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1. INTRODUCTION 

In recent years, much attention has been paid to the range set of nonlinear 
operators of the type L ~-I- N, where L is usually a linear differential operator 
and Nis a nonlinear operator which is in some sense small or bounded compared 
with L. In many cases [23, 38,421, the operator L has been uniformly elliptic 
with kernel and N has been a bounded Nemytsky operator on L2. 

In these papers, various necessary and sufficient conditions have been given 
for a function to be in the range of L + N. As in papers studying the multiplicity 
of solutions [3, 4, 271, a key factor has always been some condition involving 
the projection of the target function onto a finite-dimensional subspace. 

In this paper, we will study the equation 

where L is a linear operator on L’ and N is usually (but not necessarily) a uni- 
formly Lipschitzian Nemytsky operator. Our object is to gain generic information 
on the set of functions u satisfying (1) f or any given 12. The main results assert 
the existence of a finite-dimensional subspace depending on L and N such that 
if the orthogonal projection of h does not belong to a set of measure zero in 
this space, then the solution set is actually a manifold of the same dimension 
as the Fredholm index (dim kernel L-dim(range L)l). 

A variation of these theorems may be obtained using the techniques of Smale, 
by verifying that the hypotheses of [39] are satisfied. In. our situation, we avoid 
this approach since the methods of Section 2 (related to the alternative method) 
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give more information on the structure of the manifold (see the first counter- 
example at the end of Section 3) and suggest the different results of Section 4, 
where we deduce the existence of a manifold for all values h, not merely almost 
all. Furthermore, our results apply to L2, as opposed to the more restrictive 
Holder spaces. We illustrate the generality of these methods in Section 3, in 
which we consider a variety of examples. 

2. THE MAIN THEOFXM 

Let D be a connected open set in lwn with smooth boundary ZZ?; in fact, the 
results of this section apply more broadly to Q, a smooth Riemannian manifold 
with or without boundary, or to systems of equations. We are concerned with 
the structure of the set of solutions u (a real-valued function on Q) to the non- 
linear equation 

Lu + Nu = h, 

where h is a given function in L”(Q), and L and N are, respectively, linear and 
nonlinear operators defined on L’, or on dense subspaces of L”. 

The operator L is a partial differential operator defined on a dense subspace 
of smooth functions on Q which satisfy certain linear homogeneous boundary 
conditions on aQ. We will seek solutions u satisfying these same boundary 
conditions. L is assumed to be a closed Fredholm operator. That is, L has a 
finite-dimensional kernel and a closed range of finite codimension; we define 
the index of L to be i = dim(kerneIL) - codim(rangeL). Note that either of 
these dimensions may be zero or strictly positive. N is a Nemytsky operator of 
the form NU = f(~, u), where f satisfies Caratheodory conditions (measurable 
in x for all U, and continuous in u for almost every X) on Q x iw. We also assume 
that the partial derivative fU(x, U) satisfies these conditions, and particularly 
that the essential supremum of IfU( , )I x u is b ounded by a finite constant ik&, . 
We require too that f(r, 0) be in L’; this implies that N is defined on all of L” 
and maps it (continuously and boundedly) into itself (see [41] for related details). 

We make an additional assumption concerning the spectrum a(LL*) of LL”; 
being a closed positive self-adjoint operator [43], LL* has a real nonnegative 
spectrum. We assume that for some Al, > I&, the part of o(LL*) that lies 
within the interval [0 6 x ,( MraJ consists of isolated eigenvalues, each of 
finite multiplicity. This is certainly the case for the many situations in which L 
has compact resolvent; this would imply that all of u(LL*) is isolated, as desired. 
For example, if Q is a bounded set or a compact Riemannian manifold, and L 
is suitably elliptic (see [21, Chap. lo]), this would follow from elliptic regularity 
and Rellich’s theorem [43, p. 2811. Q need not be compact, however; on Iw”, 
if L is the time-independent Schrodinger operator Lu = -Au + V(x)u, the 
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potential I7 is assumed to be defined and continuous on IF, and F(X) tends to CC 
as j x / tends to M), then here too, L has an isolated spectrum, as needed. Our 
spectral assumption is a strict weakening of the requirement of compact resolvent; 
in the Schrodinger example, if we only assume that V(X) 3 A& for ] x 1 suffi- 
ciently large, then our spectral assumption holds [35] even though the entire 
spectrum is not necessarily isolated. Our assumption can even apply in the 
hyperbolic case, as we see in the next section. 

The conclusion radically depends upon the index i. One might hope that 
the set of solutions to (1) would be a differentiable manifold of dimension i, 
and this generically turns out to be the situation. We first consider the important 
case i = 0. which applies in particular to self-adjoint L, 

THEOREM 1 (i = 0). Given the abo@e hypotheses on L and N, there exists a 
certain finite-dimensional subspace S, of La and its mthogon,al complement S, with 
the following property. For any h, in §‘, , there is a sparse (nongeneric) subset A of S, 
such that if h, is in S, but not in A, then fop h = h, + h, , the boundary-value 
problem (1) has a xero-dimensional man;fod, i.e., a discrete set, as its solution set. 
The set A is sparse in the sense that it is of Lebesglle measure xero. 

Remark. Since the solution set is closed, it must therefore be isolated. This 
may be interpreted as a local uniqueness result. The solution set will appear 
embedded in a finite-dimensiona subspace of E2. If from other considerations, 
we know that the solutions obey an L” a priori bound, this will imply a similar 
bound in the subspace. The solution set is thus compact and hence finite. 

&?2a&. The crucial space S, is constructively realized as the linear span 
of the first few eigenvectors of LL* (ordered by size of eigenvalues). As a finite- 
dimensional linear space, S, inherits a well-defined notion of “measure zero” 
from Lebesgue measure on Euclidean space; hence the solution set is “almost 
surely” an i-manifold, in the sense of probability. Alternatively, the sparse 
set A may be taken to be of first Baire category, or even a (single) closed set 
with empty interior. 

THEOREM 2 (i < 0). FOF the situation analogous to that oj Theorem 1, the 
generic co&usion is that (1) has no solution whatever. 

TERMINOLOGY. In order to unify the theory, we define the empty set to be 
the only i-manifold for i < 0. We will hereafter refer to the above generic 
conclusion of unsolvability by describing the solution set to be an i-manifold 
(for i < 0). 

Remark. Of course, if i > 0, the solution set may also be empty. In order 
to rule out this trivial situation, one must assume some additional hypotheses 
(for e.xistence of solutions) to the very general hypotheses used here. Such 
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hypotheses are widespread in the literature for i 3 0; Theorem 2 explains why 
this is not the case for i < 0. 

We now turn to the most interesting case, i > 0. This situation has been 
extensively studied in conjunction with nontrivial stable homotopy (see [32, 
34, 371). In this setting, the question arises~of coordinatizing the i-manifold of 
solutions; we return to this question in Section 4. The analysis is more delicate 
here; while Cr differential topology suffices for i < 0, Cr seems to be necessary 
here (Y > i). We must make some additional assumptions in order to achieve 
this extra degree of smoothness. 

We will assume (for Theorem 3) that the linear operator L is uniformly 
elliptic with continuous coefficients and that the underlying region B is compact. 
As usual, we assume that the (linear homogeneous) boundary conditions are 
complementing [2], of order (mj) less than the order of L(2m0), and smooth 
(C--y, j = 1, 2 ,..., m. . These hypotheses will enable us to apply elliptic 
regularity. We also assume additional smoothness on f(~, u), specifically that 
all partial derivatives Sf/a ui satisfy Caratheordory conditions and are uniformly 
bounded on 52 x I?%, for j = I,2 ,..., i + 2. While Theorem 3 applies to the 
case of i = 0, it should be noted that the required smoothness off is one order 
greater than is needed for Theorem 1. 

THEOREM 3 (i > 0). For operators L (of index i > 0) and IV as specified 
above, the generic conclusion is that the set of solutions to (1) form a diffeentiabk 
orientable i-manifold. 

We first prove Theorems 1 and 2 simultaneously, and then describe the 
modifications necessary to prove Theorem 3. 

Proof of Theorems 1 and 2 

We first split (1) into two simpler (but coupled) equations according to the 
procedure of Lyapunov and Schmidt. We view these equations from the stand- 
point of functional analysis as developed by Cesari and others [7-10, 15, 161 (the 
alternative method). Specifically, a problem such as (1) may be split into a 
finite-dimensional problem coupled with a (contraction) fixed-point equation; 
this idea is due to Cesari [lo]. 

We first define two projection operators P and Q on L” by orthogonal projec- 
tion onto the kernel of L and the orthogonal complement of the range of L, 
respectively. Writing u = v + co, where Pu = c0 (we use c0 to denote 1 ciBi )- 
for Bi an orthonormal basis for the kernel of L), (1) becomes 

~~ = h - N(~ + ce). (3 

We give the domain of L a new inner product, the graph inner product, defined 

by <f, g>> = (f, g> + W, LA where i , > d enotes the usual Lz inner product. 
With respect to this inner product, the domain of L is a complete Hilbert space, 
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and L is a continuous linear operator from its domain into L”. Neither injective 
nor surjective as “et, L becomes injective if we restrict its domain to the ortho- 
gonal complement of its kernel and surjective if we consider its range to be the 
kernel of Q. By the open mapping theorem, L has a continuous inverse H from 
the kernel of Q into the domain of L and hence into L”. 

Equation (2) is equivalent to the two coupled equations 

and 

v = H(I - Q){h - -N(v + c6>] (3) 

Q(h - N(w + ~6)) = 0, (41 

which are called the auxiliary and the bifurcation equations, respectively. We 
will further decompose (3) as follows. 

Let H = L’R be the polar decomposition of H; U is a unitary operator, and 
R is a positive self-adjoint operator. (Information about polar decompositions 
may be found in [36; 17, pp. 68-69; 291). R is the unique positive square root 
of PH. The spectrum of R is real and nonnegative, and the part of it contained 
in [IV2 < Z< < c0) consists solely of a finite number of isolated eigenvalues of 
finite multiplicity, where zW;~ = fl/r, . This follows from the spectral hypothesis 
onLL”; via the spectral mapping theorem. Defining a new (orthogonal) projection 
operator P, onto the span of the eigenvectors of R corresponding to the eigen- 
values in [Mi, rc)) we may write R = R, + R, , where R, = P,R, R, = 
(I - P,)R. It should be noted that I - PI is an orthogonal projection onto the 
“other oigempaces” of R; R is self-adjoint so its eigenspaces are perpendicular. 
Let N = HI + H, , where HI = UR,, H2 = UR, , and similarly write 
w = WI -t w, = UPI u-xv + U(I - P$.-1 CII, respectively; (3) decomposes into 
the equivalent system 

2’1 = H,(I - Q){h - N(w, f v, + ce)), (5) 

2’2 = H,(I - Q)(h - A+, 7 c2 + ~9)). (6) 

Equations (4) and (5) are finite dimensional and can therefore be analyzed by 
transversahty and “counting dimensions”; while (6) is infinite dimensional, 
it is a contraction mapping fixed-point equation. Equation (1) is equivalent to 
the simultaneous solution of (4), (5), and (6). 

We first solve (6). For each lz, w1 ,c19, we regard (6) as a fixed-point equation 
for r+ in the subspace closure (range H,) of the Hilbert space Lp. The nonlinear 
operator ‘z’s --t Hz(I - Q)(h - N(u~ + o2 + ~6)) is a smooth Cl uniform 
contraction, with Lipschitz constant <MO/M1 < 1. The contraction mapping 
fixed-point theory [lfl implies that (for each A, zlt , co) there is a unique solution 
v2 = w,(li, .zl , ~6) to (6), and that this solution is a Cl function of h, c1 , ~6. We 
may therefore restrict our attention to the simultaneous solution of (4) and (5), 
regarding (6) as solved, although the z’a appearing in (4) and (5) must now be 
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considered as defined uniquely and smoothly (if somewhat obliquely) by (6). 
In principle, oa can be obtained as the limit of iterations of the contraction map 
defined above. 

Concerning the Cl smoothness of the contraction mapping (and hence the 
smoothness of the solution z~a of (6)), a word of explanation is necessary. The 
only nonlinear operator is the Nemytsky operator N, which has a (linear) 
Gateaux differential DN mapping La into L(L2, L’) = {bounded linear trans- 
formation from L2 into L”); see [41, Chaps. 3, 1%201 for the results mentioned 
in this paragraph. DN(u)[v] is an element of L” which depends linearly on z’, 
nonlinearly on u, and continuously on (u, v) in L” i< La. DN is not a Frechet 
differential (unless N is linear); N is not Frechet differentiable on L2, and the 
closest thing one has to a second Gateaux derivative is not even everywhere 
defined on L’, even forf(x, U) of Cm smoothness. This is the primary complica- 
tion in the i > 0 case, for which Ci+r smoothness is necessary. For the time 
being, all first derivatives are (linear) Gateaux derivatives, continuous in the 
above sense. We remark that DN(u) is an element of L(L2, L”) which does not 
depend continuously on u, if L(L2, L”) is given the uniform operator (norm) 
topology. However, D-Iv(u) does depend continuously on u if L(L”, L’) is given 
the strong operator topology. 

We wish now to solve the finite-dimensional equations (4) and (5), having 
disposed of the remaining infinite-dimensional problem in (6). Let {ai} be 
orthonormal eigenvectors of R spanning the range of Pr , i = 1,. .., nz; these are 
the first few nonzero eigenvectors of LL”. Let (&j) be an orthonormal basis for 
the orthogonal complement of the range of L, j = I,..., & = codim (range L). 
Recall that (0,) is an orthonormal basis for the kernel of L, j = I,..., iI = 
dim(kerne1 L). We will identify the four spaces range PI , range 15rP, , (range L)l, 
and kernel L with RI”, 1w”‘, l&9, ff?Pl, res pectively. We use these spaces to build 
larger Euclidean spaces, as follows. Let S, = Liz x Iw”“, let X = Ril x llP’, 
and let y = @a x @” x [wk x R”‘. 

Fix lz, in the orthocomplement of S, as in the statement of the theorems. We 
define a map p: S, + C’(X, Y) by 

In this expression, d#, eel, c6’ are used to denote finite sums C d& , etc; (d$, em) 
is in S, , (co, vr) is in X. It should be noted that Eqs. (4) and (5) are solved (for 
Iz = h2 + d# + ea: = lz, + h, , v = v, + va) if and only if p(d#, ea)(ce, vl) is 
in the “diagonal” set Win Y, where 11’ = ((a, 6, a, 6); a in lP&, b in KP’]. 

It should be noted that the derivatives involved here are continuous (linear) 
Gateaux derivatives; it follows from the finite dimensionality of the domain 
spaces S, and X that these are actually (continuous) Frechet derivatives. If an 
operator F between two Banach spaces Er and E2 has a linear Gateaux derivative 
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DF: El -+ LfE, , EJ which is continuous, not only from E1 x El -+ E2 as we 
have, but from El + L(E, , EJ with respect to the uniform operator (norm) 
topology on L(E, , E2), then DF is a continuous Frechet derivative [41, Theorem 
3.31. The two types of continuity are equivalent if El is finite dimensional. 

For any iz, in S, , p(kr) maps X into Y. We wish to con&de that for “most” 
12, in S, , [p(Fz,)]-r(W) is a C1 submanifold of X of dimension i. If p(hr) is trans- 
verse to W, standard “submanifold” theorems (see [l, p. 451, 1114, p- 28], or 
[20, p. 221) imply this desired result. Also, we can conclude that p(hJ is trans- 
verse to I/z’ for “most” h, using standard “density” and “stability” theorems 
([I, pp. 47-48; 14, pp. 68, 35; 20, pp. ‘74-751); the hypotheses are easily verified 
except one, that p: S, x X + IT is transverse to W. Th.e distinction here is to 
be made between p defined on S, x X and p(h,) defined on X. The space S: 
was chosen in such a way to facilitate this. 

Let D,p be the partial derivative of p with respect to t.he S, argument; this is 
a map from S, X X into L(S, , Y). I n order to conclude that p is transverse to W’, 
it suffices to show for any (sr , x) in S, x X with p(sl , x) in IV, that the vector 
space Y is spanned by the totality of the vectors in W and the vectors in the 

range of Dlp(sl , x). The vectors in W are of “diagonal” form (a, b, a, b); we 
ciaim that the range of D,p(s, , x) contains all vectors of the form (0, 0, a, b): 
which will finish the proof of the theorem. 

We first rewrite (6) in the form 

where vs depends on lz, , d#, ea, q , and ~0. We compute the derivative of the 
fixed point e2 with respect to the variables d# and ea, and it is zero. For example, 

where the function af/c?u is evaluated at (x, z’r i c, + co). Therefore 

since z& is in the kernel of I - Q. Similarly Hz(I - Q)CQ = 0. This fact makes 
it much easier to determine D,p, since we may nom ignore any contributions 
to D,p from the dependence of va on d# + ea. We have 

This estabiishes Theorems 1 and 2. 
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Proof of Theorem 3 

This proof proceeds along the same lines as the previous ones. The additional 
requirement is that the map p must be (i + I)-differentiable in the sense of 
Frechet in order to apply the “submanifold” theorems of differential topology. 
This will follow from standard theorems of advanced calculus [31, p. 5751 if we 
can establish that the finite-dimensional range map $(d, e, V, , c) = Q{rZ, + 
L!$ + eel -f (VI + va + co)} admits continuous (; + 2)nd partial derivatives 
with respect to its (finitely many) domain variables. We need the same result 
for the map given by the fourth component of p. We sketch the proof that 4 
admits continuous second-order partial derivatives; the extension to higher 
order is similar. 

The main problem here is that ~a depends on 9 and c (as well as d and e) 
and we must verify that v, is partially differentiable in these variables. The 
function V~(ZJ~ , c) is defined implicitly by (8); we differentiate (8) with respect 
to ci and obtain 

where the function 3f/Zu is evaluated at the argument (x, V, + va + ~0) and 
%v,/&~ is evaluated at (v, , c). By a standard bootstrap argument using the 
elliptic regularity of L and the boundedness of af/ih, we conclude from (10) that 
&a/%~, is uniformly bounded (Lm). This argument also requires that the functions 
0, are bounded, which follows from elliptic regularity too. We establish that 
the first partials of v, are continuous in c by solving (10): 

av, 
aci - [1+ H,(I - $3) Z1-l (-f&(1 - Q) g 4). 

The derivatives of vs with respect to z’r are handled similarly. 
We now consider the second partial derivatives Pvs/;?I%c.~ %cj . We emphasize 

that these are directional (Gateaux) derivatives at this stage. A routine calculation 
yields, from (lo), 

ii%, j ay afl, 
__ ati acj = --w2(1 - Q> ( au2 i 

aci + 4)(% + 4j + g ($j/. (12) 
I 

As in (lo), bootstrap arguments imply that these second partial derivatives are 
bounded (La), and we solve explicitly for the derivative: 
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This demonstrates the continuous dependence of the second partials on the 
(finite number of) variables c, and similarly, or . This method extends to dcriva- 
tives of order <i + 2. 

We return to the problem of showing that q5(d, e, nl, c) has continuous 
(i + 2)nd partial (Gateaux) derivatives. This follows from the chain rule and 
the results of the last paragraphs. Since $ has finite-dimensional domain and 
range, 4 (and therefore p) has an (; + 1)st FrCchet derivative. 

All of the manifolds S, , X, Y, i7, involved in the de&-&ion of p are orientable, 
since they are Euclidean spaces. By the argument of [14, pp. 10%101], the 
manifold of solutions is orientable. This concludes the proof of Theorem 3. 

3. EXAMPLES 

First we consider the problem studied in [23]. Let L be a strongly elliptic 
self-adjoint differential operator on a bounded region 52 with smooth (P) 
boundary and coercive boundary conditions. We assume that the function f(z) 
is smooth (Cl), has finite asymptotic limits f(-KI), f(co), and in addition 
satisfies f(-- Go) < f(S) < f(+ co), f or a 11 s, --cc) < s < +a. Then a necessary 
and sufiicient condition that the equation 

Lu + f(u) = h(x) (9 

inL”(-Qj has solutions is that 

f(+ ao) s,,, 6 + A- a> j,, 6 > J M > f(- a> s,;, 6 + f(i- m) s,,, e (14) 

for all 19 in the kernel of L, // 0 /j = 1. 
The proof of [23] implies the existence of an a priori bound on the solutions zl. 

Since the index of L is zero, our theorem shows that there exists a finite-dimen- 
sional subspace S, of L2 spanned by a finite number of eigenvectors of L such 
that for any given Iz2 _L S, the equation Lu +f(z~) = h, + k, admits only a 
finite number of solutions for almost all 12, E S, . 

The function f need not necessarily be uniformly Li-pschitzian, if it is even- 
tually monotone in the right way. Consider the Dirichlet problem --AU + ~3 - u 
= h(x) on a bounded region Q, where R is assumed to be (pointwise) bounded 
and we require u = 0 on &? While the function f (u) = u3 - g is not uniformly 
Lipschitzian, one can use the weak maximum principle to conclude that any 
solution to this problem obeys an a priori bound /I u jjLm < M. We may therefore 
replace f(n) = ~3 - u by a smooth function g(u) identical to f(u) for 1 u / < M, 
but which tends nicely to asymptotic limits g( - CO), g(m). The existence of 
solutions to the modified Dirichlet problem for -AU + g(u) = h(x) follows 
easily from the Schauder fixed-point theorem; these solutions are precisely the 
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same as the solutions to the original problem, and our analysis applies to the 
multiplicity of solutions. 

The Nemytsky operator fli may depend on derivatives of Y as well, of order 
less than the order of L. For example, consider the Dirichlet problem for 
-Au + f (x, u, Vu) = h(x) on a bounded region Q, u = 0 on X?. If we assume 
that f and its first partial derivatives&, , fvu satisfy the Caratheodory conditions 
onQ x IR x Rv,thatjfujand~fv,~ . ale uniformly bounded, and that f (x, 0,O) 
is in L”, a “Theorem 1” could then be proved. Vi(re could even allow f to depend 
on second derivatives of u, provided the dependence was sufficiently small. 

Another situation which received some attention [I 1, 15, 241 is the case for 
which f does not (at least in the limit) pass through the eigenvalues of L. For 
example, in [22] the Dirichlet problem Au + f (u) = {z(x) in a bounded region 
9 was studied under the assumptions that f was Cm and that An < f ‘(- co) < 

f’(+a> -C h,,; A, and hfl are two consecutive eigenvalues of -A (the 
eigenvalues are arranged in increasing order). Again, our theorem demonstrates 
the existence of a finite-dimensional subspace S, spanned by eigenvalues of -A 
such that if h = Iz, + lz, , ha 1 S, , then for a given h, , the Dirichlet problem 
has at most finitely many solutions (for almost all h, in S,). 

Theorem 1 also applies to hyperbolic equations which have been studied by 
these methods. For example, the equation (for which 0 < x ,( ?T, 0 < t, /r 
periodic in t of period z-, c a positive constant) 

24 tt - %z - cu + f (x, t, 24) = h(x, t), 

with boundary conditions (19 

u(x, t) = u(x, t + 7r), u(0, t) = u(7r, t) = 0 

has been studied in [28] under the hypothesis flL < c. (We are really working 
on the compact manifold [0, ~1 x S1 with boundary ((0) x Sl) u ({T] x Sl).) 
If f is sufficiently smooth to satisfy the hypotheses of Theorem 1, and also 
sup 1 fu(x, t, u)I < c, then we may conclude that there exists a subspace S, of 
L”([O, rr] x S1) of finite dimension, spanned by the eigenvectors of utt - u,, , 
#i? = sin ix cos jt, +& = sin ix sin jt, where i and j are integers, i > 0, j 3 0, 

and/i”--j”I <c. Foranyh,_LS,, and iz = Iz, + h, , Eq. (15) has finitely 
many solutions for almost all 12, E S, . 

There are many other problems of index zero which may be treated by this 
method including parabolic linear operators [26$ 

We now pass on to some genuinely non-self-adjoint problems of nonzero, 
index. We consider the equation 

A% + f (a) = h(x, y) in Q, 

au 
ax =;Au=O on %I, 

(162 
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where J2 is a smooth bounded region in R”, without1 ass of generality of unit 
measure, and n indicates the outward unit normal on (28. This operator has 
kernel spanned by (1, y, y’} and cokernel spanned by (13. We assume that f is 
bounded and for simplicity depends only on U, that f(- co) < f(s) < f(+ a), 
and that f is P. We observe first that by projection onto the vector 1, we have 
that 

f(-co) < Jh <J(+m) (17) 

is necessary for the existence of solutions. Theorem 3 guarantees that if the 
equation admits a solution then the solution set is generically a manifold of 
dimension 2. Here we examine in more detail the structure of this manifold. 

THEQRHM 4. Condition (17) is suficient for the existence of solutions to (16). 
F~Li&?nrlo~e, given any c 2 , c3 in R, there exists at least onefunction ur, E $ csy + 

2 a c3~i2z where u c2c3 is orthogonal to the space spanned &y (31, y”>. 

Proof. Let P be a projection onto the space spanned by (1, y, ya> and Q be a 
projection onto the space spanned by (1). As usual in the alternative method 
since L: (I - P)L2 -+ (I - Q)L2 is invertible, we have a partia.I inverse 51: 
(I - Q)P + (I - P)L”, and Eq. (16) . IS equivalent to the pair of equations 

v = H(I - Q){h - AJ(v + &)I (3) 
and 

Q{h - N(v + CO)] = 0. (4) 

Since both sides of (3) belong to (I - Q)fl we may combine (3) and (4) into 
the equation 

T(u) GE v - H(I - Q)(lz - fv(” + ce)) - Q{h - qv + cq> = 0, (I 8) 

where z’ = (I - P)u and u = c1 + czy + cay” + z*. We fix cs and c, and 
write w = cr f 11, so that ZL = w + cr3 J 1 cSy’. Writing Tc,?,(utj = Tzc, we 
may consider (18) as an equation Talc, = 0 in w. Both w and Z’,Bc-,(w) are 
orthogonal to the span of y, y”. 

Now observe that since N is bounded, we have for some constant Ii/r that 
/I H[I - .Q)(h - N(w + c2y + c3yy)lj < IV, where 11 !I denotes P norm. Also, if 
jj z’ /[ = I?, , we have that (TEzPQ(z~), V> > Ii,” - MR, > 0 for R, sufficiently 
large; < , > denotes L” inner product. By estimates similar to those of 123, 421, 
it follows from (I 7) that the nonlinearity h - N satisfies the following inequality: 
Given RR, > 0, there exists R, > 0 such that if /I u + czy + cay’ /! < R, and 
1 c, j > RI , then (iz - N(‘L’ + c, + cay + cay”), cl> < 0. ‘From this we may 
conclude that the map T,,,, has Leray-Schauder degree I on the region CRIRz = 

{v + Cl i- c,y T csy”, where 11 v + csy + c3y” [I < h’, , 1 c, 1 < RI] in 
(span(y: ~2))‘. This proves that for fixed c 2 , c, Eq. (18) has at least one solution 



194 SHAW AND MC KENNA 

in (span(y, y”))‘. Thus the original equation (16) possesses a two parameter 
family of solutions + = c, + cay + cay’ + 21. 

Using the techniques of [6,38], it can be shown that the set of solutions to (16) 
meets every sufficiently large sphere in L* (in fact, in a continuum of points). 
This precludes the use of stable homotopy theory [32] in this type of problem. 

More generally this type of theorem is true for any L for which (range L)l _C 
(kernel L). The necessary and sufficient condition would then be that 

be satisfied for all 8 in (range L)I, /j 0 jJ = 1. 0 ne can prove this type of theorem 
for situations where (range L)l g (k ernelL) but instead some basis functions 
of kernel L possess regions of positivity and negativity in common with the 
basis functions of (rangeL)l (see 1381 for details). 

An analysis similar to the preceding shows that if we consider the equation 
Lu + Nu = h, where L is a partial differential operator on Q satisfying range L = 
L*(Q), then there exists a finite-dimensional subspace S, with an associated 
projection operator PI such that if Pi/z does not belong to a set of measure 0 
in S, , then the solution set is an i-manifold of the form (z+ + u, such that ui 
ranges over all of kernel L, and zc2 I kernel L). An example of this is given by 
the oblique derivative problem (; = 2) 

au + arctan 24 = h (19) 

on a bounded smooth region Q in [wa, with boundary condition au/ax = 0 on a&?. 
See [21, pp. 265-2671 for details on this and also for examples of negative index. 

These methods apply in similar problems of structure, as in the following. 
Consider the one-parameter family of Neumann problems du + hu + arctan u 
= la in a bounded region Q, where we require &@n to vanish on a.Q, and 
sup 1 h 1 < n/2. For each fixed real X, the Landesman-Lazer theorem [23] 
guarantees the existence of solutions zdn(x). One can prove by our methods that 
for generic h, the solution set ((h, u,,(x)> forms a smooth l-manifold in R x L2. 

We conclude with two counterexamples showing how the “generic” qualifica- 
tion is necessary. Consider the Dirichlet problem 

--XI 1’f(x) = 0, 

x(0) = x(Tr) = 0, 
(20) 

where f is smooth, satisfies f(s) = --s for -1 < s < 1, / f’ / < 2, and the 
limits f’( ,J, co) exist and are both positive. In this case, it is clear that instead 
of a discrete set, Eq. (20) has a solution set containing (W sin t, ] a: 1 < I}. 
However, since the relevant space S, occurring in the proof of the theorem will 
in this case be the one-dimensional subspace spanned by sin t, we may conclude 
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that the problem for -x” +f(~) = /I sin t admits only a finite number of 
solutions for almost all B. This is a much sharper conclusion than can be obtained 
by the Baire-category techniques of [39]. 

Our second example shows that the solution set need not be a manifold at ail. 
Consider 

-2 + f(x) = 0, 

x’(0) = x’(5-r) = 0, 
(21) 

where f is smooth, bounded, sup 1 f' j < 1, and (f -i(O)f is not a zero-manifold 
but a collection of points with an accumulation point. It is easy to verify (see 
[27]) that the only solutions of (21) are constant solutions, and thus the solution 
set of (21) is as undesirable as (f-l(O)). 

4. SMALL PARAMETER ARGUMENTS (i > 0) 

We consider in this section examples for which the Nemytsky operator defined 
by f is suitably small. These hypotheses may be achieved, for example, by 
assuming that f involves a small parameter, and thatf(r, u) = F&X, zc), where E 
may be chosen small. 

Consider first the case for which L may have nontrivial kernel and for which 
the range of L is all of L2(Q); for example, the operator L appearing in Eq. (19). 
We consider the equation 

Lu + Nu = h(x) (22) 

on the bounded region Q, where Nu = f (x, u) is a Nemytsky operator for 
which both f and fiL satisfy Caratheodory conditions on G x R. We demand 
also that sup ) fu 1 < 01:/‘, where a1 is the first nonzero eigenvalue of LLF, and 
that f(x, 0) is in L’. The operator L admits a (right) partial inverse H from F 
onto(I-P)L2withj/H/= 11~~~ . 1/2 Using the notation of Section 2, the bifurca- 
tion equation (4) is trivially satisfied because Q = 0. We need only solve the 
auxiliary equation 

v = H(h - N(v + &)j. 

It is clear that for each c6 in the kernel of L, the map T,: v --f H[h - N(B + ~8)) 
is a uniform contraction, and therefore there exists a unique v depending con- 
tinuously on c. Therefore, the solution set to (22) is of the form (c@ +- V(C)], 
where CB ranges over the entire kernel of L. This is a (topological) manifold 
equal in dimension to L’s kernel, and this proves that the manifold admits a 
Cartesian representation. That is, the manifold is the graph of a continuous 
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function from the kernel of L into its orthogonal complement in L”. With ad- 
ditional smoothness and regularity hypotheses ‘as .for Theorem 3, it can be 
shown that this is a smooth manifold. Also, the above remarks apply even if the 
kernel of L is infinite dimensional, as, long .as zero is an isolated point in the 
spectrum of LL*. 

We finally return to the problem of Section 3: 

A% + f(u) = 12(x, y) in Sz, 

au aLi24 o --zzz 
as:- an on aQ, 

where 8 is a smooth bounded region in R” of unit measure, 12 is in L2, and f is Cl. 
As before, P and Q are orthogonal projections onto the kernel of L = span(l) y, v’} 
and the cokernel of L = span(l), respectively. Equation (23) is equivalent to the 
simultaneous solution of 

and 

77 = H(I - Q)(h - N(v + c8)) (3) 

Q{h - N(v + CO)> = 0, (4) 

where H is the partial inverse of L, and we have an inequality )/ Hw [ILm < 
K I/ w (1. Here w is in (I - Q)L”, Hru is in the Sobolev space H4, which injects 
into La by the usual Sobolev estimates, and K is a positive constant independent 
of zu. 

As before, we fix c a, c, in R, and consider, for each c, in R, the map T, 
mapping (I - P)L2 into itself by T, (v) = H(I - Q){Iz - N(a + co)>. Wt 
assume that sup j f’ [ < Jfi for M sufficikntly small, the map Tc, is a contraction 
and therefore has a unique tixed point u = v(cJ depending continuously on 
cr (as well as on cp , ca). Furthermore, a calculation yields 

Here Ij H/I denotes the operator norm of H on L”. Because of Eq. (3), we get 

(25) 

This “Lipschitz” constant KM/(1 - 11 H jj M) can be made arbitrarily small by 
assuming M to be sufficiently small. 

We now study Eq. (4), which takes the form 
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We claim that Ic,,G, is a strictly decreasing function of c, . Fixing cg , cS , c1 > c; , 

&*,&) -- 4,,c,(c1) = SS(c1 + c2.? + cay” + +I)) -f(G + w f WJ f 44,. 
B&t c, + w(cl) - c; - w(c3 > Cl - c; - I/ w(cJ - w(c;)i&2 3 (Cl - c;)(l - 
(KM/l - 11 H 11 n/r) > 0 for M sufficiently small. We conclude from this that 
for fixed c, , es, Eq. (26) has at most one solution, which, if it exists, depends 
continuously on c2 and ca . 

Some additional hypotheses are necessary to ensure existence of solutions. 
If we assume also that inff’ > 0, then IG,,& &co) = fc~, and so (23) has 
solutions for all h. Alternatively, we could &,ume only that f’ > 0, and that 
Landesman-Lazer-type inequalities are satisfied by j and k; this would also 
imply existence for all such 12. For example, we could assume thatf is bounded, 

fi-m> <f(s) < f( 1, d co an such an inequality would take the form of Eq. (17). 
In either case, for each ce , cg , there is a function cl(cs , ca) + w(c1(c2 , c3)) in 
(1) x (I- P)L” depending continuously on cg, cz so that c,j’ + cay” C 
cl(cg, cd) + v(c1(c2, c&) is a solution of (23). Th ese are all of the solutions to 
(23); as in the previous example, for aZE h, we have a 2-manifold of solutions 
and this manifold has a Cartesian representation. 
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