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Aspergillus spp. infection of grape may lead to ochratoxin A (OTA) contamination in processed beverages such as
wine and grape juice. The aim of the current study was to evaluate the biocontrol potential of two
non-fermenting (Cyberlindnera jadinii 273 and Candida friedrichii 778) and two low-fermenting (Candida
intermedia 235 and Lachancea thermotolerans 751) yeast strains against the pathogenic fungus and
OTA-producer Aspergillus carbonarius, and their ability to remove OTA from grape juice. Two strains, 235 and
751, showed a significant ability to inhibit A. carbonarius both on grape berries and in in vitro experiments.
Neither theirfiltrate nor their autoclavedfiltrate culture brothwas able to prevent consistently pathogen growth.
Volatile organic compounds (VOCs) produced by all four selected yeasts were likely able to consistently prevent
pathogen sporulation in vitro. VOCs produced by the non-fermenting strain 778 also significantly reduced
A. carbonarius vegetative growth. Three yeast strains (235, 751, and 778) efficiently adsorbed artificially spiked
OTA from grape juice, while autoclaving treatment improved OTA adsorption capacity by all the four tested
strains. Biological control of A. carbonarius and OTA-decontamination using yeast is proposed as an approach
to meet the Islamic dietary laws concerning the absence of alcohol in halal beverages.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Table grape (Vitis vinifera L.) is one of the most economically impor-
tant marketed fruit commodities (Jiang et al., 2014). Each year 30–40%
of table grapes are lost due to the lack of efficient methods to prevent
pre- and post-harvest diseases (Abeer et al., 2013; Prusky, 2011). Several
fungi,mainly belonging to the generaAspergillus,Alternaria, Cladosporium,
Rhizopus, and Penicillium, are opportunistic pathogens, able to invade ripe
berries after injury (Nally et al., 2013; Rooney-Latham et al., 2008),
however various yeasts and bacteria are also associated with so-called
sour rot.

Black Aspergilli are widespread in vineyards and may not only cause
rot on berries but are also the main source of ochratoxin A (OTA)
contamination. OTA is usually recovered on food of vegetable origin
and its presence in raw ingredients may lead to severe contamination
in processed beverages such as wine and grape juice (Battilani et al.,
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a Enrico De Nicola 9, I-07100

. This is an open access article under
2003; Mulè et al., 2006; Zimmerli and Dick, 1996). Among black
Aspergilli, Aspergillus carbonarius (Bainier) Thom is considered the
most dangerous one, having the highest potential for OTA production
in grape (Battilani et al., 2003, 2004a; Cabañes et al., 2002).

OTA has nephrotoxic, teratogenic, hepatotoxic, and carcinogenic
effects in mammals (Rodriguez et al., 2011). Therefore, as a preventive
measure, the European Union set the maximum permitted levels of
OTA in wine and grape juice at 2 μg·kg−1 (Commission regulation No.
123/2005 amending Regulation No. 446/2001).

Biological control of plant pathogens with antagonistic microorgan-
isms is an efficient alternative to synthetic fungicides in reducing
postharvest diseases and product loss (Janisiewicz and Korsten, 2002;
Meng et al., 2010; Tian, 2006). Yeasts are considered among the most
efficient antagonists in biocontrol strategies (Droby et al., 2009).
Because of their role in winemaking processes, they may also represent
an important tool in the biological removal of OTA from natural juice
(Bejaoui et al., 2004; De Felice et al., 2008; Delage et al., 2003; Petruzzi
et al., 2013; Rodriguez et al., 2011). However, the potential rapid
increase in ethanol concentration in must and juice due to the fermen-
tation process by yeast represents a significant problem for their use as
biocontrol agents, reducing their efficacy as antagonists and their ability
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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to remove OTA (Cubaiu et al., 2012). This hindrance may be overcome,
at least in non-alcoholic grape juices, by using non- or low-fermenting
yeast strains.

Islamic laws (Quran V: 90–91) forbid Muslim populations from
drinking alcoholic beverages and consuming food prepared with alco-
hol, even in a small amount (Regenstein et al., 2003). Nonetheless, alco-
hol is common in many biological systems: e.g. fresh fruits and/or their
essences and juices can contain traces of alcohol (Riaz and Chaudry,
2003). Whenever alcohol is naturally present in food, it does not inval-
idate its permissible (halal) status. Even if a global standard limit for
halal certified food is not allowable, ingredients containing an average
of 0.5% or even 0.75% residual alcohol are generally considered as ac-
ceptable (Anis Najiha et al., 2010), although these limits may vary ac-
cording to countries and religious groups.

The objective of this study was to evaluate the biocontrol potential
of four selected yeast strains (two non-fermenting and two
low-fermenting) against A. carbonarius, and their ability to remove
OTA from grape juice. This biological treatment is proposed to meet
the target of the Islamic dietary laws concerning the absence of residual
alcohol in halal beverages.

2. Materials and methods

2.1. Strain identification

Four yeast strains from the DISAABA (Dipartimento di Agraria,
Università di Sassari, Italy) collection were selected based on their
ability to efficiently prevent green rot caused by Penicillium expansum
Link on apple fruit (Fiori et al., unpublished results). Strains were
identified by sequencing the ITS1 and ITS2 regions of ribosomal DNA
as belonging to: 253, Candida intermedia (Cif. & Ashford) Langeron &
Guerra; 273, Cyberlindnera jadinii (Sartory, R. Sartory, Weill & J. Mey.)
Minter; 751, Lachancea thermotolerans (Filippov) Kurtzman, and 778,
Candida friedrichii Uden & Windisch.

2.2. Evaluation of the fermenting activity

To check the capacity of the four yeast strains to produce and release
alcohol in commercial grape juice, amicro-fermentation experimentwas
carried out. The four yeasts plus a Saccharomyces cerevisiaeMeyen ex E.C.
Hansen commercial strain (Lalvin EC-1118; Lallemand, Montreal Que-
bec, Canada) chosen as a positive control, were grown overnight at
25 °C in 20 mL YPD broth (1% yeast extract, 2% bacteriological peptone,
2% dextrose; Sigma-Aldrich, St. Louis, MO, USA). Cells were recovered
by centrifugation, washed, resuspended in Ringer solution (0.9% NaCl)
and counted with a Thoma hemocytometer. Fermentation was
performed in sterile flasks containing 50 mL of commercial grape juice
inoculated with yeasts (final concentration of 5 × 106 cells/mL).
Uninoculated grape juice served as a negative control and each sample
was replicated twice. All the flasks were corked withMüller valves filled
with 4 mL of sulfuric acid to avoid liquid evaporation from juices. From
day 0 to day 15 the weight loss in each flask, due to the release of carbon
dioxide by fermentation, was recorded.

2.3. In vitro biocontrol experiments

Yeast cells were grown overnight and counted as described
previously. Part of the overnight culture broth was filtered through
0.22 μm Millex® filters (Millipore, Cork, Ireland) while an aliquot was
both filtered and autoclaved (20 min at 121 °C). Petri plates (diameter
of 90 mm) containing YPD agar (2%) or YESA (2% yeast extract, 15%
sucrose, 2% agar; Sigma-Aldrich) media were inoculated with each
yeast strain as follows: (i) topped with soft agar (0.7%) enriched with
1 mL of yeast suspension (106 CFU/mL), (ii) spread with 300 μL
of filtered culture broth, and (iii) spread with 300 μL of filtered and
sterilized culture broth.
A spore suspension (105 spores/mL) of A. carbonarius Bainier Thom.
MPVA566 (courtesy of Professor P. Battilani, Università Cattolica del
Sacro Cuore, Piacenza, Italy), grown on a PDA (potato dextrose agar;
Sigma-Aldrich) medium at 25 °C for 1 week, was prepared in distilled
sterile water containing 0.1% Tween 20 (Sigma) to prevent spore
clumping. Three aliquots (each of 10 μL) of the suspension were
separately spotted in each plate. Experimentwas performed in triplicate
and the plates were sealed with Parafilm®, stored at 25 °C, and the
average diameter of fungal colonies was measured after 4 days of
growth and compared with controls grown in the absence of living
yeast, filtered, or filtered and autoclaved culture broth.

2.4. In vitro evaluation of volatile organic compounds (VOCs)

To ascertain whether VOCs produced by the antagonistic yeast
strains may have a role in A. carbonarius inhibition, yeast and pathogen
cell suspensions were prepared as described previously, by using two
distinct A. carbonarius strains MPVA566 and AN6 (isolated from grape,
courtesy of Professor G. Romanazzi and Dr. E. Feliziani, Università
Politecnica delle Marche, Ancona, Italy).

YPD agar (2%) plates were inoculated by evenly streaking 100 μL of
yeast cell suspension (108 CFU/mL) using a sterile spreader and
incubated for 24 h at 25 °C. The plate lid was then replaced by a Petri
dish containing PDA point-inoculated with 20 μL of pathogen spore
suspension (107 conidia/mL), sealed with Parafilm® and examined
after 5 days of incubation at 25 °C by evaluating the radial growth and
the morphology of A. carbonarius colonies. Three replicates for each
fungus–yeast combination were set and each experiment was repeated
twice.

2.5. Biocontrol experiments on detached grape berries

For each yeast strain, four grape (cv. Italia) bunches, each bearing five
mature berries, were prepared, disinfected with 1% sodium hypochlorite
for 10 min and rinsed twice with sterile distilled water. Berries were
wounded with a sterile needle (2 mm diameter, 1 wound/berry) and
whole bunches were dipped into a 50 mL suspension of each antagonist
(108 CFU/mL). Bunches were then air-dried and subsequently sprayed
until runoff (1 mL/bunch) with an A. carbonarius spore suspension
(107 conidia/mL) by using a hand sprayer. After inoculation, grape
buncheswere placed in plastic boxes (16× 26×10 cm) for 6 days and in-
cubated at 25 °C in the dark under high relative humidity (95±5%). After
6 days berries were checked and a 0–100 disease index was assigned to
themaccording to the percentage (0, 25, 50, 75 and100%) of berry surface
covered by mold.

2.6. VOC experiments on artificially inoculated grape berries

To check whether VOCs produced by the antagonistic yeast strains
may inhibit A. carbonarius growth on grape berries, bunches were
prepared, wounded and inoculated with the pathogen as previously
described. The grape bunches were then placed into plastic boxes
whose lids were internally supplied with three open YPD agar (2%)
plates inoculated by streaking 100 μL of yeast cell suspension
(108 CFU/mL) and previously incubated for 24 h at 25 °C. Plastic boxes
were sealed with Parafilm® and cellophane and stored for 6 days at
25 °C under high relative humidity (95 ± 5%). A disease index was
then assigned to inoculated berries as previously reported.

2.7. Reduction of OTA from grape juice

To evaluate the ability of the four yeast strains to remove ochratoxin
A from grape juice, 24 mL of a commercial grape juice (Vitalift, Lidl
Stiftung & Co. KG, Neckarsulm, Germany) was poured into sterile flasks
(100 mL volume) and spiked with 20 ng/mL of OTA, obtained by a
nitrile acetate standard (Sigma-Aldrich) which was preliminarily



Fig. 1. Fermentation activity of four yeast strains (253,Candida intermedia; 273,Cyberlindnera jadinii; 751, Lachancea thermotolerans, and778, Candida friedrichii) compared to the activity of
the strong fermenting Saccharomyces cerevisiae strain (EC-1118). Results are expressed as weight loss (g) during 15 day incubation in grape juice at 25 °C due to CO2 release in 100 mL.
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evaporated and resuspended in sterile distilled water. One milliliter of
yeast cell suspension (108 CFU/mL) was added to the OTA-amended
grape juice and the flasks were then incubated in the dark at 25 °C
under constant agitation (100 rpm) for 8 days. The same experiment
was also conducted by adding 1 mL of autoclaved yeast cell suspension
(1010 CFU/mL) to 19 mL of OTA-amended grape juice (20 ng/mL) to
check whether inactivated yeast cells could still remove OTA from
grape juice. Yeast cells were separated after 8 days by centrifuging at
40,000 rpm (29,000 ×g) for 20 min, and both yeast pellet and a 5 mL
sample of the grape juice were subject to OTA extraction and
purification for subsequent HPLC analysis.
2.8. OTA purification and HPLC analysis

OTA was extracted from grape samples and purified according to
the protocol described in the MycoSep® Ochra Push-through kit
(Romer Labs®, Union, MO, USA). The purified extract was then
resuspended in the HPLC mobile phase.

OTA was extracted from yeast pellet by directly adding 4 mL of
methanol to the pellet and by mixing vigorously the suspension for
30 min. After centrifugation (29,000 ×g, 20 min), the supernatant
was separated and evaporated under nitrogen atmosphere, then
resuspended in the HPLC mobile phase to undergo HPLC analysis. The
whole procedure was repeated thrice in order to achieve quantitative
extraction from the pellet. OTA extraction was carried out in triplicate
and the experiments were repeated at least twice.

OTA determination was performed on an Agilent 1200 series HPLC
system (Agilent Technologies, Palo Alto, CA, USA) equipped with
Table 1
Biocontrol activity of low- or non-fermenting yeast strains against Aspergillus carbonarius
MPVA566 on YPD and YES agar media amended with living yeast cells, culture filtrate or
autoclaved culture filtrate. Results are expressed as colony diameter (mm) ± standard
error after 4 days of incubation at 25 °C. Values in each column followed by one
(P ≤ 0.05) or two (P ≤ 0.01) asterisks are significantly different from the control
(44.9 ± 0.1 mm on YPD; 47.9 ± 0.5 mm on YES) according to Dunnett's test.

Treatment Aspergillus carbonarius colony diameter (mm)

+Living yeast +Filtrate +Autoclaved filtrate

YPD
C. intermedia 253 0** 45.9 ± 0.2 45.7 ± 0.3
C. jadinii 273 15.2 ± 0.2** 45.0 ± 0.3 45.2 ± 0.4
L. thermotolerans 751 0** 47.2 ± 0.3** 47.2 ± 0.4**
C. friedrichii 778 13.7 ± 0.6** 46.1 ± 0.5 * 47.0 ± 0.3**

YES
C. intermedia 253 0** 40.6 ± 0.2** 43.9 ± 0.3**
C. jadinii 273 0** 42.8 ± 0.3** 45.1 ± 0.3**
L. thermotolerans 751 0** 44.7 ± 0.3** 43.4 ± 0.3**
C. friedrichii 778 0** 47.8 ± 0.4 46.8 ± 0.3
a quaternary pump with integrated vacuum degasser (G1311C),
autosampler (G1329B), column oven (G1316A) and fluorescence
detector (G1321A). The separation, identification and quantification
steps of OTA were carried out according to the EN 14133:2009
method. Briefly, the separation was performed on a Zorbax column
SB-C18, 4.6 × 150 mm, 5-Micron (Agilent, Santa Clara, CA, USA),
under isocratic conditions. The mobile phase was a mixture of acetoni-
trile, water and acetic acid (49.5:49.5:1 v/v/v, respectively). The flow
was set to 1 mL/min and the column oven temperature was set to
25 °C. The excitation and the emission wavelengths were set to 333
and 460 nm, respectively. OTA was identified by comparing the reten-
tion time of the relevant peak on samples with the one from the stan-
dard (5.9 min). The quantification of OTA was performed using a
linear external calibration in a range from 0.6 to 60 ng/mL, with a
mean correlation coefficient of 0.99995.

2.9. Statistical analysis

Data from each experiment were subjected to arcsine square root
transformation prior to one-way analysis of variance followed by
multiple comparison by Dunnett's test, using Minitab® for Windows
release 12.1.

3. Results

3.1. Micro-fermentation assay

In micro-fermentation assays the four yeast strains displayed differ-
ent fermenting behaviors (expressed as CO2 loss (g) in 100 mL) com-
pared to the commercial S. cerevisiae strain EC-1118. The antagonistic
strains C. intermedia 253 and L. thermotolerans 751 revealed a very low
fermentation activity that was limited to the first 5 days of incubation,
while strains C. jadinii 273 and C. friedrichii 778 had no fermentation ac-
tivity (Fig. 1).

3.2. In vitro biocontrol activity of living yeasts against A. carbonarius

On YPD agar only living cells were able to significantly prevent path-
ogen development (Table 1). On YPD enriched with filtered or filtered
and subsequently sterilized culture broth, A. carbonarius was not
inhibited: in fact, when sterile culture broth from strains
L. thermotolerans 751 and C. friedrichii 778 was added to YPD agar,
A. carbonarius colony growth was significantly higher compared to the
control plates (Table 1).

On YES agar medium, the presence of living yeast cells prevented
A. carbonarius growth, while the pathogen was only slightly – albeit
significantly – inhibited by the filtered/autoclaved culture broth from



Fig. 2. Colony growth andmorphology andmicroscopic detail (10×) of the colony border of Aspergillus carbonarius strainsMPVA566 (A and C) and AN6 (B and D) grown (0= control) in
an environment saturated by VOCs released by yeast strains 253 (1), 273 (2), 751 (3), and 778 (4).
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yeast strains C. intermedia 253, C. jadinii 273 and L. thermotolerans 751
(Table 1).
3.3. Effect of yeast VOCs on A. carbonarius in vitro

Only VOCs produced by C. friedrichii 778 reduced A. carbonarius
MPVA566 and A. carbonarius AN6 growth significantly, resulting in
58.3% (P≤ 0.01) and 33.7% (P≤ 0.05) reduction of colony diameter, re-
spectively, compared to the controls. All the other yeast/pathogen
pairings did not differ from the control in terms of colony development.
Nonetheless, A. carbonarius colonies exposed to yeast VOCs did not
sporulate, and were characterized by white mycelium; the colony bor-
der was undefined, with elongated and scattered hyphae compared to
unexposed control (Fig. 2). Single hyphal tips and mycelium fragments
were then transferred on fresh PDA and after 5 days of growth at 25 °C,
typical black sporulating colonieswere evident (not shown), suggesting
that the anti-sporulating effect is reversible.
3.4. Effect of living yeast cells and yeast VOCs on grape rot caused by
A. carbonarius

Three out of four tested yeasts, namely C. intermedia 253,
L. thermotolerans 751 and C. friedrichii 778, reduced significantly the
incidence of infection by A. carbonarius on detached grape berries
(Table 2). No significant inhibition of grape infection was observed
upon exposure to VOCs produced by any of the tested yeast strains
(Table 2).
3.5. OTA adsorption by antagonistic yeast in grape juice

When living yeast cells were incubated in OTA-amended grape juice
for 8 days, C. intermedia 253, L. thermotolerans 751, and C. friedrichii 778
were able to significantly reduce OTA content in OTA-amended grape
juice by 73, 75, and 70%, respectively, while C. jadinii 273 had no signif-
icant adsorption effect (Table 3). Autoclaved cells derived from

image of Fig.�2


Table 2
Biological control activity of living yeast cells and of volatile organic compounds (VOCs)
against Aspergillus carbonariusMPVA566 on detached grape berries. Results are expressed
as percentage (±standard error) of berry surface covered bymold. Values in each column
followed by one (P ≤ 0.05) or two (P ≤ 0.01) asterisks are significantly different from in-
oculated control according to Dunnett's test.

Treatment Infected grape berry surface (%)

1st experiment 2nd experiment

Living yeast cells
Control 87.5 ± 4.8 75.0 ± 11.7
C. intermedia 253 32.5 ± 7.5** 17.5 ± 8.0**
C. jadinii 273 67.5 ± 4.8 42.5 ± 10.7
L. thermotolerans 751 20.0 ± 8.2** 27.5 ± 14.3*
C. friedrichii 778 37.5 ± 2.5** 27.5 ± 10.4*

VOCs
Control 87.5 ± 12.5 95.0 ± 5.0
C. intermedia 253 85.0 ± 9.6 80.0 ± 7.1
C. jadinii 273 80.0 ± 8.2 92.5 ± 7.5
L. thermotolerans 751 95.0 ± 5.0 85.0 ± 6.4
C. friedrichii 778 57.5 ± 16.5 95.0 ± 5.0
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C. friedrichii 778, C. intermedia 253, C. jadinii 273, and L. thermotolerans
751 reduced OTA concentration by 72, 74, 82, and 84%, respectively.

4. Discussion

The halal dietary laws indicate which foods are considered as
“lawful” (i.e., permissible) for Muslims. These rules are found in the
Quran and in the Sunna, and are recorded in the books of Hadith, the
Traditions (Regenstein et al., 2003). Alcohol represents one of the
main concerns, as alcoholic food and beverage are totally prohibited in
Islam (Anis Najiha et al., 2010). The Islamic Food and Nutrition Council
of America (IFANCA) has adopted a standard of 0.5% alcohol content in
ingredients and 0.2% in finished products (Al-Mazeedi et al., 2013).
Therefore, any attempt to reduce mycotoxin contamination in food
and beverages by biological means should assure that no traces of
ethanol are generated during the process.

Grape infection by Aspergillus spp. occurs immediately prior to or
during harvesting, transportation and storage of harvested grape
bunches (Battilani et al., 2004b; Magan and Aldred, 2005;
Martinez-Rodriguez and Carrascosa, 2009; Zimmerli and Dick, 1996).
During thewinemaking process, OTA is not completely released during
the crushing of the berries: maceration can cause an increase in OTA
content estimated at around 20% (Battilani et al., 2004b), while OTA
content tends to diminish during the yeast and malolactic fermenta-
tions, probably due to adsorption on the yeast surface, or to degradation
by lactic bacteria (Amézqueta et al., 2009; Bejaoui et al., 2004; Cecchini
Table 3
Ochratoxin A (OTA) reduction on grape juice by living yeast cells. Yeast cells were inocu-
lated in 25 mL of grape juice artificially amended with OTA (20 ng/mL) and incubated in
the dark at 25 °C under constant agitation (100 rpm) for 8 days, then juice and cell pellets
were separated to measure OTA reduction and adsorption, respectively. Results obtained
from HPLC analysis are expressed as ng/mL of OTA ± standard error, and referred to the
initial volume of 25 mL. Values in each column followed by one (P ≤ 0.05) or two
(P ≤ 0.01) asterisks are significantly different from inoculated control according to
Dunnett's test.

Treatment OTA content (ng/mL ± SE)

Grape juice Yeast cells

Control 16.4 ± 1.4 /
C. intermedia 253 5.5 ± 0.3** 7.4 ± 0.5
C. jadinii 273 13.0 ± 1.6 1.8 ± 0.6
L. thermotolerans 751 4.9 ± 0.0** 11.3 ± 1.6
C. friedrichii 778 5.9 ± 0.4** 9.7 ± 0.5
et al., 2006). On the contrary, in grape juice production OTA contamina-
tion may reach significant levels, since the activity of fermenting yeast
and lactic bacteria is absent (Rosa et al., 2004).

Our aim was to develop a new biocontrol approach to prevent OTA
contamination that could meet Islamic laws concerning the presence
of alcohol in halal beverages. In the present investigation, we
have selected four antagonistic yeast strains with no or low-
fermenting capacity, that are able to control the pathogenic fungus
and OTA-producer A. carbonarius in grape.

The two low-fermenting yeast strains, C. intermedia 235 and
L. thermotolerans 751, showed a significant antagonistic activity against
A. carbonarius both on grape berries and in in vitro experiments. Since
their filtrate and autoclaved filtrate culture broth were not able to
prevent consistently the pathogen growth, it is likely to assume that
the main mechanism behind the biocontrol efficiency of these strains
consists in the competition for space and nutrients rather than to the
release of diffusible antifungal compounds.

Accumulation of carbon dioxide and decreased levels of oxygenmay
also play a role in reducing fungal growth or sporulation (Schalchli et al.,
2011). Since these parameterswere not evaluated in our experiments, it
is not possible to completely rule out the role of competition for oxygen
in the yeast — A. carbonarius interaction. Nonetheless, volatile organic
compounds (VOCs) produced by all four selected yeasts were likely
able to inhibit sporulation of A. carbonarius in vitro. VOCs are low
molecular weight metabolites that may contribute to pathogen control
(Fialho et al., 2010); they play a role in changing protein expression
(Humphris et al., 2002) and enzymatic activity (Wheatley, 2002) of
fungi and their efficacy may depend on the target pathogen (Mari
et al., 2012). Antifungal VOC production by yeasts may represent an
important tool for postharvest management, especially under airtight
environment (Huang et al., 2011).

VOCs produced by one of the two non-fermenting yeast strains,
namely C. friedrichii 778, in addition to inhibiting sporulation by
A. carbonarius, also reduced significantly its vegetative growth in vitro.
Further investigation shall be focused on the characterization of the
chemical composition of VOCs produced by C. friedrichii 778 compared
to those produced by the other yeast strains, in order to identify the
molecules putatively responsible for the inhibition of mycelium
development.

To the best of our knowledge, this is the first report on yeast VOCs
used against A. carbonarius.

Among the tested yeast, C. intermedia 235 and L. thermotolerans 751,
along with C. friedrichii 778, presented a remarkable capacity to adsorb
OTA on grape juice amended with this mycotoxin, while living cells of
C. jadinii 273 did not display any significant absorption capacity.
Autoclaving treatment provided OTA adsorption capacity to all the
four tested strains: as previously observed for other yeast, this effect
may be due to the boost of adsorption cell sites as a consequence of
the heat treatment (Bejaoui et al., 2004; Péteri et al., 2007).

Compared to other detoxificationmethods, such as the use of organ-
ic and inorganic adsorbent materials, the biological control approach
represents a more efficient preventive strategy to reduce OTA contami-
nation, since selected antagonists may be applied both before harvest-
ing to control grape infection by OTA-producing fungi and also during
processing to act as OTA detoxifiers. Field experiments are being carried
out to evaluate the competitive ability of low- and non-fermenting
yeasts towards residentmicroflora, their fitness and resistance tomulti-
ple environmental stress (including agrochemicals). These features are
a basic prerequisite for any biocontrol product to be commercially
developed (Droby et al., 2009).

5. Conclusions

Our results show that selected non-fermenting or low-fermenting
yeast strains may be efficiently developed as biocontrol agents in post-
harvest disease management of grape as well as processing aids in the
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production of grape juice, to reduce mycotoxin contamination if OTA
levels exceed the limits fixed by food regulation. Processing aids are
commonly used in food industry as adjuvants in food processing and
do not need to be reported on the label by law in many countries
(Codex Alimentarius, 1981). The use of several processing aids may
lead, even not intentionally, to the presence of non-admitted substances
in the final product, hence invalidating the halal status of food
(Al-Mazeedi et al., 2013). Halal food industry is among the biggest and
fastest expanding niches in the food market, representing one fifth of
global food trade (Azeez, 2013). Research and development onmicroor-
ganisms to be adopted as biocontrol agents in fruit post-harvest or as
biological adsorbent to remove mycotoxins from fruit juices should
fulfill the request imposed by halal food market to guarantee
that products meet religious standards. In this perspective, it is recom-
mended to use low-fermenting yeast that does not release any or
release only extremely low levels of alcohol below halal thresholds.
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