A new generation of sepsis therapeutics is in development to promote clearance of microbial pathogens or their mediators and regulate the deleterious elements of the systemic host response in sepsis/septic shock. These investigations are undertaken with the realization that prior efforts to improve outcomes in sepsis have failed either by: (1) failing to account for the intrinsic complexity of sepsis pathophysiology; or (2) assuming that septic patients would respond in a uniform and predictable manner to the experimental therapy. Clearly the definition for sepsis as an infection with systemic inflammatory response syndrome does not define a patient population that consistently and predictably reproduces the same outcome with novel sepsis therapeutics. The current sepsis treatments in clinical development predictably reproduce the same outcome with novel sepsis therapies.

Abstract: A new generation of sepsis therapeutics is in development to promote clearance of microbial pathogens or their mediators and regulate the deleterious elements of the systemic host response in sepsis/septic shock. These investigations are undertaken with the realization that prior efforts to improve outcomes in sepsis have failed either by: (1) failing to account for the intrinsic complexity of sepsis pathophysiology; or (2) assuming that septic patients would respond in a uniform and predictable manner to the experimental therapy. Clearly the definition for sepsis as an infection with systemic inflammatory response syndrome does not define a patient population that consistently and predictably reproduces the same outcome with novel sepsis therapeutics. The current sepsis treatments in clinical development predictably reproduce the same outcome with novel sepsis therapies.

Conclusion: Novel therapeutics now under clinical evaluation are targeting one of the following: the pathogen or microbial mediators (hemofilters); epithelial barrier support strategies (protease inhibitors, growth factors); endothelial barrier protectors (angiopoietin-1/Tie 2, anti-complement antibodies, thrombomodulin, etc.); immune reconstitution agents (anti PD1 antibody, thymosin–1, GM-CSF), or other targets (gelsolin, pro–protein convertases, HMGB-1 antibodies, and pro-resolving agents). In this era of precision medicine it is now possible to define a responsive patient population to a specific agent with much better accuracy. This biomarker-based strategy is now being put to the test in current clinical trials in sepsis with new therapeutic agents.