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Abstract

In 1988 Garcia and Voloch proved the upper bound 4n4/3(p − 1)2/3 for the number of solutions over a
prime finite field Fp of the Fermat equation xn +yn = a, where a ∈ F

∗
p and n � 2 is a divisor of p − 1 such

that (n − 1
2 )4 � p − 1. This is better than Weil’s bound p + 1 + (n − 1)(n − 2)

√
p in the stated range. By

refining Garcia and Voloch’s proof we show that the constant 4 in their bound can be replaced by 3 · 2−2/3.
© 2006 Elsevier Inc. All rights reserved.
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Let Fq be the finite field of q elements and let p be its characteristic. Consider the Fermat
curve axn + byn = zn, expressed in homogeneous coordinates, where n > 1 is an integer prime
to p, and a, b ∈ F

∗
q . A classical estimate on the number Nn(a, b, q) of its projective Fq -rational

points is |Nn(a, b, q) − q − 1| � (n − 1)(n − 2)
√

q . This is originally due to Hasse and Dav-
enport [1] but is a special case of Weil’s bound for curves over finite fields. In the special case
of Fermat curves Weil’s bound is easy to prove by means of Gauss and Jacobi sums, as well
as its generalisation to diagonal equations in several variables, see [5,7] or [10]. An alternative
proof uses character theory of finite groups, see [2, Section 26] for the basic idea and [8] for a
refinement.

Weil’s upper bound for Nn(a, b, q) is not optimal when n (and with it the genus of the curve)
is relatively large with respect to q . Better upper bounds in this situation were found by Garcia
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and Voloch, using methods from algebraic geometry. According to [3, Corollary 1], rewritten
here after elementary calculations, if s is an integer such that 1 � s � n − 3 and sn � p, then

Nn(a, b, q) � 1

4

(
s2 − s − 2 + 16

1

s + 3

)
n2 + 2

n(q − 1 − d)

s + 3
+ d, (1)

where d is the number of Fq -rational points of the curve with xyz = 0. Garcia and Voloch pointed
out that their bounds (1) hold in more general circumstances where the assumption sn � p may
not be satisfied, and described those circumstances in detail for the cases s = 1,2. However, the
special case stated above, and with q = p, was sufficient to them for an application to Waring’s
problem in Fp . By estimating the minimum of their bounds, for 1 � s � n − 3 and sn � p, they
obtained the following intermediate result in [3, Section 3]: The number of solutions (x, y) ∈
Fp ×Fp of xn + yn = a, for p a prime, a ∈ F

∗
p and n � 2 a divisor of p − 1 such that (n− 1

2 )4 �
p − 1, is at most 4n4/3(p − 1)2/3. A version of this bound (but for the equation xn − yn = a)
with an unspecified constant in place of 4 was later proved by Heath-Brown and Konyagin using
Stepanov’s method; this is the case T = 1 of [4, Lemma 5], but see also [6, Chapter 3] for a
generalization. We comment further on this bound in Remark 3. Mit’kin has recently shown in [9]
through elementary means that Garcia and Voloch’s bound holds (for the equation xn − yn = a)
with the constant 4 replaced by 2, for n > 23/4(p − 1)1/4. However, it is also apparent from
Garcia and Voloch’s proof that the coefficient 4 in their bound can be lowered by refining their
argument. In this note we bring the coefficient in that bound down to its optimal value subject to
being a consequence of the collection of Garcia and Voloch’s bounds (1), as follows.

Corollary. Let p be a prime and a, b ∈ F
∗
p . Let n � 4 be a divisor of p − 1 such that n4 �

4(p − 1). Then Nn(a, b,p) < 3 · 2−2/3n4/3(p − 1)2/3.

Since 3 · 2−2/3 is slightly less than 1.88989, the corollary is a little stronger than the result
in [9]. We will deduce this result from the following more precise bound.

Theorem. Let p be a prime and a, b ∈ F
∗
p . Let n � 4 be a divisor of p − 1 such that n4 − 2n3 −

3n2 − 8n � 4(p − 1). Then

Nn(a, b,p) < n2
(

3(k/2)2/3 − 7

2
(k/2)1/3 + 25

12

)
,

where k = (p − 1)/n.

Proof. Because of the assumption s � n − 3, each bounding function in (1) does not decrease
by replacing d with its minimum value 0. We comment on the effect of this simplification in Re-
mark 2. In terms of k and dropping the dependency on d as described, the collection of bounds (1)
reads

Nn(a, b,p)/n2 � min
{
Us(k): 1 � s � n − 3, s � k

}
, (2)

where

Us(k) = s2 − s − 2 + 2
k + 2

.

4 s + 3
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Thus, the upper bound for Nn(a, b,p)/n2 given by inequality (2) is a piece-wise linear function
of k. Computation shows that Us+1(k) = Us(k) when k = ks , where ks + 2 = s(s + 3)(s + 4)/4.
Because kk � k we have Us(k) � Uk(k) for s � k, and hence the condition s � k is actually
immaterial in evaluating the minimum at the right-hand side of inequality (2). It also follows that
the right-hand side of inequality (2) is independent of n for k � kn−3 = 1

4 (n − 3)n(n + 1) − 2,
which is equivalent to our assumption n4 − 2n3 − 3n2 − 8n � 4(p − 1). Therefore, under this as-
sumption bound (2) can be written as Nn(a, b,p)/n2 � V (k), where V (k) = min{Us(k): s � 1}.

It remains to find a convenient function W(k) which bounds the piece-wise linear function
V (k) from above. Since V (ks) = Us(ks) = (3s2 + 7s − 2)/4, any concave function W(k) such
that W(ks) � (3s2 + 7s − 2)/4 for all integers s � 1 will do. Consider the function Wc(k) =
3(k/2)2/3 − 7

2 (k/2)1/3 + c, where c is a constant. We have

Wc

(
(s + 7/3)3/4

) = (
3s2 + 7s + 4c

)
/4,

and W ′
c(k) = (k/2)−1/3 − 7

12 (k/2)−4/3 � (k/2)−1/3. In particular, W ′
c(ks) � 2/s because

ks � s3/4. Since Wc(k) is a concave function we have

Wc(ks) � Wc

(
(s + 7/3)3/4

) − (
(s + 7/3)3/4 − ks

)
W ′

c(ks)

� 3s2 + 7s + 4c

4
−

(
13

12
s + 559

108

)
2

s
= V (ks) + c − 5

3
− 559

54s
.

Thus, if c > 5/3 then Wc(ks) � V (ks) for all integers s � 1 except a finite number. A cal-
culation now shows that the smallest value of c such that Wc(ks) � V (ks) for all s � 1 is
c = 6 − 3(13/2)2/3 + (7/2)(13/2)1/3. (Equality then occurs for s = 2.) Since the value of this
expression is (close to and) slightly less than 25/12, the conclusion follows. �
Remark 1. The argument in the proof of the theorem can be extended to show that W71/48(k) �
V (k) < W25/12(k) for all k � 1. The lower function equals the first three terms of the asymptotic
expansion, for k → ∞, of the envelope of the family of linear functions Us(k), where s � 1 is
viewed as a real parameter instead of integral. It follows that the bound for Nn(a, b,p) given in
the theorem exceeds by less than 29n2/48 the minimum of the collection of bounds (1).

Remark 2. We briefly explain the effect of having disregarded d in the proof of the theorem. Let
G be the set of nth powers in F

∗
p , that is, the subgroup of F

∗
p of order k = (p − 1)/n. If (x, y) is

a solution of axn + byn = 1 with xy = 0 then any pair obtained from that by multiplying x and
y by elements of G is also a solution. Consequently, Nn(a, b,p) − d is a multiple of n2, and we
can write (1) in the form

(
Nn(a, b,p) − d

)
/n2 �

[
Us(k) − 2

s + 3
(d/n)

]
,

where Us(k) as in the proof of the theorem and with the square brackets denoting the integral
part. The ratio d/n can only assume the values 0,1,2,3, because it equals how many of a, b

and −a/b belong to G (counting repetitions). The proof of the theorem (and, specifically, the
formula for ks ) shows that the strongest of bounds (1) for a given value of k occurs, roughly, for
s close to 2(k/2)1/3. Accordingly, one can improve the bound given in the theorem by making it
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dependent on d , but this would affect at most the term 7
2 (k/2)1/3, and not the leading term of the

bound.

Proof of corollary. We only need to explain how the weakened conclusion allows us to relax
our hypothesis n4 − 2n3 − 3n2 − 8n � 4(p − 1) to the weaker assumption n4 � 4(p − 1), which
is equivalent to n3 � 4k. When the stronger assumption is not satisfied, that is, when k > kn−3 =
1
4 (n3 − 2n2 − 3n − 8), bound (2) reads Nn(a, b,p)/n2 � Un−3(k). Thus, it suffices to show that
Un−3(k) < 3(k/2)2/3 for kn−3 < k � n3/4. Viewing n as fixed, and hence p as a function of k,
the left-hand side of the desired inequality is a linear function of k, while the right-hand side is a
concave function. Since we know from the theorem that the inequality is satisfied for k = kn−3,
it remains only to check that this is the case also for k = n3/4. Indeed, we have

Un−3
(
n3/4

)3 =
(

3n2 − 7n + 10

4
+ 4

n

)3

<

(
3n2

4

)3

= 3

(
(n3/4)

2

)2

for all n � 4. �
Remark 3. The results from [4,9] quoted in the introductory comments both give upper bounds
for the number of solutions (x, y) ∈ F

∗
p ×F

∗
p of xn−yn = a, for p a prime, a ∈ F

∗
p and n a divisor

of p − 1. In particular, the special case T = 1 of [4, Lemma 5] implies that there is a constant c

such that the number of solutions is at most cn4/3(p − 1)2/3 if n4 � p − 1. An acceptable value
for c which follows from their proof is 4/(

√
3 − 1). Our attempts to improve on this constant by

refining their estimates could not attain values lower than 25/3, which is larger than 3.
Mit’kin’s result in [9] is that the number of solutions is at most 2n4/3(p − 1)2/3 if n4 >

8(p − 1). Although his method is very different from that of [3], Mit’kin also establishes a
family of bounds for the number of solutions divided by n2, which are linear in k = (p − 1)/n

(like those of Garcia and Voloch summarized in Eq. (2)), and then concludes by selecting the best
of those for a given value of k. However, Mit’kin’s family of bounds depends on three parameters
rather than one, and it seems not possible to individually match them with those of Garcia and
Voloch. The constant 2 in Mit’kin’s final bound appears to be the best which can be attained by
his method; in fact, the stated purpose of Lemma 1 in [9] is to prove the bound with the constant
2 rather than just 2 + ε for some ε > 0.
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