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It is well known that bolted joints have significant influence on the dynamical behavior of assembled
structures due to formation of damping. This paper focuses on damping caused by dry friction in a rota-
tional joint. Friction can be either induced by micro-slipping or macro-slipping. This paper describes the
design of a new experimental device intended to measure damping caused by friction and partial slip in
rotational joints. An original method for measuring dissipated energy in rotational joints with plan-plan
contact is proposed. This method is based on Lagrange formalism and allows to measure accurately forces
and torques only with accelerometers. These techniques are available for very small displacements that
occur in micro-slip and partial slip of surfaces in contact and are still available for large displacements
(macro-slip). An analytical compact model based on the Greenwood model is studied. The experimental
results and simulations used to quantify the dissipated energy in order to compute the damping ratio are
presented and discussed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

For design reasons, and also due to handling and maintenance,
all jointed structures must be assembled in the same way, by weld-
ing, bolting and riveting. The presence of the joint is a major source
of energy dissipation that is often badly predicted (Davies et al.,
2012). Mechanical connections (bolted or riveted) are widely used
in aerospace, railway, automotive structures and also in many
mechanical components (bridges, cranes) to ensure the load trans-
fer from one structural element to another.

The behavior of a bolted connection is non-linear and often rel-
ative movements, or micro sliding called fretting, occurs between
two pieces and therefore to energy dissipation (Eriten et al.,
2010, 2011) and (Dini and Hills, 2009) through Coulomb friction.

Over the years, much research has been dedicated to friction
problems in jointed structures and mention can be made of the
work of Peyret et al., 2010. In assembled structures, damping is
caused by macro-slipping (Berthillier et al., 1998; Poudou, 2007)
or by micro-slipping (Goodman and Klumpp, 1956; Beards and
Williams, 1977; Rao et al., 2010). Blau (1992) defined micro-slips
as ‘‘Small relative tangential displacements in a contacting area
at an interface, when the remainder of the interface in the contact-
ing area is not relatively displaced tangentially’’. In contrast,
macro-slip takes place when the whole contacting area undergoes
a relative displacement.

There are two distinct sources of damping in assembled struc-
tures. The first is damping in the materials of the assembly; the
second is damping in the joints (Bhagat and Bijoy, 2012; Nanda,
2006), which is difficult to evaluate. Compared to material damp-
ing, bolted or riveted joints are the primary source of damping if
no special damping treatment is added to the structure. The damp-
ing value of the material is already known and often lower than the
damping value in assembled structures (Poudou, 2007; Ibrahim
and Pettit, 2005; Caignot et al., 2005; Beards and Williams, 1977).

In their studies of bolted joints, several authors have used
experimental setups to highlight friction induced damping: Dion
et al. (2012) proposed a clamped–clamped beam excited on its first
bending mode. The beam was built with three parts linked by two
planar joints. Ahmadian and Jalali (2007) worked on a structure
composed of two beams assembled by a single bolted joint. Their
structure was studied under free conditions on its first bending
mode. Ouyang et al. (2006) presented experimental results for a
single bolted joint excited by a torsional dynamic load. Beards
and Williams (1977) worked on structures with rotational slips
in joints. This type of device avoided coupling between normal
and tangential stress and provided better control of the normal
load.
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The aim of this work is to study the phenomenon of energy dis-
sipated by sliding between two nominally flat surfaces subjected to
normal force and alternated rotation. The experimental device is
designed for a wide range of sliding amplitudes. This benchmark
was designed to simulate the behavior of a bolted joint under rota-
tional slip, like for example the poly-articulated structure with
rotating friction joints from Beards and Williams (1977) and the
beam assembly with an active rotative joint from Gaul (2000).
Section 2 describes the experimental device designed and studied
to reveal this phenomenon. In the experimental work the excita-
tion force is applied orthogonally to the bolt axis using a small
electrodynamic shaker. The response of the assembled structure
is measured by three accelerometers. The experimental method
is developed in Section 3. Lagrange formalism is used for the hys-
teresis loops of torque-angular displacement (rotation) to obtain
the equation of motion of the system. A new method of post-
processing experimental signals (based on kinetic equations) in
order to transform the tangential accelerations (given by acceler-
ometer) in angular acceleration is presented. Experimental tor-
que-angular displacement (rotation) plots at the joint highlight
hysteresis loops which can be used to estimate the damping dissi-
pation at the joint. In Section 4 the Greenwood model is extended
to friction surfaces in rotation. The main interest of this extension
consists in the technology of rotational joints and bolted joints that
often produce such kind of friction. A compact contact model and
numerical results are presented. The experimental results and
simulations are compared in Section 5.
2. Experimental device

To study the phenomenon of energy dissipated by Coulomb fric-
tion due to micro slip in bolted joint, we used the experimental
device shown schematically in Fig. 1. The experimental setup con-
sists of two vertical beams with an interface provided by a contact
surface at the two beams and a bolt. The nominal contact surface is
defined by a rectangle (28 � 18 mm). For this surface, roughness
ðRaÞ is lower than 0:2 lm (see Fig. 2). The geometrical characteris-
tics of the beams are given in Fig. 3. The free-free structure is
excited by a shaker attached to the structure via a rod screwed into
both the shaker and the upper beam. The power supply generating
Fig. 1. Experimental device: (a) test set up with a shaker and testing structure,
(b) lap joint.
the response of the mini-shaker is provided by a signal generator
passing through an amplifier. The excitation force is applied to
point D and the response of the assembled structure is measured
at points A, B and C through three accelerometers (Fig. 1). There-
fore the excitation force applied at point D in Fig. 1 will produce
a torque in the same plane of the joint interface. The bolt is
tightened with a fixed preload that assumed constant during the
experimental measurements; this latter is controlled during the
experiment by an annular force sensor. The signals from the
accelerometers are post processed by the analyzer software.

In order to choose the excitation frequency, the eigenfrequen-
cies of the system (Table 1) are obtained using a finite element
model built with ANSYS. The excitation frequencies tested are all
between 5 and 50 Hz.

The instrumentation of the experimental set up is used to
measure the accelerations and the excitation force (Fig. 4). The
force exerted by the shaker is measured by a force sensor placed
at point D (Fig. 1) with a sensitivity of 100 mv. The vibrations thus
generated are detected by three accelerometers placed at points A,
B and C, whose sensitivities are 10.35 mv/g, 10.79 mv/g and
10.29 mv/g, respectively (where g is the gravitational acceleration).
3. Experimental results

3.1. Experimental method

The objective of the experimental study is to quantify the
energy dissipated by dry friction due to micro-sliding introduced
in the link in order to compute the damping ratio. To achieve this
aim, two steps are necessary to measure accurately forces and
torques only with accelerometers.

– The first is to determine the equation of motion of the system to
express the torque according to the angles of rotation (degrees
of freedom of the structure).

– The second step involves post processed signals delivered by
accelerometers in order to transform the tangential accelera-
tions (given by accelerometer) in angular acceleration) and then
integrated in the equations of motion of the system to deter-
mine the hysteresis loops, i.e. the torque according to the angles
of rotation.

Finally, the energy dissipated by friction at the links is given by
the inner surface of the hysteresis loops.

To better explain the problem, the methodology is given in
Fig. 5.

3.2. Equation of motion of the structure

We used Lagrange formalism to obtain the equations of motion
of the structure. The structure is shown in Fig. 6. Three indepen-
dent parameters h1; h2 and x1 are needed to describe the motion
of the structure.

� Kinetic energy

In the first step, we define the kinetic energy of the system:

Ec ¼ 1
2

m1V2
G1 þ

1
2

I1
_h2

1 þ
1
2

m2V2
G2 þ

1
2

I2
_h2

2 ð1Þ

with

mi: the mass of the beam i ði ¼ 1;2Þ
Ii: moment of inertia of the beam i ði ¼ 1;2Þ
hi: angular displacement of the beam i ði ¼ 1;2Þ
VG1: the velocity of the center of mass of beam1 given by:



Fig. 2. Roughness of surface (a) description of roughness, (b) probability density of roughness.

Fig. 3. Geometric characteristics of the beams (a) top beam, (b) lower beam.

Table 1
Eigenfrequencies of the system.

Mode 1 2 3 4 5 6

Frequency (Hz) 99.72 270.83 476.81 529.02 913.91 1156
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VG1
��! ¼ _x1 X0

�! ð2Þ

with

x1: the displacement of the center of gravity of the beam due to
the higher driving force of the shaker.

VG2: the velocity of the center of mass of beam 2 given by:
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Hence the kinetic energy given by:
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� Potential energy

In the second step, we define the potential energy of the
system:

Ep ¼ m2g
l2
2
� h

� �
ð1� cos h2Þ þm2g

l1

2
� h

� �
ð1� cos h1Þ ð5Þ
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Fig. 4. Diagram of the data acquisition device.

N. Bouchaala et al. / International Journal of Solids and Structures 51 (2014) 3570–3578 3573
� Lagrangian formalism

Three independent parameters h1; h2, x1 are needed to describe
the motion of the system. In this case the Lagrange equations
applied to the system (see Appendix A) can be written as:
MF ¼ ðI1 þm2d2
3Þ€h1 þm2d3€x1 cos h1 þm2d3d5

€h2 cosðh1 � h2Þ þm2d3d5
_h2

2 sinðh1 � h2Þ þm2gd3 sin h1

M ¼ ðI2 þm2d2
5Þ€h2 þm2d5€x1 cos h2 þm2d3d5

€h1 cosðh1 � h2Þ �m2d3d5
_h2

1 sinðh1 � h2Þ þm2gd5 sin h2
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M: the torque
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In the rest of this paper we are interested in using the expres-
sion of torque as a function of rotation angles.

M ¼ ðI2 þm2d2
5Þ€h2 þm2d5€x1 cos h2 þm2d3d5

€h1 cosðh1 � h2Þ
�m2d3d5

_h2
1 sinðh1 � h2Þ þm2gd5 sin h2 ð8Þ

I1 and I2 are the moments of inertia of the beam given by the
Huygens theorem.

I1 ¼ m1
l2
1

12
þmcd2

1 ð9Þ
I2 ¼ m2
l2
2

12
þmcd2

4 ð10Þ

mc: mass of the sensor (mc = 9.94 g).
3.3. Post treatment

In this work, a new method of post-processing of experimental
signals based on kinetic equations is developed. To integrate the
signals delivered by the accelerometers in the motion equation of
the system (Eq. (8)), we have to transform the tangential
accelerations in angular acceleration. Consequently we chose to
use the kinematic equations (see Appendix B).
3.4. Experimental results

In order to plot the experimental hysteresis loops in the torque-
angular rotation from the signals delivered by the accelerometers
we use the following algorithm (Fig. 7):
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8

Fig. 7. Algorithm considered for the representation of hysteresis loops obtained
from the experimental measurements.

Fig. 8. Experimental hysteresis loops: torque as a function of the angular
displacements.
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For the torque-angular displacement hysteresis loops, a first
integration and second integration of the acceleration signals are
necessary to obtain the velocity and displacement. A Fourier trans-
forms (FFT) and an inverse Fourier transform (IFFT) are used in the
algorithm (Fig. 7) to integrate the acceleration signals (response of
the accelerometers). The hysteresis loops obtained from the exper-
imental results of torque versus angular displacements at 100 N
(preload) subjected to different levels of amplitude of excitation
(excitation amplitude delivered by the shaker) are presented in
Fig. 8. The range variation of the excitation force is between 60 N
and 500 N. The excitation frequency is 30 Hz and the normal stress
due to the tightening torque of the bolt is 100 N. Depending on the
preload on the bolt, non-linear dynamical effects due to dry friction
can be expected at the area of contact of the beams caused by the
hysteresis loops in the torque-angular rotation the first time, and
due to micro-slip caused by the looseness of the joint the second
time. The area inside the curve is the dissipated energy during
micro-slip per cycle. The oblique part of the curve represents the
tangential stiffness.
4. Theoretical models

The modeling of the contact between two rough surfaces
(Fig. 9a) is based on the hypothesis proposed by Robbe-Valloire
et al. (2000), which reduces the problem to a contact between a
rough surface (equivalent at the roughness of the two surfaces in
contact) and a rigid plane (Fig. 9b).

Consider the elastic contact between a rigid plane and a rough
surface composed of a multitude of asperity. The compact contact
model EGM (Extended Greenwood model) with micro-contacts
and statistical distributions was developed and studied in previous
works; see Bouchaala et al. (2013). Using this model as the basis, in
this paper we consider the contact between a rigid plane and a
nominally flat surface first subjected to a constant normal force
N, then to an oscillating angular displacement ht : It will be
assumed that the coefficient of sliding friction l between the sur-
faces is a constant and that dry friction is modeled by Coulomb’s
law. We assume that all asperity summits are spherical with the
same radius q and that their heights vary randomly uðyiÞ. Fig. 10
gives a schematic presentation of the type of contact considered.

Assuming that the probability density function uðyiÞ for asper-
ity heights following Gaussian distribution is given by:

uðyiÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p e�

ðyi�mÞ2

2r2 ð11Þ

where m (location of the peak) is the mean and r2 is the variance
Firstly, we consider the model of a contact between an individ-

ual spherical asperity and a rigid plane. The contact model adopted
is shown in Fig. 11. It is assumed that the elastic proprieties of the
contacting bodies are identical to an equivalent elastic material on
a rigid plane (Mindlin, 1949). The frictional load is parallel to axis x.

The behavior of an individual asperity can be derived from the
Hertzian equations. For the contact between a sphere of radius q



(a) Contact between two rough 
      surfaces

 (b) Contact between a rough surface 
       and a rigid plane 

Fig. 9. Contact between two surfaces.

Fig. 10. Contact between a rough surface and a rigid plane.
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Fig. 11. The contact model for a single asperity.
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and a rigid plane, the contact radius ai and load Ni can be expressed
in terms of the compliance dni by Greenwood and Williamson
(1966):

Ni ¼
4
3

ffiffiffiffi
q
p

E�d3=2
ni ð12Þ
ai ¼
ffiffiffiffiffiffiffiffiffi
qdni

p
ð13Þ

where E� is a composite modulus of elasticity given by:

1
E�
¼ 1� t2

1

E1
þ 1� t2

2

E2
ð14Þ

The angular displacement hti is given by:

hti ¼
dti

ri
ð15Þ

where dti is the tangential displacement and ri the radius of the
place of the asperity (Fig. 11).
iN

iT

M

ir

Fig. 12. Sketch of contact areas, loading and sliding.
Fig. 12 shows the sketch of the loading and sliding contact
areas. The closer the contact areas are to the center (due to geo-
metric faults) the more probable it is that they will be subject to
micro sliding. For the furthest contact areas, macro sliding
becomes more predictable; however, the higher the load on the
contact areas, the more probable it is that they will be subject only
to micro sliding.

The torque moment Mi supported by asperities is given by:

Mi ¼ riTi ð16Þ

where Ti is the tangential load supported by the asperities.
For an oscillating tangential displacement dti with constant

amplitude, the tangential load is given by the following equations
(Bouchaala et al., 2013):

– During loading ð _dti > 0Þ

Ti ¼ lNi 1� 1� 16aidti

3lNiG
�

� �3=2
 !

ð17Þ

– During unloading ð _dti < 0Þ

Tid ¼ 2lNi 0:5
16aidti

3lNiG
� þ 1� Ti max

lNi

� �3=2

þ 1

 !3=2
0
@

1
A� 1

0
@

1
A

þ Ti max ð18Þ

– During reloading ð _dti > 0Þ
Tic ¼ �Tidð�dÞ

¼ �2lNi �0:5
16aidti

3lNiG
� � 1� Ti max

lNi

� �3=2

� 1

 !3=2
0
@

1
A� 1

0
@

1
A

� Ti max

ð19Þ

where G� is expressed by:

G� ¼ 2� m1

G1
þ 2� m2

G2

� �
ð20Þ

G is the shear modulus. Indices 1 and 2 refer to the two bodies
in contact.

According to Eq. (16), and taking into account Eqs. (17)–(19),
the expression of rotation moment Mi is defined by:

– During loading ð _hti > 0Þ
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Mi ¼ rilNi 1� 1� 16airihti

3lNiG
�

� �3=2
 !

ð21Þ

– During unloading ð _hti < 0Þ

Mid ¼ 2rilNi 0:5
16airihti
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� þ 1� ðriTiÞmax
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– During reloading ð _hti > 0Þ

Mic ¼�2rilNi �0:5
16airiðhtiÞ

3lNiG
� þ 1�ðriTiÞmax

lNi

� �3=2

�1

 !3=2
0
@

1
A�1

0
@

1
A�ðriTiÞmax ð23Þ

For an oscillating angular displacement hti (Fig. 13(a)) and dur-
ing loading, unloading and reloading, the hysteresis loops of the
‘‘torque/angular displacement’’ relation for a single asperity are
shown in Fig. 13(b).

Secondly, we consider the contact between a rigid flat surface
and a rough surface using GW models (Bouchaala et al., 2013)
(Fig. 9). The reference plane defined by the mean height of the
asperities and the rigid flat surface are separated by a distance, dn.

To study this type of contact, we adopted the following
assumptions:
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Fig. 14. Hysteresis loops: torque as a function of angular displacements.
– A Gaussian distribution of asperity heights;
– The total normal load N applied to the contact between a plane

and a nominally flat surface (Fig. 10) can be expressed as the
sum of each elementary normal load on each asperity Ni;
N ¼
X

Ni ð24Þ

– A equiprobable distribution of asperity in angular rotation h and
a affine distribution for the radial distance ri to the center of
rotation.

– Keeping N constant, the loading cycle, which is angular displace-
ment ht , oscillates between ht max and ð�ht maxÞ applied to the con-
tact. The total torque that can be borne by Na asperities is:
M ¼
X

Mi ¼
X

riTi ð25Þ

By keeping N constant and increasing the amplitude of the
angular displacement per iteration, the hysteresis loops of the tor-
que-angular displacement relations for a contact are shown in
Fig. 14.
5. Results and validation

In accordance with the experimental results, the numerical sim-
ulations are performed with the parameters given in Table 2. In
Fig. 15, the theoretical model is simulated with friction coefficient
l and roughness Ra of the structure studied compared with the
experimental results. It can be seen clearly that the shapes of the
hysteresis loop obtained by the theoretical model are quite different
from that obtained experimentally. However the scope of this work
is to predict damping caused by friction with the aim of producing a
model capable of describing the energy loss and damping ratio.
5.1. Dissipated energy

The purpose of this section is to define dissipated energy Ed in
order to compute the damping ratio. The area enclosed by the
Table 2
Numerical simulations parameters.

m m ¼ 2:45 lm
r r ¼ 0:45 lm
l: the coefficient of sliding friction l ¼ 0:15
E: composite modulus of elasticity E1 ¼ E2 ¼ 210 GPa
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hysteresis loop for periodic signals represents the energy dissi-
pated by dry friction.

Fig. 16 represents the evolution of the dissipated energy versus
the magnitude of the angular rotation ðh1 � h2Þ under a normal
load 100 N. These curves highlight the nonlinear effect of the inter-
face on dissipated energy: the dissipated energy depends strongly
on the angular amplitude of rotation.

5.2. Damping ratio

The damping ratio n can be defined by the ratio between the
dissipated energy Ed and the supplied energy Es (Bouchaala et al.,
2013):

n ¼ 4
p

Ed

Es
ð26Þ

where the supplied energy Es for periodic signals is given by the fol-
lowing equation:

Es ¼ 4ðh1 � h2ÞmaxMmax ð27Þ
The evolution of damping ratio n as a function of angular dis-
placement ðh1 � h2Þ is presented in Fig. 17. It can be seen clearly
that the damping ratio increases as the angular displacement
increases. Therefore it can be concluded that the damping ratio
depends on the amplitude of the angular displacement. This
dependence induces nonlinear effects which are shown clearly in
Fig. 17, since the evolution of the curve is parabolic.

It can be seen clearly that the shapes of the hysteresis loop
obtained by the theoretical model are quite different from that
obtained experimentally, but the damping model and the simulation
of dissipated energy are close to the experimental measurements.
6. Conclusion

This paper presented theoretical and experimental work on an
assembled structure with a rotational joint. The experimental
device proposed by the authors was designed to quantify the
energy dissipated in order to compute the damping ratio at the
interface with known and controlled loads for sliding in rotation.
This device provides non-linear damping due to micro-slips
between the surfaces in contact. A new method of post-processing
experimental signals based on Lagrangian formalism and kine-
matic equations is developed in order to build a compact model
for friction induced damping. The hysteresis loops of the torque
versus the angular displacement subjected to multiple excitation
amplitudes were presented. The compact damping model pro-
posed allows describing friction induced damping due to geomet-
ric faults in the surfaces of the contact and avoids the need to
provide a full description of their exact geometry. The experimen-
tal and numerical results were in agreement and highlighted the
nonlinear effect of the interface on dissipated energy and damping.
Appendix A

The Lagrange equations applied to the system can be written as:

d
dt

@Ec
@ _h1
� @Ec

@h1
þ @Ep

@h1
¼ MF

d
dt

@Ec
@ _h2
� @Ec

@h2
þ @Ep

@h2
¼ M

d
dt

@Ec
@ _x1
� @Ec

@x1
þ @Ep

@x1
¼ F

8>>><
>>>: ðA:1Þ

We then obtain the following three equations of motion:



MF ¼ I1
€h1þm2

l1
2�h
� �

€x1 cosh1þm2
l1
2�h
� �2

€h1þm2
l2
2�h
� �

l1
2�h
� �

€h2 cosðh1�h2Þþm2
l2
2�h
� �

l1
2�h
� �

_h2
2 sinðh1�h2Þþm2g l1

2�h
� �

sinh1

M¼ I2
€h2þm2ðl22�hÞ€x1 cosh2þm2

l2
2�h
� �2

€h2þm2
l2
2�h
� �

l1
2�h
� �

€h1 cosðh1�h2Þ�m2
l2
2�h
� �

l1
2�h
� �

_h2
1 sinðh1�h2Þþm2g l2

2�h
� �

sinh2

F ¼ðm1þm2Þ€x1þm2
l2
2�h
� �

€h2 cosh2�m2
l2
2�h
� �

_h2
2 sinh2þm2

l1
2�h
� �

€h1 cosh1�m2
l1
2�h
� �

_h2
1 sinh1

8>>>>><
>>>>>:

ðA:2Þ
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Appendix B

� Kinematic equations
For torque-angular displacement (rotation) hysteresis loops, we

must transform the tangential acceleration delivered by the accel-
erometers into angular acceleration. The relationship between tan-
gential acceleration cA, cB and cC successively in A, B and C and the
angular acceleration €h1, €h2 and €x1 are given by the following
equations:

cA

!
¼ €x1 X0

!
þd1

€h1 X0

!
ðB:1Þ

cB

!
¼ €x1 X0

!
þd2

€h1 X0

!
ðB:2Þ

The acceleration at point O belongs to the first beam P1 (lower
beam) given by:

cO2P1
���! ¼ €x1 X0

�!þ d3
€h1 X0
�! ðB:3Þ

The acceleration at point O, part of the second beam P2 (upper
beam), is given by:

cO2P2
���! ¼ €x2 X0

�!� d5
€h2 X0
�! ðB:4Þ

with €x2 acceleration at the center of gravity of the second beam
(point G2)

cC
�! ¼ €x2 X0

�!þ d4
€h2 X0
�! ðB:5Þ

From Eqs. (B.1) and (B.2) we obtain:

)
€h1 ¼

cA
�!

�cB
!

d1�d2

€x1 ¼ 1
2 ð cA
�!þ cB

!� ðd1 þ d2Þ€h1Þ

8<
: ðB:6Þ

On the other hand, we obtain

cO2P1
���! ¼ cO2P2

���! ðB:7Þ

) €x1 þ d3
€h1 ¼ €x2 � d5

€h2 ðB:8Þ

This gives us

) €x2 ¼ €x1 þ d3
€h1 þ d5

€h2 ðB:9Þ

From Eqs (B.3), (B.4), (B.5), and (B.9) we obtain:

)
€h2 ¼

cC
�!

�cO2P1
���!

ðd4þd5Þ

€x2 ¼ 1
2 ðcO2P2
���!þ cC

�!� ðd4 � d5Þ€h2Þ

8<
: ðB:10Þ
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