? for these reductions in terms of usual coordinates are included in the Appendix. 

These formulae extend the results in [1,5]. In practice, the dual coordinates are used directly. 

3. THE DUAL COORDINATE REPRESENTATION 

With dual coordinates, the bracket is represented efficiently and the geometry of the removal 

process described easily. Terminology and justification of the basic properties of this representa- 

tion are given in this section. 

The simplexes T(z, y, h) of the system are convex bodies. The usual coordinates relate to its 

vertices. The dual viewpoint emphasizes the faces. The key observation is that there is a fixed 

family of functionals determining the faces of all the simplexes in the system. The dot product 

with vectors orthogonal to the faces of the usual standard simplex provides the dual coordinates. 

So inequalities with fixed left hand sides and the dot products on the right determine a simplex. 

Figure 4. Representing regions by inequalities. 

As an example consider Figure 4: 

l The triangle with apex at (-1, -2) and height 5 is specified by z + y 2 -3, --z + y 2 -1, 

and -2y 2 -6; 
l The point (3,8) (a “d g e enerate” simplex) is specified by z + y > 11, --2 + y > 5, and 

-2y 2 -16; 

l Finally no point satisfies x + y 2 -2, -x + y 2 9, and -2y 2 -6. 

So the triangle has dual coordinates (-3, -1, -6), the point has (11,5, -16), and the empty set 
has (-2,9, -6). 

Formally a body is described by a vector inequality {w 1 Av 2 (s, stop)‘} where s E llJ?+l and 

stop E R. (Note: The vector inequality means the inequality holds for each coordinate.) For 
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dimension n with constant M 

The rows of A are vectors orthogonal to the faces of the usual standard simplex. The (n + 2)- 
tuple (s, stop) gives the dual coordinates. T(s, stop) will be used to refer to a body given in dual 
coordinates. At times it will be convenient to refer to the components of s = (so,. . . , s,). Define 
Syapi=SO+***+Snv 

THEOREM 3.1. If specifying a nonempty set, the dual coordinates uniquely identify the convex 

body. Conversion between usual and dual coordinates is given by simple transformations (see 

the Appendix). In particular, 

l the height of a simplex h = -$$(svari + stop); 

l the usual coordinate of the top of a simplex y + h = - sstop. 

Note by the above result, in a uniform system all simplexes have the same value of stop. 

4. THE ALGORITHM IN THE DUAL FRAMEWORK 

The dual view leads to an easy implementation and eliminates the need to see the geometry 
of intersecting simplicial cones. The standard simplexes are kept as a list of the vectors. The 
geometric ideas of cutting and capping relate to simple modifications of the list. 

Figure 5 gives an example of the geometric process in the one-dimensional case with M = 1. 
Cutting and capping remove the two regions at the evaluation and leave an improved bracket 
(shown outlined in bold). In this example the bracket begins as the union of a system of four 
simplexes (triangles outlined lightly). The geometric process is realized by removing the regions 
from each to get the updated system. Here the leftmost triangle is affected only by capping, the 
middle two produce four new smaller triangles, and the rightmost is completely removed. 

Figure 5. Cutting and capping of bracket. 

In dual coordinates, the procedure is one of systematically changing coordinates in turn. Ba- 
sically the dual coordinates always increase. Table 1 shows the dual coordinates of the sys- 
tem pictured in Figure 5 as the capping and cutting processes are applied. In this example 

the evaluation at (2,2) has dual coordinates (T, rtop) = (4,0, -4). Moving 
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from the first to the second row of Table 1 shows the result of capping. The new stop changes to 
the larger value of rtop. Moving from the second to the third and fourth rows reflects the cutting 
process. Here the new SO is the larger of the old SO and rc, and similarly for si. This produces 
eight representations of simplexes. However, only the bold faced ones are needed. The others 
represent either the empty set or a redundant simplex inside another. 

Table 1. Cutting and capping by E(4,0, -4). 

After Capping 

After Cutting 

After Cutting 

(-7,% -6) (-3, -1, -6) (-2, -2, -6) (6, -3, -6) 

( - 7,% -4) (-3, -1, -4) (-2, -2, -4) (6, -3, -4) 

(4,9, -4) (4, -1, -4) (4, -2, -4) (6, -3, -4) 

(-79% -4) ( - 390, -4) (-2,0, -4) (690, -4) 

The example illustrates the procedures needed in order to implement the algorithm. The effect 
of cutting and capping must be described and ways to eliminate inefficient representation must 
be handled. The following describes the effect of cutting and capping applied to one standard 
simplex as pictured in Figure 3. 

THEOREM 4.1. Let (T, rtop) be the dual coordinates of an evaluation, E. Let (s, stop) be the dual 

coordinates of a simplex T. Capping of T by E changes the top coordinate to max(stop, rtop). 
Cuttinggives 7 = {Tk}k=O ,... ,7L. The coordinates of the simplex Tk are found by further changing 

the kth coordinate t0 IIMX(Sk, Tk). 

PROOF. Note that geometrically cutting and capping of the standard simplex T removes the 
interior of the cone (zi, f(~)) - v and the half-hyperplane above the function evaluation. In 
terms of matrix inequalities, the interior of the cone is {V 1 Av < (T, oo)‘}. The half-hyperplane 
is {v 1 Au < (co,. . . , co, Q,,,,)}. The complement of the former is Ho U . . . U IS,, where Hk is the 
half-hyperplane, {v 1 (kth row of A)v 2 Tk}. The complement of the later is HtOP which equals 
{v 1 (last row of A)v 2 rtop}. Expanding T n (HO U.. . U Hn) n HtOP gives the desired result. I 

In order to implement the algorithm efficiently, some refinement is necessary. It is desirable to 
describe a system of simplexes with the minimal amount of storage requirements. Simply applying 
Theorem 4.1 provides n + 1 dually represented simplexes for each of the original. Upon closer 
inspection, some of these represent empty bodies and others represent redundant bodies properly 
contained inside other ones.’ A minimal un$orm system, which contains only representations of 
nonempty bodies and has the property that no body is properly contained in any other provides 
a more parsimonious description. The following provides a convenient test: 

THEOREM 4.2. 

(1) T(s, stop ) = 4 if and only if s,,i > -stop. 

(2) If (s, stop) and (s’, siop ) represent nonempty simplexes, T(s, stop) C T(s’, s&~) if and only 
ifs 2 s’. 

PROOF. The first result follows from the formula for h in Theorem 3.1. The second follows from 
the inequality specification corresponding to the dual coordinates. I 

The process of reduction only affects those simplexes that actually meet the removal cone. So 
Theorem 4.1 need not be applied. The following shows how to avoid this. 

THEOREM 4.3. T(s, stop) meets the removal cone of E(r, rtop) if and only if r > s. 

PROOF. As in the proof of Theorem 4.1, the complement of the removal cone is HO u . . . u H,, 
where Hk is the half-hyperplane, {v ( (kth row of A)v 2 Tk}. The following equivalences hold: 

‘Overlapping simplexes which lead to redundancies usually occur only when the dimension is greater than 1. 
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T # s H rk I Sk for some k -3 T C Hk for some k e T C Ho U . . . U H, W T is disjoint from 

the removal cone. I 

Such simplexes in the system are the only ones necessary to look at when implementing the 

cutting process. The following terminology (inspired during a visit to the salmon ladder at 

Seattle’s aquarium) is useful. Given the representation of an evaluation (T, Taco), we say a member 

of the system is a spawner of E if T 2 s. Note for technical reasons equality is allowed for a 

spawner. The spawn of a spawner are all the nonempty simplexes produced when Theorem 4.1 

is applied. Concerning finding the deepest point of the system, in a uniform system, the deepest 

simplex will have the smallest value for svari. 

It is now possible to describe multidimensional bisection with this dual viewpoint. The algo- 

rithm will work with a uniform system, so stop is viewed as being a global variable associated 

with all simplexes in the system. 

Initialization: Choose initial simplex TO. Let stop be its top. Let SO = {TO}. 

Get Nezt Point: Find the simplex with minimum Svari. Convert to usual 

coordinates to get the lowest apex (zi, yf). Compute f(zi). Convert (zi, f(zi), 0) 

to the dual coordinates of the evaluation (T, Ttop). 

Capping: Let stop = max(stop, rtop). 

Remove Empties: Remove any simplexes from S with s,,i > --stop. 

Cutting: Find all the spawners of (T, Ttop). Compute their spawn, remove any empty 

simplexes, and make it minimal by eliminating any that belong to another body 

in the spawn. 

Stopping Test: If the smallest value of svari is large enough, terminate, otherwise loop. 

The method of spherical acceleration was introduced in [l] and described geometrically in 

detail in [5]. Basically it is a way to take advantage of the fact that cones of spherical cross 

section could be removed. In practice this means, when an evaluation is above the system, an 

even higher value can be used. The following was the basis for the trials in [5] and describes this 

acceleration in the dual viewpoint. It is the basis for the formula in the Appendix which extends 

Definition 3.1 in [l]. 

THEOREM 4.4. Let (T, Ttop) be the dual coordinates of an evaluation and (s, stop) be the dual 
coordinates of a simplex T where stop > ?-top. Spherically accelerated cutting of T proceeds as 

follows: s is a spawner of T ifs 5 T accel and its accelerated spawn is the spawn of T(s, stop) and 

the evaluation (T,,,,,, Ttop) as in Theorem 4.1. Here 

Taccd = (To f h~ccel, . . . , Trz + Saccd) 

where 

%%ccel = 
AbMn + 1) + Ttop - Stop 1 + Ttop - Stop 

n+l 
7 

d=max{ri-si]i=O,... ,n}, 

Stop - Ttop 
P = d(n + 1) + Ttop ’ - Stop 

and the function A(p) is as described in [l]. 

Note d used in the above theorem is a measure of the distance between the apex of T and 

z E K. When this is zero, the formula corresponds to the spherical acceleration specified in [l]. 

As d goes to infinity, the effect of acceleration goes to zero. As T acce~ must be calculated for each 

simplex in the system, the decision to use spherical acceleration must be be weighed against the 

increase in overheads. 
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5. IMPLEMENTATION DETAILS 

In order to realize the implementation, it is necessary to set up the required procedures and 

appropriate data structure. 

Required Procedures 

The steps of the algorithm can be coded effectively if the system is stored in a structure that 

allows range queries using the keys SO, . . . , sn and s,ri. The procedures (with self explanatory 

names) discussed here relate to the outline in Section 4. Here S represents a system, stop is a 
global variable for simplexes in the system, and E represents the evaluation. 

[JF stop, sknown spawnerl = GetRegionAndCap(S, stop) 

_ performs Get Next Point and Capping steps. In addition, returns sknown spawner, the 

dual coordinate of the simplex used to determine the evaluation. 

ConvertUsualToDualand ConvertDualToUsual 
_ performs coordinate conversions (required by GetRegionAndCap). These can be done 

with only 2(n + 1) multipications due to the structure of the matrices involved (see 

Appendix). 

[Sempties gone] = RemoveEmpties 

P- 

retains all simplexes in S satisfying S,,i < -stop. 

not affected~ ‘%pW~~W] = NewSpawn=-s(S, E(r, rtop), sknown spZ%WoW) 

- separates S into those simplexes satisfying the range query sk < rk for k = 0,. . . , n 

and those that do not. 

Sk-spawn = SPawnk(&Pawners, E(r, Ttop) 

- produces the part of the spawn (denoted Tk in Theorem 4.1) found by changing the 

kthcoordinate to rk. 

&ninimal = MakeMinimal 
_ loops through a system, starting with the simplex with the smallest value for S,ari, 

loops over those with higher vari-coordinates, and removes any redundant simplexes 

inside it. Theorem 5.3 shows this process creates a minimal system. 

[S - non redundant, Sredundant] = RemoveRedmd=t(S, Tto be kept) 

- removes all simplexes (except T itself) with coordinates all bigger or equal than those 

of T (used by MakeMinimal). 

The basic loop of the algorithm becomes 

[ET Stop, Sknown spawner ] - GetRegionAndCap(S, stop) - 

[Sempties gone] = Removefipties(S) 

[snot affected, &pawners] = NewSpamers(S, E(r, rtop), &now spawner) 

S spawn=UM a e inimal(RemoveEmpties(Spawnk(Sspawners, E(r, rtop)))) k M 
S new minimal system - - &pawn u Snot affected. 

The following two results limit the size of the set to be searched to find spawners. A known 

spawner’s coordinates can be used to give a two sided range query. 

THEOREM 5.1. Given a minimal system S and a spawner T(Sknown spawner, stop) of an evaluation 
E(r, rtop). Then all other spawners of E can be found in 

U {T(s, atop) 1 kth coordinate of sknown spawner < Sk 5 rk}. 

k=O,...,n 

PROOF. Let T’(s’, stop) be, a spawner of E, so for all k, s; Sk. If T’ E S but not in the union, 

sk is less than or equal to the kth of sknown spawner for all k. But s’ 5 sknown spawner contradicts 

the minimality of S. I 

More generally, a two sided query can be used. 
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THEOREM 5.2. Given a minimal system S and an evaluation E( r, rtop). Then all other spawners 

of E can be found in 

u fTcsT Stop) 1 SE3ri - TV&Xi + rk 5 Sk 5 rk}. 
k=O,...,n 

PROOF. Let s be a spawner. By definition of a spawner for each k, Sk < rk. Taking the sum 

over all but index k gives s,,,i - sk 5 T,,i - r,+ and rearrangement gives S,,i - T,,i + rk 5 Sk. 

I 

The next two results justify the procedures. 

THEOREM 5.3. The routine MakeMinimal creates a minimal system. 

PROOF. Suppose two simplexes with coordinates (s, stop) and (s’, stop) were left after running 

the procedure and s 2 s’. Then since S:ari 5 Svari, the procedure would eliminate the simplex 

with coordinates (s, stop) when it started looking for redundant simplexes to T(s$,,~, stop). This 

contradicts them both being left at the end. I 

THEOREM 5.4. The scheme of separating the spawners from the nonspawners and recombining 
the minimal spawn creates the required minimal system. 

PROOF. SI, = MakeMinimal(RemoveEmpties(Spawnk(&,,,,,,, E(r, rtop)))). We need to show 

S not asected U SO U . . . U S, is minimal. Suppose to the contrary that T(s, stop) c T’(s’, stop) 

both belonged, so by Theorem 4.2 s > s’. Consider these four cases: 

(1) T and T’ belong to the same set of the union. This contradicts the minimality of that set. 

(2) T E Sk and T’ E Snot affected. Since T E Sk, it came from a spawner so r > s 2 s’ which 

means T’ is a spawner of E, which contradicts T’ E S,,t aRectd. 

(3) T’ E Sk and T E Snot affected. T’ came from a spawner T”(s”, stop), say. So s” 5 s’ 5 s. 

This means T E T” which contradicts S being minimal. 

(4) T’ E Sk and T E S,. Without loss of generality, T’ E SO \ S, and T E S1 \ SO. So 

s’ = (ro,si,... ) and s = (ss,ri, . . . ). Since s’ I s, ro L SO, but T 6 SO means so < rg 
which is a contradiction. I 

Note at step (2) in the above proof, the technical condition of equality in the definition of 

spawner was required. 

Data Structure Requirements 

The procedures can be efficiently coded if range queries can be done quickly. The use of an 

inverted list can take advantage of Theorems 5.1 and 5.2 by first finding the index with the 

smallest number satisfying the query. There are a number of multikey structures [7-9) that are 

variations of K-d trees that are more efficient and could be utilized. 

Implementation in C 

An implementation in C is available from the author. This implementation includes a Multi- 

key Double linked Skip List package based on modification of Pugh’s Skip List code (available via 

anonymous ftp [lo]). Th e multidimensional bisection routines are described using this package. 

The skip list has many of the nice properties of balanced trees, but is easier to use. In a skip 

list the data nodes have pointers which form a linked list. Additionally, a certain proportion of 

the nodes (randomly chosen) have pointers which point a little further, thus skipping over their 

immediate successors. Of those, a certain proportion have nodes skipping even further. This 

scheme allows for log(N) searching (on average) while making insertion and deletion relatively 

easy. Although worst case behavior could be poor, it is highly unlikely and not data dependent 

(as nodes with multiple pointers are randomly allocated independently of incoming data). 
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The data structure used here maintains a skip list pointer scheme for each key. In the basic 

skip list, the simple unidirectional nature of the list was no barrier to fast insertion, as the 

predecessors are easily remembered during the search process. However, with multiple keys, 

locating the pointers appropriate to one key is no help for the other keys. For that reason, double 

linkages are used for all keys at all levels. In other words, a “Multi-key Double linked Skip List.” 

Range queries are handled by the inverted list approach. 

Note since the dual coordinates of all simplexes in the system come from the evaluations, the 

program maintains a list of the evaluations. Rather than storing the dual coordinates, only 

pointers to the evaluations that give rise to them is stored. 

The program dynamically allocates storage to hold the system. Typically the system size builds 

up to a certain point and then stabilizes until the variation gets quite small. At that point the 

behavior becomes that of trying to minimize the constant function, and the storage requirements 

increase exponentially. 

6. FUTURE WORK 

Not only does this dual approach lead to a simplification of multidimensional bisection, but 

also implements generalizations (see [4]). Capping can be done with convex regions other than 

hyperplanes. Also various choices for the inequality matrix A lead to algorithms which built up 

the bracket from convex bodies other than standard simplexes. In these cases, even though the 

bodies are not uniformly of the same shape, the dual viewpoint provides a uniform representation 

which can be capitalized upon. In particular, cones over any polygon can be used. When seen 

in this context, at one end of a spectrum is Wood’s method using cones over the simplex, the 

simplest polygon. Mladineo’s [l l] is on the other end using cones over the sphere, the limiting 

“polygon.” 
Although developed in the context of global optimization, the techniques apply more generally 

to regions represented as the union of convex bodies based on a fixed form of vector inequality. 

The matrix A used to describe simplexes is particularly nice and gave simple tests for empty and 

redundant representation. Work is in progress to deal with the more general situation. There the 

tests are more complicated, and entail “presolving” linear programming problems with a fixed 

matrix A. 

Another area for further explorations concerns the optimal data structure suited to this algo- 

rithm. The bulk of the work of the algorithm is in finding the spawners. This is usually a small 

number out of all simplexes which can grow exponentionally. Some variation of the h&tree [7] 

looks promising. 

APPENDIX A 

Vectors used to describe the standard simplexes can be constructed as follows. 

REMARK A. 1. Inductive construction of (~1, . . . , un+l}, the vertices of a regular simplex in KY. 

l Dimension 1. Let ui = -1 and up = 1. 
l Dimension n > 1. Let the first (n - 1) coordinates of (~1,. . . , u,} be dm times 

the vectors for dimension (n - l), and let the last coordinate be -l/n. Let un+i be the 
unit vector in the nth coordinate direction. 

REMARK A.2. For dimension n, the vectors {ui,. . . ,un+l} can be described in terms of the 
n constants (cz = (n/(n + 1)) nZ,+, d-) where (Ic = 0,. . , , n - 1) as follows: 

-E-_ (UT.. . u;+l) = 
n-t1 

-Cg c; 
-c:” n 

2 
9 Cn 1 

--q-a 
(n-l) *.. 

& 
(n-1) c-2 

-c:-1 -C-I 
- . . . - 71 . . . n c:-l I 
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Details of coordinate conversions of Theorem 3.1 between usual and dual coordinates is de- 
scribed here. 

REMARK A.3. The dual coordinates can be found by taking dot products, si = (ui+i, l/(nM)) l 

(z,y)fori=O,..., n and stop = -(y+h)(n+ l)/(nM). A s a matrix transformation (s, stop)T = 

S(z, y, /z)~ where 

Finding the usual coordinates from the dual ones uses the inverse transformation: 

. . . 

. * . 

. . . 

The special structure mentioned in the previous remark can be utilized to perform these trans- 
formations with only 2(n + 1) multiplications. 

REMARK A.4. An efficient conversion from dual to usual coordinates is: 

Xk =C; 
s/c+1 - (so + *. . + Sk) 

(k + 1) 
for k=O,...,n-1 

y=Mn(sO+..*+sn) 

(n + 1) 

h=-_MnSt”P- 
(n+l) ” 

An efficient conversion from usual to dual coordinates is: 

so = 0 

rk-1 + (so + . ‘. + Sk--l) 
Sk = - 

C-1 k 
fork= l,...,n 

(so + . . . + s,) -- 
As = (kn) (n + 1) 

Sk = Sk + As for k = 1, . . . , n 

stop = 
-(y + W + 1) 

(nM) ’ 

The details of complete simplex reduction (with spherical acceleration) in usual coordinates 
is given here. This extends the formulae in [1,5]. The proofs entail taking the dual coordinate 
formula of Theorem 4.1 and converting to the usual coordinates via the previous conversion. 

REMARK A.5. Let T(z, y, h) be a standard simplex. Let (x’, y’) be the usual representation of 
an evaluation. 

Upper Reduction: If the evaluation is above the top of the simplex, the effect of the simplex 

by this evaluation is: 

T((x, y, h) + 5 
In terms of dual coordinates this is: 

T((x, Y, h) + $[rk-%](uk+l,M,-M) 1 k=O,... ,n 

Lower Reduction: If the new value will also lower the simplex (i.e., y’ < y + h), then adding 

y’ - y - h to the height gives the result. 

NOTE. If the final height is negative, the simplex is empty. 
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In the case of upper reduction, spherical acceleration can be applied using the above formula 
with y” in place of of y’. Here y” = hA(p) + y’ + h is the “effective” evaluation where 

y’-y-h 

‘= h+max{uio(s’--z) Ii=l,... ,n+l}’ 

and the function A(p) is as described in [l]. 
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