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Abstract

Let Pk
n be the maximum value achieved by the permanent over �k

n, the set of (0, 1)-matri-
ces of order n with exactly k ones in each row and column. Brègman proved that Pk

n � k!n/k .
It is shown here that Pk

n � k!t r! where n = tk + r and 0 � r < k. From this simple bound
we derive that (P k

n )1/n ∼ k!1/k whenever k = o(n) and deduce a number of structural results
about matrices which achieve Pk

n . These include restrictions for large n and k on the number
of components which may be drawn from �k

k+c
for a constant c � 1.

Our results can be directly applied to maximisation problems dealing with the number of
extensions to Latin rectangles or the number of perfect matchings in regular bipartite graphs.
© 2003 Published by Elsevier Inc.
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1. Introduction

If A = (aij ) is a square matrix of order n, the permanent of A is given by

per(A) =
∑
τ

n∏
i=1

aiτ(i),

where the sum is over all permutations of {1, 2, . . . , n}. We use �k
n for the set of

square (0, 1)-matrices of order n, with exactly k ones in each row and in each col-
umn. This paper is primarily concerned with the maximum value achieved by the
permanent in �k

n and the matrices which achieve that maximum. We define
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P k
n = max

A∈�k
n

per(A)

and we say that A ∈ �k
n is a maximising matrix if per(A) = P k

n . For B ∈ �k
n we

define the complement of B (denoted B) by B = Jn − B ∈ �n−k
n where Jn ∈ �n

n is
the order n matrix consisting entirely of ones.

A theorem of Brègman [3], when applied to matrices in �k
n, shows that

P k
n � (k!)n/k, (1)

with equality if and only if k divides n. In Section 3 we treat the issue of how close
this bound comes to being achieved in cases when equality does not hold.

The minimum value pk
n achieved by the permanent in �k

n has also been studied.
Schrijver [16] showed that

pk
n = min

A∈�k
n

per(A) �
(

(k − 1)k−1

kk−2

)n

. (2)

For any given k, the base constant (k − 1)k−1k2−k is best possible.
Let σi(A) be the sum of the permanents of all the order i submatrices of a matrix

A. By convention we choose that σ0(A) = 1 for every A. Any (0, 1)-matrix can be
interpreted as a ‘chessboard’ with certain allowed and other prohibited positions. In
this scenario σi always counts the number of arrangements of i non-attacking rooks
placed on permitted squares (the ones marked with 1’s). We follow Godsil [5] in
defining the rook polynomial of a matrix A by

ρ(A) =
n∑

i=0

(−1)iσi(A)xn−i . (3)

Note that this is just one of a number of polynomials which are called rook polyno-
mials in the literature. Our main reason for preferring this definition is that it gives
the very useful formula (4).

Define the linear operator T(·) by

T(f (x)) =
∫ ∞

0
e−xf (x) dx.

Joni and Rota [9] and Godsil [5] independently showed that for any A ∈ �k
n,

per(A) = T(ρ(A)). (4)

This remarkable formula can be viewed as an inclusion–exclusion result. The per-
manent on the left hand side is a sum of n! terms, each of which is a product
of 0’s and 1’s. The number of these terms with at least c factors equal to 0 is
(n − c)! σc(A), except that this overcounts terms with at least c + 1 factors equal
to 0. By inclusion–exclusion,

per(A) = n! − (n − 1)!σ1(A) + (n − 2)!σ2(A) − · · · + (−1)n0!σn(A). (5)

Since T(xi) = i!, the right hand side of (5) turns out to be precisely T(ρ(A)).
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For each k � 0, define

�k = ρ(Jk) = (−1)kk!
k∑

i=0

(
k

i

)
(−x)i

i! . (6)

That is, �k is a Laguerre polynomial, normalised to be monic. A variant of (6) appears
in [15, p. 171]. Note that the Laguerre polynomials are often (see [1], for example)
defined by their orthogonality with respect to T(·). Specifically,

T(�i�j ) =
{

i!2 if i = j ,
0 otherwise.

(7)

Laguerre polynomials are intimately connected with rook theory. We have,

ρ(A) =
n∑

i=0

σi(A)�n−i . (8)

Eq. (8) appears explicitly in [5]. The idea that a rook polynomial can be determined
from the complementary board goes back at least as far as [15].

Throughout this paper we use ⊕ to denote direct sum and use the word compo-
nents to describe the matrices which are summands in a direct sum. We also use
m · A as shorthand for a direct sum of m copies of A. In formulae involving both
‘⊕’ and ‘·’ we give ‘·’ priority in order of evaluation over ‘⊕’. Note that the rook
polynomial is multiplicative on components, meaning that ρ(A ⊕ B) = ρ(A)ρ(B).

In Section 2 we prove some elementary bounds on the subpermanent sums σi .
These are used in Section 3 to prove a simple lower bound on P k

n and asymptotics
for (P k

n )1/n. In Section 4 we recall conjectures due to Merriell as to which matrices
achieve P k

n . The two sections after that are devoted to proving various results about
these maximising matrices. Some of our results support Merriell’s ideas while others
show their limitations. Finally, in Section 7 we provide a summary of the paper.

It is worth remarking that the results on permanents proved in this paper transfer
to results on well known equivalent problems, such as those given in [12, Section
8.2]. In particular, maximising the permanent in �k

n is equivalent to maximising the
number of perfect matchings in a k-regular bipartite graph on 2n vertices and also to
maximising the number of extensions of an (n − k) × n Latin rectangle to (n − k +
1) × n Latin rectangles.

2. Elementary bounds on subpermanent sums

We derive, for subsequent use, some elementary bounds on the subpermanent
sums σi(A) for matrices A ∈ �k

n. For i � 1 define

ξi = (
σi(A)

/(
n
i

))1/i
.

Since ρ(A) has positive real roots [8] a classical result of Maclaurin [7, Theorem 52]
tells us the ξi form a decreasing sequence. Since ξ1 = k and ξn = (per(A))1/n, our
first lemma follows from (2):
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Lemma 1. For A ∈ �k
n and 1 � i � n,

(k − 1)k−1

kk−2
� ξi � k.

In the generality in which it is stated, both the upper and lower bounds in Lemma
1 are best possible. However, for small i the lower bound is improved in our next
result.

Lemma 2. For A ∈ �k
n and i � k,

σi(A) �
(

n

i

)
k!

(k − i)! .

Proof. There are
(
n
i

)
ways to choose i rows of A and each row has k positive entries.

A simple inductive argument (or alternatively, Corollary 7.4.2 of [4]) shows that each
selection of i rows contributes at least k!/(k − i)! to σi(A). �

We also have this asymptotic result:

Lemma 3. For 1 � k � n and fixed i

σi(A) = 1

i! (kn)i − O(kini−1)

uniformly over A ∈ �k
n as n → ∞. For arbitrary i, we always have σi(A) � 1

i! (kn)i .

Proof. Each A ∈ �k
n has kn ones, and σi counts sets of i of these in which no two

ones are collinear (lie in the same row or the same column). The number of collinear
pairs of ones is 1

2kn(2k − 2), so(
kn

i

)
− 1

2
kn(2k − 2)

(
kn − 2

i − 2

)
� σi(A) �

(
kn

i

)
� 1

i! (kn)i .

For any fixed i the lower bound is 1
i! (kn)i − O(kini−1), proving the result. �

3. Close to the Brègman bound

In this section we look at how close the Brègman bound (1) comes to being
achieved. Note that Brègman himself showed that his bound for �k

n is achieved
exactly if and only if k divides n. Our first theorem gives a lower bound on the
maximum permanent. This bound coincides with the Brègman upper bound when k

divides n.

Theorem 4. Let n = tk + r with t � 1 and 0 � r < k. Then P k
n � k!t r!
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Proof. It suffices to prove the case t = 1, as the remaining cases will then follow by

appending t − 1 copies of Jk . Let Y ∈ �k−r
k be arbitrary and consider X = Jr ⊕ Y ∈

�k
k+r . By combining (4), (6)–(8), we see that

per(X) = T
(
ρ(Jr)ρ(Y )

) = T

(
�r

k∑
i=0

σk−i (Y )�i

)
= r!2σk−r (Y ).

(Indeed, the reader is invited to draw a picture then derive this result by an elementary
argument.) Now by employing Lemma 2, we have per(X) � r!2( k

k−r

)
(k − r)! =

k!r! �

This theorem tells us the Brègman bound is achieved to within a constant factor
when n falls just short of being a multiple of k. In fact:

Corollary 5. If a = o(k) and n ≡ −a mod k then as k → ∞,

k!n/k

P k
n

= O(ea).

Proof. Using r = k − a and Stirling’s formula gives,

k!r/k

r! = O(1)

√
k1−a/k

k − a

(
k

k − a

)k−a

= O(ea),

from which the Corollary follows. �

We can also use Theorem 4 to establish the nth root of the maximum permanent.

Theorem 6. Suppose that k = o(n) as n → ∞. Then(
P k

n

)1/n ∼ k!1/k.

Proof. Let µ = k!1/k and note that Stirling’s formula and k = o(n) imply that µ =
o(n). Suppose that n = tk + r for 0 � r < k, in which case Brègman’s bound (1)
and Theorem 4 tell us that

µ �
(
P k

n

)1/n �
(
k!(n−r)/kr!)1/n = µ

(
r!
µr

)1/n

.

Let f (r) = r!/µr and note that f (r + 1)/f (r) = (r + 1)/µ. It follows that for any
given µ � 1 the minimum of f (r) over positive integers is achieved when r = �µ�.
Hence

µ �
(
P k

n

)1/n � µ

( �µ�!
µ�µ�

)1/n

= µe−O(1)�µ�/n = µ(1 − o(1)),

by using Stirling’s formula again. This gives the desired asymptotic result. �
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4. Merriell’s conjectures

The question of finding the maximum permanent in �k
n when k does not divide n

is Problem 4 in [12]. An attempt to answer this question was made by Merriell [11],
who solved the k � 3 case and conjectured a partial answer for larger values.

Let Jr and Zr denote r × r blocks of ones and zeroes respectively. We use J

without a subscript to denote a (not necessarily square) block of ones of unspecified,
but implied dimensions. Also, let Dr denote the complement of the order r identity
matrix. Building on Brègman’s earlier result, Merriell showed that

B = (t − r) · Jk ⊕ r · Dk+1 (9)

maximises the permanent in �k
kt+r provided 0 � r < k � 3 and t � r . In the case of

�3
5, the permanent is maximised by the circulant matrices. Bol’shakov [2] confirmed

Merriell’s results and extended them to a proof of (9) for all t when r = 1 and k = 4.
Merriell also made several conjectures which we discuss now. Suppose k � n �

2k and that k � 5 or n is even. According to Conjectures 1 and 2 of [11], the maxi-
mum permanent in �k

n should be achieved by a matrix with block structure(
A J

J B

)
, (10)

where A and B are square matrices with orders that differ by at most 1. Furthermore,
A and B should be chosen to maximise their individual permanents.

Conjecture 3 of [11] can be stated as follows. Let n = tk + r for integers k � 5,
t � 1 and r � 0. Then the maximum permanent in �k

n is achieved by{
(t − r) · Jk ⊕ r · Dk+1 when r � min{t, k − 3},
(t − 1) · Jk ⊕ Xk,r when r = k − 2 or r = k − 1,

where Xk,k−2 =
(

J Ik−1
Ik−1 J

)
and Xk,k−1 =

(
J Zk−1
Ik J

)
. (11)

Unfortunately, Merriell’s conjectures are known to be fatally flawed. Many known
counterexamples are discussed in [10,17], and some more will result from Theorem
10. However, some of the results we prove, particularly Corollaries 9 and 13, are in
the spirit of these conjectures, as is (13).

Merriell’s ideas developed in two natural directions from Brègman’s proof that
Jk’s are advantageous for maximising permanents. One option is to try to maximise
the number of copies of Jk , while the other approach is to make the components as
close as possible in size to Jk . The latter approach dictates, where possible, taking r

copies of Dk+1, where r is the remainder of n when divided by k.
Let m � 5 and t � 2 be integers and let k = (m − 1)t . The maximising matrices

in �k
mt were identified in [10], and are the complement of Brègman’s maximising

matrices in �t
mt . It follows from (4) and (6) that P k

mt = T((�k)
m). Also, a standard

result on derangements says that per(Dk+1) is the nearest integer to
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(k + 1)!
e

. (12)

Hence in �k
(m−1)t2+t

, for fairly small values of m and t , we can numerically compare
the two approaches favoured by Merriell. Doing this shows that

per(t · Dk+1) > per
(
(t − 1) · Jk ⊕ X

)
(13)

for all X ∈ �k
mt , at least whenever mt � 500. For each m the numerical trend sug-

gests that the relative gap in (13) widens as t grows. This supports conjecture (11) by
hinting that there may be no o(k) bound on the number of copies of Dk+1 which can
occur in maximising matrices. However, in Theorem 10 we shall prove that Merriell
erred slightly in the number of Dk+1’s he predicted.

5. Matrices with density below one half

In this section we look for maximising matrices in �k
n where k � 1

2n. In this case
it is possible for the matrices to be partly decomposable and the evidence suggests that
this is typically what happens. This observation is based on the small order examples
computed in [10] and on [17], in which the follow results were proved. For any given
k there is a finite set Sk of matrices such that, for arbitrary n, any maximising matrix
in �k

n is a direct sum of components chosen (possibly with repetition) from Sk . Fewer
than k of the components of any maximising matrix in �k

n differ from Jk .
In some inexact sense then, we know most of the structure of sparse maximising

matrices and the focus now centres on characterising the “remnant” components
which are not copies of Jk . Identifying these remnants in general is a difficult task,
partly due to the tendency for small examples not to fit the general trend [10].

For our first theorem we need a result from [6], where it was proved in the context
of extensions to Latin rectangles. For any (0, 1)-matrix A let s(A) denote the number
of order 2 submatrices of A which contain only 1’s. For fixed c,

per(A) = n!
(

n − c

n

)n

exp

(
c

2n
+ c(3c − 1)

6n2
+ f + s(A)

n4

+ (4c − 2)s(A)

n5
+ O(n−5)

)
, (14)

uniformly over A ∈ �c
n, as n → ∞. The function f is specified in [6], but we only

need to know that it is independent of A and that f = O(n−3). (Note that when (14)
was quoted in [17] the ‘6’ in the denominator of the O(n−2) term was accidentally
erased by the typesetters.)

Theorem 7. For each pair (a, b) such that 0 � a < b − 1 there exists ka,b such that
per(U ⊕ V ) < per(X ⊕ Y ) for every k > ka,b and choice of U ∈ �k

k+a, V ∈ �k
k+b,

X ∈ �k
k+a+1 and Y ∈ �k

k+b−1.
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Proof. For a constant c and k → ∞, (14) implies that

per(A) = (k + c)!
(

k

k + c

)k+c

exp

(
c

2k + 2c
+ c(3c − 1)

6(k + c)2
+ O(k−3)

)

= (k + c)!
(

k

k + c

)k+c

exp

(
c

2k
+ c

6k2
+ O(k−3)

)
uniformly over A ∈ �k

k+c, given that s(A) = O(k). It follows that

per(U) per(V )

per(X) per(Y )
=

(
k + a + 1

k + a

)k+a(
k + b − 1

k + b

)k+b−1

exp
(
O(k−3)

)
= exp

(
a − b + 1

2k2
+ O(k−3)

)
.

Hence per(U ⊕ V ) < per(X ⊕ Y ) provided k is large enough and a − b +
1 < 0. �

Corollary 8. For fixed t and all large enough k the maximising matrices in �k
2k+t

are either fully indecomposable or have two components whose orders differ by at
most 1. In the latter case the components should be chosen to maximise their s(·)
values.

The comment about s(·) follows from (14) and the fact, proved in [17], that for
general n and k any matrix maximising s(·) in �k

n is the complement of a matrix
maximising s(·) in �n−k

n .

Corollary 9. For each fixed r � 2 there is a kr such that the following statements
hold for any given k > kr :

(i) There are finitely many n for which maximising matrices in �k
n can contain a

component from �k
k+c for any c satisfying 2 � c � r .

(ii) Maximising matrices in �k
tk+r , where t � r, are either isomorphic to (t − r) ·

Jk ⊕ r · Dk+1 or contain fewer than t components.

Proof. By Theorem 7, if we choose k large enough then maximising matrices in �k
n

can never contain both Jk and some X ∈ �k
k+c (where 2 � c � r) as components.

Part (i) then follows because for large enough n these matrices must contain Jk , as
was proved in [17]. For part (ii), let maximising A ∈ �k

tk+r have largest compo-
nent C. Observe that components of A are of order at least k, so there cannot be
more than t of them. Supposing there are t of them, C must have order k + c for
some c � r . If c = 1 then every component of A must be either Jk or Dk+1, so
(t − r) · Jk ⊕ r · Dk+1 is the only option. If c > 1 then there must be a Jk , otherwise
the total orders of the components would exceed t (k + 1) � tk + r . But the presence
of Jk and C then contradicts the choice of k. �



I.M. Wanless / Linear Algebra and its Applications 373 (2003) 153–167 161

When studying the preceding results it is worth noting that there is no known
example of a maximising matrix in any �k

n which has fewer than the maximum pos-
sible number, �n/k�, of components. 1 Corollary 9(ii) therefore suggests a weakened
form of Merriell’s conjecture (11). A limitation in that direction, though, is given by
the following:

Theorem 10. If 1 � a = o(log k) then for sufficiently large k no maximising matrix
may contain k − a components which are copies of Dk+1.

Proof. Let B = (k − a) · Dk+1 ∈ �k
n where n = (k − a)(k + 1). Hence by (12),

per(B) =
(

(k + 1)!
e

+ o(1)

)k−a

=
(

(k + 1)!
e

)k−a

(1 + o(1/k!)).
Hence

k!n/k

per(B)
= 1

(1 + o(1/k!))
(

k!1+1/ke

(k + 1)!
)k−a

∼
√

2�k

e
.

The result now follows by comparison with Corollary 5. �

This last result means that if 3 � a = o(log k) and n ≡ −a mod k then Merriell’s
conjecture (11) fails for all sufficiently large k, because it asserts that per(B) = P k

n .

6. Density greater than one half

If k > 1
2n then matrices in �k

n are necessarily fully indecomposable but if we con-
sider their complements there is some hope that they will be partly decomposable.
From [17] we know that statements similar to those in the previous section hold.
Namely, for any given k there is a finite set Sk of matrices such that, for arbitrary n,
any maximising matrix in �n−k

n is the complement of a direct sum of elements of Sk .
We call the matrices in the direct sum the complementary components. Fewer than k

of the complementary components of any maximising matrix in �n−k
n differ from Jk .

One difference from the previous section is that there are a number of examples
known from [10] in which maximising matrices in �k

n have fewer than the maximum
possible number of complementary components. Maximising matrices in �4

7 and �5
9

are the complements of fully indecomposable matrices, while maximising matrices
in �4

6 and �6
9 are the complements of matrices with just two components. Despite

these examples, we can prove results similar to some of those in the previous section.

Theorem 11. Let b � a � 1 be fixed integers and ε > 0 a fixed real number. Then
for all sufficiently large k,

1 However, see the beginning of the next section in this regard.
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per(X ⊕ Y ) = k!2ka+b

(
b

a

)(b−a)/2

Ib−a

(
2
√

ab
)
χ (15)

for every X ∈ �k
k+a and Y ∈ �k

k+b. Here χ depends on X and Y but satisfies
|χ − 1| < ε, and In denotes the modified Bessel function of the first kind of order n.

Proof. Using (15) as the definition of χ , we are required to show that as k → ∞ we
can confine χ within the interval (1 − ε, 1 + ε). By using (4), (8) and (7) in turn we
have

per(X ⊕ Y ) = T(ρ(X)ρ(Y ))

= T

(
k+a∑
i=0

σk+a−i (X)�i

k+b∑
i=0

σk+b−i (Y )�i

)

=
k+a∑
i=0

i!2σk+a−i (X)σk+b−i (Y ). (16)

Noting that X ∈ �a
k+a and Y ∈ �b

k+b, we use Lemma 3 to estimate the subpermanent
sums. For a fixed j ,

(k +a − j)!2σj (X)σb−a+j (Y )

= (k + a − j)!2 (a(k + a))j (b(k + b))b−a+j

j !(b − a + j)! (1 + O(k−1))

= k!2ka+b(ab)j bb−a

j !(b − a + j)! (1 + O(k−1)). (17)

Note that by definition of In we have

∞∑
j=0

(ab)j

j !(b − a + j)! = (ab)(a−b)/2Ib−a

(
2
√

ab
)
. (18)

The range of χ can now be found by reversing the summation in (16), evaluating it
using (17), and comparing the result to (18). Since Lemma 3 guarantees that (17) is
an upper bound for all j , we find that χ � 1 + O(k−1). Moreover, the same results
allow us the accuracy to take any finite number of terms from the infinite sum in
(18), and hence bound χ within an arbitrary constant of the upper bound. �

We can use Theorem 11 to prove a complementary result to Theorem 7.

Theorem 12. For each pair (a, b) such that 0 � a < b − 1 there exists ka,b such
that per(U ⊕ V ) < per(X ⊕ Y ) for every k > ka,b and choice of U ∈ �k

k+a, V ∈
�k

k+b, X ∈ �k
k+a+1 and Y ∈ �k

k+b−1.



I.M. Wanless / Linear Algebra and its Applications 373 (2003) 153–167 163

Proof. We first prove the a = 0 case, where U = Jk . From (16) and Lemma 3 we
find

per(U ⊕ V ) = k!2σb(V ) = k!2 bb(k + b)b

b! (1 − O(k−1))

= k!2kb bb

b! (1 − O(k−1)).

By comparison, Theorem 11 says that

per(X ⊕ Y ) = k!2kb(b − 1)(b−2)/2Ib−2
(
2
√

b − 1
)
χ.

Note that (b − 1 − j)!/(b − 2 + j)! � (b − 1)1−2j by the AM–GM inequality and
hence

(b −1)(b−2)/2Ib−2
(
2
√

b − 1
)

=
∞∑

j=0

(b − 1)b−2+j

j !(b − 2 + j)!

>
(b − 1)b−1

(b − 1)!
b−1∑
j=0

(b − 1)!
j !(b − 1 − j)! (b − 1)j−1 (b − 1 − j)!

(b − 2 + j)!

� (b − 1)b−1

(b − 1)!
b−1∑
j=0

(
b − 1

j

)
(b − 1)−j = bb

b! .

The result for a = 0 then follows from the strict inequality above.
For 1 � a < b − 1 our theorem will follow if we can show that(

b

a

)(b−a)/2

Ib−a

(
2
√

ab
)

<

(
b − 1

a + 1

)(b−a−2)/2

Ib−a−2
(
2
√

ab + b − a − 1
)
.

(19)

The inequality (19) can be computed with enough precision to confirm it whenever
a + b < 100. So we assume that a + b � 100 and divide into two cases according
to whether or not

b − a > 42
23 (b + a)1/5 (20)

holds. In the first case we suppose that it does. In particular this means that

b − a �
⌈ 42

23 1001/5⌉ = 5. (21)

Recursively define polynomials ui(t) in the variable t = (b − a)/(b + a) by

ui+1(t) = 1

2
t2(1 − t2)

d

dt
ui(t) + 1

8

∫ t

0
(1 − 5t2)ui(t) dt,
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for i � 1 and u0(t) = 1. Then by (21) and a result of Olver [13, Eq. (7.18)] there is
some εa,b satisfying

|εa,b| � 12 566

(b − a)15
(22)

for which(
b

a

)(b−a)/2

Ib−a

(
2
√

ab
)

= eb+a

√
2�(b + a)

[
14∑
i=0

ui(t)

(b − a)i
+ εa,b

]

= eb+a

√
2�(b + a)

[
X − (b − a)2

(b + a)3
Y + (b − a)4

(b + a)6
Z + Ra,b + εa,b

]
. (23)

Here X, Y and Z are polynomials in (b + a)−1 with non-negative coefficients found
by extracting the three lowest order terms from each of the polynomials ui(t). All
higher order terms contribute to Ra,b. Using monotonicity, we substitute b + a =
100 into X, Y and Z to prove 0 < X − 1 < 1/795, 0 < Y − 5/24 < 1/243 and 0 <

Z − 385/1152 < 1/51.
To bound Ra,b we observe that it is a sum of 78 terms of the form c(b − a)i(b +

a)−j for integers i and j satisfying j − 2 > i � 6 and a coefficient c depending only
on the term. We bound the magnitude of such a term by |c|100i−j+2(b − a)(b +
a)−3 on the basis that b − a < b + a and b + a � 100. Separating the terms accord-
ing to their sign shows that

|Ra,b| <
(b − a)

86(b + a)3
. (24)

Also (20), (22) and b + a � 100 together show that

|εa,b| <

(
23

42

)16 12 566

(b + a)1/5

(b − a)

(b + a)3
<

(b − a)

3(b + a)3
. (25)

We are at last in a position to judge what happens when a and b are replaced by
a + 1 and b − 1, respectively. Making this change to the quantity in brackets in (23)
will increase it by some quantity �. Using (24) and (25) to bound Ra,b, Ra+1,b−1,
εa,b and εa+1,b−1, we find that

� >
(b − a)2 − (b − a − 2)2

(b + a)3
Y − (b − a)4 − (b − a − 2)4

(b + a)6
Z

− b − a + b − a − 2

(b + a)3

(
1

3
+ 1

86

)
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>
b − a − 1

(b + a)3

[
4Y − 8(b − a)2

(b + a)3
Z − 2

3
− 2

86

]

>
b − a − 1

(b + a)3

[
5

6
− 8

100

(
385

1152
+ 1

51

)
− 2

3
− 2

86

]

>
b − a − 1

9(b + a)3
.

Since � is positive we conclude that (19) holds in the case under consideration.
This leaves the second case, in which (20) does not hold. Throughout this case we

will implicitly use the same term by term technique for finding bounds as we used in
the derivation of (24), except that now we use 42

23 (b + a)1/5 rather than b + a as the
upper bound for b − a.

We again employ an asymptotic expansion based on the work of Olver [14, p.
269]. For any non-negative integer n and real number z > max

{ 9
2n2, 50

}
,

In(z) = ez

√
2�z

[
1 +

5∑
i=1

(4n2 − 12)(4n2 − 32) · · · (4n2 − (2i − 1)2)

i!(−8z)i
+ δ1

]
,

(26)

where 3|δ1| does not exceed the magnitude of the final term of the sum.
We next use a + b � 100 and the negation of (20) to argue that we are entitled

to apply (26) in the examples of present interest. We begin by showing that a > 9
10b

since otherwise

1
10b � b − a � 42

23 (b + a)1/5 � 42
23 (2b)1/5

which is impossible since b � 50. Now a > 9
10b means that

2
√

ab + b − a − 1 > 2
√

ab > 2
√

9
10b >

√
9
10 (a + b) > 90 (27)

and hence

(b − a)2

2
√

ab
�

(
42

23

)2 √
10(a + b)2/5

3(a + b)
<

2

9
. (28)

Together, (27) and (28) are the justification we sought. They entitle us to use (26) to
get

Ib−a−2
(
2
√

ab + b − a − 1
)

Ib−a

(
2
√

ab
)

= 1 + 4v

w
+ 8v2

w2
+ 80v3 + 21v

6w3
+ 128v4 + 84v2 + 9v

6w4

+ 15 488v5 + 17 280v3 + 2880v2 + 2745v

480w5
+ δ2, (29)
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where v = b − a − 1, w = a + b and |δ2| < 1
5vw−3. We also have,

a + 1

b − 1

(
ab − a

ab + b

)(b−a)/2

= 1 − 4v

w
+ 8v2

w2
− 80v3 + 16v

6w3
+ 64v4 + 32v2

3w4

− 4v(11v2 + 1)(11v2 + 9)

15w5
+ δ3, (30)

where |δ3| < 1
9vw−3. The right hand sides of both (29) and (30) lie in the interval[ 4

5 , 5
4

]
. Multiplying these two equations, we get

a + 1

b − 1

(
ab − a

ab + b

)(b−a)/2 Ib−a−2
(
2
√

ab + b − a − 1
)

Ib−a

(
2
√

ab
)

= 1 + (b − a − 1)

(a + b)3

(
5

6
− δ4

)
,

for some δ4 satisfying |δ4| < 2
3 < 5

6 . This completes the proof of (19) and hence also
the theorem. �

Corollary 13. Let t be fixed as k → ∞. Maximising matrices in �k+t
2k+t either have

a fully indecomposable complement or else have two complementary components
whose orders differ by at most 1.

Corollary 14. Let t and ε > 0 be fixed as k → ∞. If t = 2a for an integer a then

P k+t
2k+t � k!2kt I0(t)χ

while if t = 2a + 1 then

P k+t
2k+t � k!2kt

√
a + 1

a
I1

(
2
√

a(a + 1)
)
χ,

where |χ − 1| < ε, as before.

It seems likely that matrices with fully indecomposable complement will not ex-
ceed these values and hence that the � signs in Corollary 14 can be replaced by
equality signs.

7. Summary

We have shown in Theorem 4 that P k
n , the maximum permanent in �k

n, is at
least k!t r! when n = tk + r and 0 � r < k. We used this in Theorem 6 to find the
asymptotic value of the nth root of P k

n and later to prove some structural results
about matrices achieving P k

n . We showed in Corollary 8 that two relatively small
components should be made the same order, and proved a corresponding result
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(Corollary 13) for matrices with density greater than 1/2. Furthermore, in Corollary
9 we deduced that the only small components which can occur in abundance are
Jk , a block of ones, and Dk+1, complement of the identity matrix. We also slightly
improved, in Theorem 10, the known upper bound on the number of Dk+1’s.

Finally note that, although Jk’s are generally to be favoured when building max-
imising matrices, we have seen examples in the results just mentioned (Corollaries
8 and 13) and in Eq. (13) where the best arrangement does not use the maximum
possible number of Jk’s.
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