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In this paper, we introduce a class of generalized quasivariational inclusions and
show its equivalence with a class of fixed point problems by making use of the
properties of proximal maps. Using this equivalence, we develop the Mann and
Ishikawa type perturbed iterative algorithms for this class of generalized quasivari-
ational inclusions. Further, using fixed point techniques, we prove the existence of
solutions for the class of generalized quasivariational inclusions and discuss the
convergence criteria for the perturbed algorithms. Our algorithms and results
improve and generalize many known corresponding algorithms and results.
© 1997 Academic Press

1. INTRODUCTION

Variational inequality theory has emerged as an elegant and fascinating
branch of applicable mathematics in recent years. Variational inequalities
arise in models for a large number of mathematical, physical, engineering,
and other problems. The theory of variational inequalities has led to
exciting and important contributions to pure and applied sciences which
include work on differential equations, contact problems in elasticity, fluid
flow through porous media, control problems, general equilibrium prob-
lems in economics and transportation, and unilateral, obstacle, moving,
and free boundary problems; see for instance [1-3, 6, 8]. Inspired and
motivated by the recent work of Hassouni and Moudafi [7], we introduce a
class of generalized quasivariational inclusions. We remark that one of the
most important and difficult problems in variational inequality theory is
the development of an efficient and implementable iterative algorithm for
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solving various classes of variational inequalities. There is a substantial
number of iterative methods for solving variational inequalities in the
literature. Among the most efficient methods is the proximal method
introduced by Hassouni and Moudafi [7]. We also remark that the projec-
tion method and auxiliary principle technique of Glowinski, Lions, and
Tremolieres [6] and its variant forms cannot be applied to study the
existence of a solution and to develop the iterative algorithm for our
considered class of generalized quasivariational inclusions. Therefore, the
aim of this paper is to study the existence theory and to develop the Mann
and Ishikawa type perturbed iterative algorithms for the class of general-
ized quasivariational inclusions. The convergence criteria for these algo-
rithms is also discussed.

2. PRELIMINARIES

Let H be a Hilbert space with norm and inner product denoted by || - ||
and (-, ), respectively; let T, A: H — 2% where 2% is the power set of
H, be two set valued mappings, and g,m: H — H be two single-valued
mappings. Assume ¢: H — R U {+x} is a proper convex lower semi-
continuous function and d¢ is the subdifferential of ¢. Then the general-
ized quasivariational inclusion problem (GQVIP) is to find u € H, x €
T(u), y € A(w) such that (g — m)u) N dom d¢ # & and

Re(x —y,v — (g —m)(u)) = $((g§ —m)(u)) — ¢(v), VveEH,
(2.1)

where g — m is defined as

(g —m)(u) =g(u) —m(u)  foreach u € H.

Some Special Cases

(D) If T and A are single-valued mappings and m is a zero mapping,
then GQVIP is equivalent to finding u € H such that g(u) N dom ¢ # &
and

Re(T(u) — A(u), v —g(u)) = ¢(g(u)) — $(v), Vv eEH,

which is called the variational inclusion problem introduced and studied by
Hassouni and Moudafi [7].

(1D If ¢ = 8, the indicator function of the nonempty closed convex set
K in H, then GQVIP is equivalent to finding u € H, x € T(w), y € A(uw)
such that g(u) € K + m(u) such that

Re(x —y,v —g(u)) =0 VoveK(u),
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which is called the generalized strongly nonlinear quasivariational inequal-
ity problem, introduced and studied by Ding [4].

We remark that GQVIP also includes as special cases, the variational
and quasivariational inequality problems considered by [4, 5, 7, 9, 11, 12,
14-16].

3. MANN AND ISHIKAWA TYPE PERTURBED
ITERATIVE ALGORITHMS

First of all, we prove that GQVIP is equivalent to a fixed point problem.

LEMMA 3.1. GQVIP has a solution if and only if, for some given 1 > 0,
the mapping F: H — 2" defined by

Fay= U U [u-(g-m)(n)

xeTw) yeA(u)

+32((g = m)(u) —n(x=y))], (3.1)

where m > 0 is a constant and Jf,’ = (I + nd¢)~t is the so-called proximal
mapping, 1 stands for the identity on H, has a fixed point.

Proof. Let (u*, x*, y*) be a solution of GQVIP. Then we have u* € H,
x* € T(u*), y* € A(w*) such that (g — m)(w*) N dom d¢ + & and

Re(x* —y*,v — (g — m)(u*)) = d(g — m)(u*) — o(v), VveEH.
(3.2)

Using the definition of d¢, (3.2) can be written as
y* —x* € 0p((g — m)(u)),
and hence for any given n > 0,

(g = m)(u*) — n(x* —y*) € (g = m)(u*) + ndd((g — m)(u¥))
= (1 +md¢)((g —m)(u)).

From the definition of Jf,’, one has

(g —m)(u*) = I7((g — m)(w*) — n(x* —y*)),
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and hence
wr = = (g = m) () + (g = m)(u®) = n(x* = y))
e U U [u*—(g—m)(u*)

x*eTw*) y*eA*)
+37((g = m)(u*) = n(x* = y*))]
= F(u),

u* € H is a fixed point of F.
Conversely, if u* € H is a fixed point of F, by definition of F, there
exist x* € T(u*) and y* € A(u*) such that

w* =u* — (g —m)(u*) + I7((g —m)(u*) — n(x* —y¥)).
Hence, from the definition of .Jff, we have
(8 = m)(u*) = n(x* —y*) € (g —m)(u*) + ndp((g — m)(u*)).
Note 5 > 0, and we have
y* —x* € dp((g — m)(u*)).
The definition of d¢ yields
Re(x* —y*, v — (g —m)(u*)) = $((g§ —m)(u*)) — &(v), VveH

and Im(g — m) N dom d¢ # .
Thus (u*, x*, y*) is a solution of GQVIP. 1

The transformation of GQVIP to the fixed point problem (3.1) is very
useful in the approximation analysis of GQVIP. One of the consequences
of this transformation is that we can obtain an approximate solution by an
iterative algorithm.

Based on the above transformation and observations, we now suggest
and analyze the following new general and unified algorithms for GQVIP:

MANN TYPE PERTURBED ITERATIVE ALGORITHM (MTPIA). Let
T, A:— 2" and g,m: H —» H. Given u, € H, the iterative sequences {u,},
{x,}, and {y,} are defined by

Uyt = (1 - an)un

+ a,[u, = (g = m)(u,) +IP((g = m)(u,) = n(x, =3,))]
+e,, x, € T(u,) and v, € A(u,), n >0,
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where {«,} is a real sequence satisfying a, = 1,0 < @, < 1 for n > 0, and
Yo _oa, =% ¢, €H forall nis an error which is taken into account for
a possible inexact computation of the proximal point; {¢,} is the sequence
approximating ¢ and m > 0 is a constant.

IsHIKAWA TYPE PERTURBED ITERATIVE ALGORITHM (ITPIA). Let
T,A: H— 2" and g,m: H— H. Given u, € H, the iterative sequences
{u,}, {x,}, and {y,} are defined by

Upy1 = (1 - an)un
+ a,[0, = (8 = m)(v,) + I9((g —m)(v,) — (%, —3,))] + e,
v, = (1 - Bn)un
+ Bu[u, = (8 = m)(u,) + 3P ((g = m)(w,) = n(x, = y,))] + Bt

for n > 0, where x, € T(v,), y, € A(v,), x, € T(u,), y, € A(u,); e, and
r, in H for all n > 0 are errors; {¢,} is the sequence approximating ¢;

{a,} and {B,} are real sequences satisfying oy =1, 0 < «,, B, <1 for
n>=0and ¥ _, a, = %, and n > 0 is a constant.

Next, we review some definitions and results which are needed in the
sequel.

DeriniTioN 3.1. A mapping f: H — H is said to be

(i) w-strongly monotone if there exists a constant v > 0 such that
Re{f(u) — f(v),u —v)y = vlu—ol’, Vu,v€H,
(ii) o-Lipschitz continuous if there exists a constant o > 0 such that
If(u) = f(o)| <olu—vll, Vu,veH.

DerINITION 3.2. A set-valued mapping 7: H — 2 is said to be

(i) a-strongly monotone if there exists a constant « > 0 such that
Re{x —y,v —u) > alu—vl?>, Yu,veH,xe T(u)andy e T(v);

(ii) B-Lipschitz continuous if there exists a constant 8 > 0 such that
8(T(u), T(v)) < Bllu —vll, VYu,veH, x€T(u),and y € T(v),

where 8(A4, B) = sup{lla — b|: a € A, b € B} for any A4, B € 2",
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LEMMA 3.2 [10]. Let ¢ be a proper convex lower semi-continuous func-
tion. Then Jg’ = (I + nd¢)~! is nonexpansive, i.e.,

”‘J;?(”)_Ji(v)”S“”—UH, Yu,v € H.

We remark that if ¢ = &, the indicator function of a nonempty closed
convex set K in H, then J¢(u) = P(u) for each u € H and n > 0, where
Py is the projection mapping of H onto K.

Several special cases of ITPIA are listed below.

@) If B, =0forall n >0, ITPIA reduces to MTPIA.

(ii) If m is a zero mapping, T and A are single-valued, and B8, = 0
and «, =1 for all » >0, ITPIA reduces to the Algorithm (2.4) of
Hassouni and Moudafi [7].

(i) If for all n > 0, ¢, = 8, the indicator function of a nonempty
closed convex set K in H, e, =0, r, = 0 forall n > 0, the ITPIA reduces
to the Algorithm 3.2 of Ding [4].

(iv) If ¢, = 84 forall n > 0, g = I, the identity mapping, ¢, =r, =0
for all »n >0 and B, =0 for all n >0 then ITPIA reduces to the
Algorithm in Theorem 3.5 of Ding [5].

4. EXISTENCE AND CONVERGENCE RESULT

In this section, we prove the existence of a solution of GQVIP and
discuss the convergence criteria for ITPIA and MTPIA.

THEOREM 4.1. Let T: H — 2" be a-strongly monotone and B-Lipschitz
continuous; A: H — 21 be u-Lipschitz continuous; (g — m): H - H be
v-strongly monotone; and g,m: H — H be o-Lipschitz continuous and
& Lipschitz continuous, respectively. Assume that

Re{m(v) — m(u), g(u) —g(v)) < Allu —vll>, Yu,veH (4.1)
for some constant \ such that Ay < A < o€, where

Ay = inf{M:Re(m(v) — m(u), g(u) — g(v))
<Mllu—vl? VYu,v e H}.
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If there exists a constant n > 0 such that

a+;u(k—1)‘< V(a+u(k—1)° = (B2 — w)k(2 — k)
,32— 2 ,32—[.L2
a>p(l—k)+ /(B2 - k(2 —k), p(l—k)<pB

and 4.2

k=2y1-2v+&2+02+2X <1,
then (u*, x*, y*) is a solution of GQVIP. Moreover, if

lim [|9+(0) =37 () =0, VveH

and {u,}, {x,}, and {y,} are defined by ITPIA with conditions

@ lim,_ . lle,ll=0=Ilim,_. |r,ll and
(i) X IT7_; 41 (1 — a(1 — ¢)) converges, 0 < ¢ <1,

then {u,}, {x,}, and {3} strongly converge to u*, x*, and y*, respectively.

Proof. First we prove that the GQVIP has a solution (u*, x*, y*). By
Lemma 3.1, it is enough to show that the mapping F: H — 2% defined by
(3.1) has a fixed point u*. For any u, v € H, p € F(u), and g € F(v),
there exist x; € T(w), x, € T(v), y, € A(w), and y, € A(v) such that

p=u-—(g—m)(u)+ Jf,’((g —m)(u) — n(x, _)’1))
and
g=v—(g—m)(v) +37((g —m)(v) = n(x, —,)).

By Lemma 3.2, we have

Ip = qll <[lu — v = ((§ = m)(u) — (g —m)(v))l
+l(g —m)(u) — (g —m)(v) = n(x; —x5) + n(y; =)
<2fu—-v-((g=m)(u) - (g—m)(v))l
+u—v—n(x; —x,)| + n8(A(u), A(v)).
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By using the technique of Noor [12], the Lipschitz continuity of T, A4, g,
and m, the strong monotonicity of 7 and (g — m), and (4.1), we obtain

lu = v = ((g=m)(w) = (g=m) ()|
= llu = ol* — 2Re{u — v, (g — m)(u) — (g — m)(v))
+[m(u) = m(0)|” +lg(u) —g(v)’
+ 2Re(m(v) —m(u), g(u) —g(v))
<(l-2v+ &2+ 02+ 20)u -l (4.3)
lu—0v—mn(x, —)c2)||2 <(1-2na+0B?)lu—- vl?
and
8(A(u), A(v)) <llu — vl (4.4)
Therefore, it follows that
8(F(u),F(v))
< {2\/1—2v+§2+0'2+2/\ +\/1—2na+ n%B? +1)p,>||u—1)||

{k +1t(n) + nu} llu — vl
0 llu — vl (4.5)
where k =21 —2v+ &2+ g2+ 2A, t(n) = {1 — 2na + 7%8%, and
0 = k + t(n) + nu. By condition (4.2), we see that 0 < 0 < 1. It follows
from (4.5) and Theorem 3.1 of Siddigi and Ansari [14] that F has a fixed
point u* € H. Hence by Lemma 3.1, there exist x* € T(u*) and y* €
A(u*) such that (u*, x*, y*) is a solution of GQVIP.

Next we prove that the iterative sequences {u,}, {x,}, and {j,} defined by
ITPIA strongly converge to u*, x*, and y*, respectively.

Since GQVIP has a solution (u*, x*, y*) then, by Lemma 3.1, we have

wt=u* — (g —m)(u*) +I7((g = m)(u*) = n(x* = y¥)).

By making use of the same arguments used for obtaining (4.3) and (4.4),
we get

lu, — u* = ((g = m)(u,) — (g —m)(u))]
<2V1—-2v+ E2+ 0%+ 2A ||u, — u*|,

u, — u* = n(x, —x*)| < V1—2na+ 282 |u, — u*,
v, —u* = ((g —m)(v,) — (g = m)(u*))]

<Vi-2v+ &2+ 02+ 2 ||v, —ur,
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and
”Un —u* - T]()_Cn _x*)” = \/1 - 27’0[ + 77232 ”Un - u*”'
By setting
h(u*) = (g — m)(u*) — n(x* —y*)
and
h(v,) = (g —m)(v,) — n(%, —¥,),
we have

ltyer = w* =] = @)u, = a,[v, = (g = m)(v,) + I (h(v,))] +e,
+(1— a)u* + a,[ur = (g — m)(w*) + I2(h(u¥))]|
<(1-a)|u, —u|
+ a, [lo, —w* = ((g = m)(v,) = (g = m)(w))|
3¢ (h(v,)) = 3¢ (h(u)) || +lle, - (4.6)

+ a,

Now, since J;f’n iS nonexpansive, we have

[32-(h(v,)) = Ig(h(u*)) |
<[l(v,) = h(u) | + ]| 3g(h(u*)) = 32 (h(w))
<[lo, —uw* = ((g = m)(v,) = (g = m)(u))]
[0, = wr = (%, =) | + [ 3 (h(w)) = 3 (h(u*)) |
+ [y, = y*l

<V1-2v+ &2+ 0%+ 2 v, —u|

+1 = 2na + %82 ||, — u*||

+ 18(A(v,), A(u*)) +[ 3¢ (h(wr)) = IZ(h(u®))|. (4.7)
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On combining (4.6) and (4.7) and using the u-Lipschitz continuity of A,
we get

lir =l < (1 = a,) [Ju, —uw|

+an[2\/l—2v+ E2+ g%+ 2

+V1 - 2na + 8% + w] v, —u*|

3¢ (h(u*)) = I(h(w*)) | +le, |
= (1 - an) ”un - Lt*” + anellvn - u*” +a,s, +||en”’
(4.8)

+ «,

where 0=2\/1—2v+ E24+ 0%+ 2 +\/1—27]a+n2,82 + mu and

&0 =38 (h(u*)) = 32 (h(u*)) |
Next

v, — |
=[x = B)u, + BJu, — (g = m)(w,) + I (h(w,))] + B,r,
+(1 = B)u* + B,[ur — (g = m)(u*) + 3¢ (h(u))]|
<(1-8,) llu, —u|
+ B, Ju, —u* = ((g = m)(w,) = (g = m)(w))|
+ B, 92 (h(w,)) = 3¢ (h(u)) || + B, Iir - (4.9)

By making use of the same arguments used for obtaining (4.7), we get

|92+ (R(u,)) = 3¢ (h(u*)) |

< [\/1—2y+ 2+ g2+ 20 + \/1—2na+nzﬁz]||un—u*||

+ 08 (A(u,), A(u*)) + &,. (4.10)
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On combining (4.9) and (4.10) and using the u-Lipschitz continuity of A
we get

o, = w*ll < (1 = B,) llu, — w*]| + B,0lu, — u*]| + B,&, + B, |
< (1= B.,(1=0))llu, —u*| + B,(&, +]r.l)
<lu, = w*|| + B,(&, +r,l),

since (1 — B,(1 —0)) < 1.

On combining (4.8) and (4.11), we get

(4.11)

||un+l - Lt*” = (1 - an) ”un - M*” + anollun - Lt*”
+ 0a, B,(&, +Ir,ll) + a,s, +]e,l
= (1 - an(l - 0)) ”un - Lt*” +a,8,
+ 0, B,(&, +Irll) el

<11+ a1 = 0)) g — ]

go [T (- a(i-6)e

i=j+1
n

1_[ (l — aj(l - 6))(8]- +||rj||)

) o
j=0

zr[

j=01i

(1= a(1=0))llel. (4.12)

+1

where IT_; ; (1 — a1 — 6)) = 1 when j = n.
Now, let B denote the lower triangular matrix with entries

b,; = q ﬁ (1 - a(1-0)).

i=j+1

Then B is multiplicative, see Rhoades [13], so that

lim Z ]_[ (1-a(1l-0))s=0

ﬂ—"’cj 0 i=j+1
,JTL(’ Z o B; 1‘[ (11— a(1=0))(g +lnl) =

since lim, . llr,ll = 0 and lim, _,, &, = 2(h(*) — I2(h(u*) = 0.
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Let D be the lower triangular matrix with entries

dy= T1 (- a(l-0)).

i=j+1

Condition (ii) implies that D is multiplicative, and hence

im Y T (L= a(t—0)lel=0,

noe oo i=j+l

since lim, _, . lle,ll = 0.
Also

n
lim TT(1- a(1-6))=0,
nd RN
since L7_, a; = <o
Hence, it follows from inequality (4.12) that lim,, _ _ llu,,, — u*l| =0,
i.e., the sequence {u,} strongly converges to u* in H. The inequality (4.11)
implies that the sequence {v,} also converges to u*. Since X, € T(u,),
x* € T(u*), and T is B-Lipschitz continuous, we have

%, = x*|l < 8(T(v,), T(u*))
S”Un—u*”—>0 as n — o,

i.e., {x,} strongly converges to x*. Similarly we can prove that {y,} strongly
converges to y*. |

We remark that if g, = 0 for all n > 0, Theorem 4.1 gives the condi-
tions under which the sequences {u,}, {x,}, and {y,} defined by MTPIA
strongly converge to u*, x*, and y*, respectively.
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