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The purpose of this paper is to investigate the possible mechanisms of resistance to chemotherapy in
melanoma from the perspective of molecular biology and to discuss the strategies to overcome them.
Cisplatin, a DNA-damaging compound that triggers apoptotic cell death, is commonly used in the
treatment of malignant melanoma. However, most patients develop mechanisms of acquired resistance
and about 25% of them do not achieve tumor regression at all, due to intrinsic resistance to therapy. In
the current study, we reported the tumor xenografts of the human A375 melanoma, after 40-weeks’
consecutive therapy with cisplatin that developed resistance as a result of EphB4 overexpression.
Moreover, the expression of phospho-AKT and phospho-ERK were significantly increased in cisplatin-
resistant tumors. In addition, combined of cisplatin with EphB4 selective inhibitor could abrogate this
acquired mechanism of drug resistance due to an enhanced apoptotic effect in cisplatin-resistant xe-
nografts. In summary, these results help to understand the mechanisms of acquired resistance to
chemotherapy and provide important information for clinical treatment strategies.
© 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. on behalf of Japanese

Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introdution

Cutaneous melanoma (primary site) is the most aggressive form
of skin cancer, which is highly curable when localized to the pri-
mary site. However, whenmelanoma spreads to the regional lymph
nodes, the 5-year survival rate is only 29% and once major organs
are disseminated with disease the rate would fall to 7% (1). Alky-
lating agent dacarbazine usually was used as a standard treatment
to treat metastatic melanoma, which frequently leads to poor
outcomes, while combinations of chemotherapeutics have shown
only marginally higher response rates, paying the price of systemic
toxicity (2,3). In addition, most patients with metastatic melanoma
are incurable because of melanoma cells are generally insensitive to
chemotherapy-induced cell death (3).

Cisplatin is a neutral inorganic, square planar complex, which
is one of the most potent anti-tumor agents. It exert cytotoxic
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effect by interaction with DNA to form DNA adducts, which
culminate in either repair of the DNA damage and cell survival or
activation of DNA damage-mediated apoptotic program. The
clinical benefits of cisplatin as an anti-tumor agent have been
recognized for over 30 years, which is also commonly used in the
treatment of malignant melanoma (4). However, melanoma is
relatively resistant to cisplatin even if it is highly effective in the
treatment of many types of cancer (5). Despite some mechanisms
of tumor resistance to cisplatin in other tumor types have been
proposed in pre-clinical studies, the mechanisms of chemo-
resistance are still unknown in melanoma. Possible explanations
include disrupted accumulation of agents caused by drug pumps,
up-regulated DNA repair, defective apoptosis signaling, and sur-
vival factor activation (6).

In the current study, we developed a melanoma A375 xeno-
grafts which sensitive to cisplatin firstly and then acquired tumor
resistant by continuous dosing cisplatin. To our knowledge, this
is the first time to investigate the possible mechanisms of
resistance to chemotherapy in melanoma from the perspective of
molecular biology and to discuss the strategies to overcome
them.
r B.V. on behalf of Japanese Pharmacological Society. This is an open access article
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2. Materials and methods

2.1. Reagents and cell line

Cisplatin were purchased from Sigma (St. Louis, MO, USA). For
in vivo studies, Cisplatinwas dissolved in normal saline delivered by
intraperitoneal (IP, 2 mg/kg) injection twice weekly. EphB4 inhib-
itor NVP-BHG712 purchased from Selleck Chemicals (Houston, TX,
USA). Phospho-AKT (Ser473, p-AKT), phospho-ERK1/2 (Thr202/
Tyr204, p-ERK1/2), EphB4, AKT, and ERK1/2 antibodies were pur-
chased from Cell Signaling Technology (Danvers, MA, USA). Tissue
lysis buffer and phosphatase inhibitor cocktails were purchased
from Sigma (St. Louis, MO, USA). Human melanoma cell line A375
was purchased from American Type Culture Collection (ATCC;
Manassas, VA, USA). Cells were cultured in DMEM medium (Invi-
trogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum (FBS; Invitrogen, Carlsbad, CA, USA), penicillin and strepto-
mycin (ICN Biomedicals, Inc., Costa Mesa, CA, USA), and sodium
pyruvate and maintained at 37 �C with 5% CO2 in a humidified
atmosphere.

2.2. Cisplatin-resistant A375 xenograft model establishment and
efficacy study in vivo

Female athymic BALB/c nude mice (6e8 weeks) were purchased
from Vital River (Beijing, China). Mice were maintained under super
pathogen-free conditions and housed in barrier facilities on a 12-h
light / dark cycle, with food and water ad libitum. Tumor volume
was calculated using the following formula: tumor
volume¼ (length � width2)/2, where length and width are the
longest and shortest dimensions of the tumor, respectively. Mice
were injected subcutaneous (s.c.) with 4 � 106 A375 cells, which
had been resuspended in 100 mL of PBS. When tumor volume
reached 150e200 mm3, 10 mice in each group were treated with
2 mg/kg cisplatin twice weekly by IP administration. Tumors were
monitored for the development of cisplatin resistance, defined as
marked tumor growth in the presence of continued cisplatin
therapy (7). Approximately 40 weeks following the injection, the
tumors (1.5 cm in diameter) was aseptically resected from
cisplatin-resistance group and minced into small pieces (3 mm in
diameter). Then a piece of tumor was implanted into the left flank
of host mice. When tumor volume reached 150e200 mm3, mice
were randomly divided into four groups (n ¼ 10 for each group) to
receive of vehicle (IP, daily), 2 mg/kg cisplatin (IP, twice weekly),
10 mg/kg NVP-BHG712 (Oral, once daily), or a combination treat-
ment for 21 days. In the end of studies, we isolated tumor tissues
from A375 xenografts and transfer tumor tissues to fresh sterile
DMEM medium. Next we transferred tumor tissues to a new dish
and dissected off necrotic areas, fatty tissues, blood clots, and
connective tissues with forceps and scalpels. Finally, the tumor
tissues were washed with PBS and stored in liquid nitrogen. All
animal experiments were performed in accordance with protocols
approved by the Experimental Animal Center of the Third Military
Medical University Animal Care and Use Committee.

2.3. RNA sequencing (RNA-seq)

Gene expression analysis of both cisplatin-sensitive or resistant
A375 tumor tissues was carried out on RNA extracted from tumors
using Qiagen RNA easy kits (QIAGEN Inc., Valencia, CA, USA). RNA
quality was verified by running samples on an Agilent Bioanalyzer
2100 (Agilent Technologies, Inc., Santa Clara, CA, USA), and prepa-
ration of complementary RNA, array hybridizations, scanning, and
subsequent array image data analysis were done using the manu-
facturer's specified protocol. The sequencing library was
constructed according to Illumina's TruSeq RNA Sample Prepara-
tion Protocol (8). After normalization, the DNA sample libraries
were pooled into 4 libraries, and the pooled libraries were
sequenced on an Illumina HiSeq 2000 sequencing machine (Illu-
mina Inc., San Diego, CA, USA).
2.4. Western blot analysis

The mice were sacrificed with CO2, and then tumors were
resected fromA375 xenograft after last treatments for 4 h in the last
day of efficacy study. Protein extracts were prepared from the tu-
mor tissues using lysis buffer containing 50 mM TriseHCl (pH 7.4),
1% NP-40, 0.25% sodium deoxy-cholate, 150 mM NaCl, 1 mM phe-
nylmethylsulfonyl fluoride, 1 mg/ml aprotinin, 1 mg/ml leupeptin,
and 1 mg/ml pepstatin (Sigma, St. Louis, MO, USA). The protein
concentrations were determined using the Bradford assay. The
protein lysate (50 mg) was separated on a 10% SDS-PAGE gel and
transferred onto polyvinylidene difluoride membranes (Millipore,
Billerica, MA, USA) for western blot analysis detection. The blot was
blocked with 5% non-fat dry milk in a buffer containing 10 mM Tris
(pH 7.5), 100 mM NaCl, and 0.1% Tween-20 (Sigma). The blot was
washed and incubated with primary antibodies (1:1000 dilution)
for 1 h and then incubated for 30 min with secondary goat anti-
rabbit antibody conjugated with horseradish peroxidase (1:3000
dilution). Immunoreactive protein signals were visualized by an
enhanced chemiluminescence kit (Thermo Scientific, Amersham,
USA).
2.5. Apoptosis assays

The mice were sacrificed with CO2, and then tumors were
resected fromA375 xenograft after last treatments for 4 h in the last
day of efficacy study. Apoptosis in tumors were determined by
TUNEL, using an in-situ cell-death detection kit (Boehringer Man-
nheim, Indianapolis, IN, USA) according to the manufacturer's
protocol. Tumor tissues were fixed with freshly prepared para-
formaldehyde [4% in PBS (pH 7.4)], rinsed with PBS, and incubated
in permeabilization solution. After cross-reaction with TUNEL re-
action mixture for 60 min at 37 �C and cross-reaction with
converter-alkaline phosphatase solution for 30 min at 37 �C in a
humidified chamber, the slides were reacted with alkaline phos-
phatase substrate solution for 5e10 min (Vector Laboratories,
Burlington, MA, USA), rinsed and mounted under a coverslip for
analysis with a light microscope. The number of TUNEL-positive
cells was counted in five different fields under a light microscope
at �40 magnification, and representative fields were photo-
graphed. The percentages of apoptotic cells were calculated from
the ratio of apoptotic cells to total cells counted.
2.6. ELISA analysis for p-EphB4

Phospho-EphB4 expression in tumor tissues level was detected
by Phospho-EphB4 Duoset IC ELISA analysis (R&D, Minneapolis,
MN, USA). According to the kit instruction procedures, 96 well
ELISA high binding plates were incubated overnight at room tem-
perature with 100 ml/well of the specific capture antibody diluted in
sterile PBS to the proper working concentrations. In the second day
wells were washed and blocked for 1 h at room temperature. After
that, wells were washed and 100 ml/well of lysates were added at
room temperature for 2 h, then wells were washed and incubated
with Detection Antibody at room temperature for 2 h. Finally the
biotinylation antibody working liquid was added and the OD450
value was measured to obtain the p-EphB4 expression level.



Fig. 2. Differences in gene expression between cisplatin-sensitive and resistant
A375 xenografts by RNA-Seq analysis. The mice were sacrificed with CO2, then
Cisplatin-sensitive and resistant tumors were resected from A375 xenografts respec-
tively. The gene expressions of tumors were analyzed by RNA-Seq.
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2.7. Statistical analysis of the data

All results and data were confirmed in at least three separate
experiments. Data are expressed as means ± SD, and were analyzed
by student's t-test using the GraphPAD InStat software, version 1.14
(GraphPAD Inc., San Diego, CA, USA). In vivo experiments Differ-
ences were considered to be statistically significant when the P-
value was <0.05.

3. Results

3.1. Cisplatin-resistant A375 xenograft model establishment

In order to establish cisplatin-resistant A375 xenograft model
in vivo. The tumor bearingmicewere twiceweekly IP injectionwith
2 mg/kg cisplatin for up to 40 weeks. As shown in Fig. 1A, B,
treatments with 2 mg/kg cisplatin significantly inhibit tumor
growth A375 xenografts at the first stage. However, #3 and #6
xenografts acquired resistance to cisplatin after 40-weeks’
consecutive treatment. Any treatment was well tolerated by mice,
with no weight loss or other signs of acute or delayed toxicity were
observed in the cisplatin treated xenografts (Fig. 1C).

3.2. EphB4 was overexpressed in the cisplatin-resistant A375
xenografts

In order to study possible mechanisms of acquired resistance to
cisplatin, we exposed A375 xenografts to cisplatin for a long time
Fig. 1. Cisplatin-resistant A375 xenograft model establishment. (A) Nude mice-bearin
administration for up to 40 weeks. Tumor volume was measured using Vernier calipers on th
mice after 40 weeks' treatment. (C) Body weight was monitored on the indicated days.
period. And then genome-wide gene profile between cisplatin-
sensitive and cisplatin-resistant tumors were compared. The re-
sults showed that gene EphB4 was overexpressed, whereas in the
cisplatin-sensitive A375 xenografts, the EphB4 was expressed at a
normal level (Fig. 2). According to the results we deduced that
EphB4 may be contributed to the acquired resistance to the
cisplatin. In addition, no overexpression were found in the signal
transducers that are more frequently aberrantly activated in human
tumors such as EGFR, KRAS, EphA2, B-RAF, and PIK3CA (Fig. 2). The
result of Western blot also indicated that cisplatin-resistant A375
xenografts harboring EphB4 overexpression (Fig. 4B).
g A375 tumors were once-daily dosed with 2 mg/kg cisplatin twice weekly by IP
e indicated days with the median tumor volume. (B) Tumors were resected from nude



Fig. 3. Combination of cisplatin with EphB4 inhibitor had a synergistic anti-tumor effect on cisplatin-resistant A375 xenografts. (A) Cisplatin-resistant A375 xenografts were
treated with 2 mg/kg cisplatin (IP, twice weekly), 10 mg/kg NVP-BHG712 (Oral, once daily), or a combination treatment for up to 21 days respectively. (B) The mice were sacrificed
with CO2, and then tumors were resected from mice and weighted in the end of efficacy study. (C) Body weight was monitored on the indicated days. (D) The tumors were also
subjected to Phospho-EphB4 Duoset IC ELISA kit for detecting phosphor-EphB4 expression level. Mean ± SD, n ¼ 10. **, P < 0.01 vs vehicle group.

Fig. 4. Effects of Cisplatin or/and NVP-BHG712 on PI3K and MAPK pathways in cisplatin-resistant A375 xenografts. (A) The cisplatin-sensitive or resistant A375 tumor tissues
were collected and subjected to western blot analysis for detection of EphB4 expressions. (B) The mice were sacrificed with CO2, and then tumors were resected from cisplatin-
resistant A375 xenografts and subjected to western blot analysis for detection of PI3K/MAPK signaling transduction in the end of efficacy study.
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3.3. Combination of cisplatin with EphB4 inhibitor is synergistic in
cisplatin-resistant A375 xenografts

To further validate our observations, a combination treatment
efficacy study was performed. We combined of cisplatin with an
EphB4 inhibitor NVP-BHG712 to treat cisplatin-resistant A375 xe-
nografts. The results indicated that neither 2 mg/kg cisplatin nor
10 mg/kg NVP-BHG712 treatment could inhibit tumor growth in
cisplatin-resistant A375 xenografts (Fig. 3A, B). As we expected, the
combined treatments significantly inhibited tumor growth after 3
weeks of therapy. It is worth noting that no obvious weight loss or
other signs of acute or delayed toxicity were observed in all treat-
ment groups (Fig. 3C). Next, we turn to phospho-EphB4 Duoset IC
ELISA kit for detecting phosphor-EphB4 expression level. The re-
sults showed that both NVP-BHG712 and the combination treat-
ment would significantly inhibit phosphor-EphB4 expression in
A375 xenografts (Fig. 3D).
Fig. 5. Combination of cisplatin with EphB4 inhibitor induced apoptosis in cisplatin-res
resected from A375 xenografts after last treatments for 4 h in the last day of efficacy study. T
of TUNEL-positive cells was counted in five different fields under a light microscope at �4
apoptotic cells to total cells counted. Mean ± SD, n ¼ 10. **, P < 0.01 vs vehicle group.
3.4. Effects of cisplatin or/and NVP-BHG712 on PI3K and MAPK
pathways in cisplatin-resistant A375 xenografts

To discriminate whether the observed overexpressionwas due to
selection of a preexisting subpopulation or if it was acquired during
the treatment,Western blot analysis was used to assess the impact of
on cisplatin or/and NVP-BHG712 downstreammolecules of the PI3K
and ERK pathways in cisplatin-resistant A375 xenografts. The results
indicated that the expression of p-AKT and p-ERK were not affected
by cisplatin single treatment in cisplatin resistant A375 xenografts,
whereas the expression of p-ERK was significantly inhibited by NVP-
BHG712 alone treatment. In addition, EphB4 appeared to be signif-
icantly inhibited by NVP-BHG712 single treatment. Moreover, the
protein levels of p-AKT as well as p-ERK were significantly inhibited
by the combined treatment in cisplatin-resistant A375 xenografts
(Fig. 4A). Comparing to cisplatin-sensitive A375 xenografts, the
cisplatin-resistant ones showed more high expression levels of
istant A375 xenografts. (A) The mice were sacrificed with CO2, and then tumors were
umor tissues were then subjected to TUNEL alkaline phosphatase assay. (B) The number
0 magnification. The percentages of apoptotic cells were calculated from the ratio of
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p-AKT as well as p-ERK. In addition, consistent with the result of
RNA-Seq, cisplatin-resistant A375 xenografts harboring EphB4
overexpression (Fig. 4B). This finding reveals that the observed
genomic alterations were acquired during the selection.

3.5. Apoptosis in cisplatin-resistant A375 xenografts was induced
by the combined of cisplatin with EphB4 inhibitor

A TUNEL alkaline phosphatase assay demonstrated that
cisplatin-resistant A375 xenografts underwent apoptosis after the
cisplatin in combination with NVP-BHG712 treatment. However,
alone treatment with cisplatin or NVP-BHG712 could not induce
apoptosis in cisplatin-resistant A375 xenografts (Fig. 5A, B). These
results thus indicate that the EphB4 pathway inhibition is required
for cisplatin-resistant A375 xenografts undergoing apoptosis.

3.6. Acquired resistance in cisplatin-resistant A375 xenografts was
irreversible

We then established the second and third passages cisplatin-
resistant A375 xenografts, in order to evaluate if resistant ones
have acquired a permanent resistant phenotype. The results
showed that both second and third passages xenografts still had a
resistance to cisplatin, meanwhile the tumor growth speed of
second and third passage xenografts were faster comparing with
first passage ones (Fig. 6A, B and C). Moreover, the results of
Western blot indicated cisplatin-resistant A375 xenografts
Fig. 6. Acquired resistance in cisplatin-resistant A375 xenografts was irreversible. (A and
dosed with 2 mg/kg cisplatin (IP, twice weekly) for 21 days. (C) The tumor growth speed of fi
with CO2, and then tumors were resected from second and third passages cisplatin-resistant
detected with western blot analysis.
including second and third passages also showed similar expres-
sion levels of EphB4, p-AKT and p-ERK (Fig. 6D).

4. Discussion

Cisplatin, as one member of a class of platinum-containing anti-
cancer drugs, which displays a great deal of clinical activity on a
wide variety of solid tumors. In addition, cisplatin often used in
combination with other chemotherapy drugs to treat patients with
advanced melanoma (9,10). As we know, cisplatin exert their
function mainly by inducing DNA damage, and then cell apoptosis.
However, melanoma cells are generally insensitive to chemo-
therapy or developing a resistance in a short time period (11,12).
The mechanisms for drug resistance in melanoma is most likely
dysregulation of apoptosis, accumulation of agents caused by drug
pumps, DNA repair up-regulation, cell signaling dysfunction
(13e16). Except for these pharmacologic based mechanisms, PI3K/
AKT signaling activation, overexpression of HER2, p53 dysfunction
could be the factors contribution to cisplatin resistance at the
molecular level (17e19). In the current study, we developed a
melanoma xenograft model, which resistant to cisplatin. The re-
sults of gene expression microarray showed that EphB4 over-
expression but not amplification by comparing the genome-wide
gene profile of the sensitive and resistant xenografts. The results of
Western blot also indicated EphB4 was highly expressed in
cisplatin-resistant A375 xenografts. This founding may help us to
understand acquired resistance in melanoma from a new angle.
B) The established second and third passages cisplatin-resistant A375 xenografts were
rst, second and third passage xenografts were monitored. (D) The mice were sacrificed
A375 xenografts. EphB4, p-AKT and p-ERK expression levels in the tumor tissues were
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The Eph (erythropoietin producing hepatocellular) family of re-
ceptorsmake up the largest subgroup of the receptor tyrosine kinase,
which could be divided into the A- or B-type based on their in-
teractionswith Ephrin ligands (20,21). Durget al. reported that EphA2
is an important oncogene and potentially a common source of
'addiction' for many melanoma cells (22). Benchun et al. also
mentioned that EphA2 was an important factor for vemurafenib
resistance (23). However, we did not found high EphA2 gene expres-
sion in the current resistant model. Since EphA2 and EphB4 have no
cross-binding to Ephrins of the opposing subclass and NVP-BHG712
was well designed and further optimization led to a potent and se-
lective inhibitor of the EphB4 receptor tyrosine kinase, we proposed
EphB4 overexpression contributed to the cisplatin resistance in the
current model. Nevertheless, the relationship between EphB4 and
apoptosis pathway is still unclear and needed further investigation.

It seems that melanoma would be a coreless disease with so
many participants involved in cell survival. Therefore, it is possible
to find the way cancer cells are using to escape treatment, and find
the core of the intricate pathways in tumors with specific genetic
background. In the current studies we focus on combined thera-
peutic strategies using chemotherapy andmolecular inhibitors, and
try to find pathway-specific novel therapeutics for sensitization to
existing therapies with lower toxicity, which represent a significant
progress made in understanding the biology of therapy resistance
and in the management of malignant melanoma.

In conclusion, this study indicated overexpression of EphB4 in
A375 xenografts treated with cisplatin for a long time period
contributed to the tumor resistance. However, there are still some
problems needed to be address in order to understand fully the
delicate interplay between molecular factors that promote cell
survival. If we are going to design new strategies to circumvent
multifactorial mechanism of cisplatin resistance more effectively,
the additional knowledge is needed.
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