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Abstract

One of the greatest challenges to confront Nonlinear Programming Problems, it is the selection of the active and non
active set of constraints of the system. For this reason many optimization applications prefer to use barrier or penalty
methods with their related inefficiencies. This paper describes a graph-based solution for these models which facilitates
the handling of such constraints and, therefore, the solution process for the model. To this end some parts of the graph
are considered active or non active, depending on the actual model solution as well as the values of the Lagrange
multipliers. At every solution step, there will probably be some changes on the graph topology to reflect the current
conditions of the problem whose solution is in progress. These solutions besides being efficient, provide an optimal
storage scheme as only the fundamental information of the problem is stored.
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Nomenclature

G The set of generators
Q The inelastic compound load
λ The energy price
zg NLP desicion variable
ρg Dual variable associted to zg uppper bound
ρg Dual variable associted to zg lower bound
�zg� The upper limit value of variable zg

�zg� The lower limit value of variable zg

Δzg The variable incrementzg

1. Introduction

One of the greatest challenges to confront Nonlinear Programming Problems is the selection of the active
and non active set of constraints of the system. For this reason many optimization applications prefer to use
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barrier or penalty methods with their related inefficiencies [1]. This paper describes a graph-based solution
for these models which facilitates the handling of such constraints and, therefore, the solution process for
the model. To this end some parts of the graph are considered active or non active, depending on the actual
model solution as well as the values of the Lagrange multipliers. At every solution step, there will probably
be some changes on the graph topology to reflect the current conditions of the problem whose solution is in
progress. These solutions besides being efficient, provide an optimal storage scheme as only the fundamental
information of the problem is stored.

Unfortunately the use of matrix methods with their tools and development environments for their han-
dling make those graph-based methods in some sense more complex, discarding apriori the efficiency of
them [2]. The objetive of this paper is twofold: The first one is to show the easiness of these methods
presenting some of the advantages compared to other methods, established in [3] and [4],.and the second
one is to propose a new elimination order based on the underlying graph topology. For this purpose, some
parts of the graph are considered active or non active depending on the actual system solution and, only, the
Lagrange Multipliers values as opposed to [4] where slack variables were used. Changes on those variables
will modify the graph topology reflecting the actual conditions of the problem whose solution is in process,
unlike the other methods that have an static topology [5]. Even more, some extensions to the model have
been proposed which allow the application of decentralization techniques on the graph [6] as an alternative
to some other matrix-based proposals [7, 8, 9, 10].

This document has been divided as follows: In section 2 the Economical Dispatch is introduced. Then,
in section 3, the graph representation for this optimization problem is presented. After this, in section 4,
Karush-Khun-Tucker conditions are introduced as they are the pillars over which all this mechanism is
built. Immediately, in section 5, the algorithms to exploit such graphs are presented. Section 6 presents
a study case to show the application of the technique proposed in this document. Section 7, as a sake
of completeness, shows the convergence graphs. Finally, section 8 provides some conclusions about this
methodology.

2. The Economical Dispatch

The Economical Dispatch can be taken as an initial solution to the DC optimal power flow problem,
where the network effects are disregarded. Therefore, the system can be represented as a single node to
which all of the generation units and the load are connected. Figure 1 shows an schematic representation of
this model. There are three generators and one 850W load [11]:

λ

Gen. 2

[100..400][150..600]

Gen. 1

[50..200]

Gen. 3

850 MW

Fig. 1. Economical Dispatch Model

The Economical Dispatch model that describes this diagram is a Nonlinear Programming model, specif-
ically a Quadratic Programming model, and is given by equations from 1 to 4.

max
pg,ql

∑

l∈L
Bl(ql) −

∑

g∈G
Cg(pg) (1)

s.t. ∑

g∈G
pg −
∑

l∈L
ql − Q = 0 (2)
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L(z) =
∑

g∈G
(Cg(pg) − ρ

g
(�Pg� − pg) − ρg(pg − �Pg�)) − λ( ∑

g∈Gi

pg − Q)

∇(L(z)) H(L(z))
z pg λ ρ

g
ρg

pg βg + 2γg pg − λ − ρg
+ ρg 2γg −1 −1 1

λ
∑

g∈G
pg − ∑

l∈L
ql − Q −1

ρ
g

�pg� − pg −1

ρg pg − �pg� 1

Table 1. The Newton step ingredients

�Pg� ≤ pg ≤ �Pg� ∀g ∈ G (3)
�Ql� ≤ ql ≤ �Ql� ∀l ∈ L (4)

In this problem the social welfare is meant to be maximized [12],. This is defined as the difference
between the benefit of producing the energy minus the cost to produce it, i.e.

∑
l∈L

Bl(ql) − ∑
g∈G

Cg(pg). There

are two constraints: first the power balance constraint i.e. the energy produced has to be consumed, and the
second one is about the physical limits of the generators. The grnerators production function is defined by
quadratic characteristics as shown in equation 5:

Cg(pg) = αg + βg pg + γg p2
g (5)

In the same way, the economic benefit model for each variable load is provived by the quadratic concave
function Bl(ql) = βlql − γlq2

l . The economical dispatch purpose is to find an optimal allocation of energy
production for each generator which satisfies the load. These allocations have to be within the limits defined
for each of them. In this document it will be assumed that the loads does not respond to the prices i.e. they
are captive loads, and will be ignored in the model. In general, a nonlinear optimization problem starts by
building the Lagrangian. This is the base to implement the Newton step, which formulation is given by
equation 6 [1]:

H(L(z))Δz = −∇(L(z)) (6)

Table 1, shows the involved elements, in the economical dispatch, to compute the Newton step.

For the Lagrangian case, our system is defined by the equation showed on the head of the table. he
second column represent the gradient of the Lagrangian with respect the variable in the first column. Finally,
columns from 3 to the last one represent the Lagrangian Hessian matrix.

3. Economical Dispatch Graph

The Newton step graph representation economical dispatch system showed in Figure 1, is presented in
Figure 2 .

In this graph each constraint is represented by a dual variable and a link set that represents the constraints
lineal terms. These connect the primary variables with the dual variables. The only difference between
equality constraints and inequality constraints is the link type use to build the interconnection structure. For
the equality constraints, the links will be active along the complete solution process. On other hand, the
interconnection structure for the inequality constraints only will be taken into account when the constraint
is active.

To solve the economical dispatch problem, a graph-based representation will be used. The solution
process will be to traverse the graph upwards and downwards using the algorithms that will be defined in
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Fig. 2. Graph Corresponding to the basic node model

section 5. It is important to highlight that the graph is a tree therefore nodes in layer n will be only connected
with node only one node in layer n − 1. The only exception is in layer zero where there is only one node
called root node, no more upper layers exist. Asume that there exist a connection between the variables i
and j. If the Gaussian elimination is applied to the node j, then the only node that is affected by the node
i, wich is a upper layer from de node j. The graph transition process is showed in Figure 3 when is applied
the Gaussian elimination to the node j.
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Fig. 3. Graph reduction when applying Gaussian elimination

Appling repeatedly this reduction will get a graph where the only node will be the root node. After the
graph has been reduced, it will be used an algorithm that is based on the topology of the graph, to resolve it.
This algorithm will use the graph topology like a guide to apply a back substitution. For this, suppose that
the node i is in the layer n and the node k is in layer n + 1. Then the equation for variable xiwill be defined
by 7.

aiixi + aik xk = bi (7)

Where xi can be expressed as equation 8 shows

xi =
bi − aik xk

aii
(8)

If the node i is the root node, then there are not more layers at the top, therefore the equation 8 turns into
equation 9.

xi =
bi

aii
(9)

Furthermore, when one of the constraints is active three nodes connected by two links define a path. In
this case there exists a different elimination procedure. The node that represents the primary variable is the
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node that will be reduced. Asume that there are connections between the variables i, j and k. If the Gaussian
elimination is applied to the node k, this will affect the node i and node j. The graph reduction process is
shown in Figure 4.
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Fig. 4. Graph reduction when applying Gaussian elimination

After this reduction, Gaussian elimination will be applied to node j, as shown in Figure 3.
When the reduction ends, the same algorithm that was defined previously will be applied to perform the

back substitution, but the node that is on the second layer will be solved at the end using equation 10.

xk =
bk − aik xi − ak jx j

ak
(10)

4. Karush-Khun-Tucker Conditions

The Langrange multipliers method define optimality conditions for equality constraints. However, many
problems are defined in terms of inequality constraints defined by 11.

min
z

f (z)

st. g j(z) = 0, j = 1, 2, ...,m (11)
hk(z) ≤ 0, k = 1, 2, ..., p

To face this problem, Karush-Khun-Tucker conditions (KKT) generalize the Langrange multipliers
method defining a minimum set of conditions which guarantee the optimality conditions for non lineal
programming problems with inequality constraints. Furthermore, KKT conditions provide sufficient opti-
mality conditions for convex programming problems, as the one we are dealing with. If z∗ is the optimal
solution for a non lineal problem with n = |z| variables, m equality constraints and p inequality constraints,
these conditions are [1]

∇ f (z∗) +
m∑

j=1

λ j∇g j(z∗) +
p∑

k=1

μk∇hk(x∗) = 0 (12)

g j(z∗) = 0, j = 1, 2, ..,m (13)
hk(z∗) ≤ 0, k = 1, 2, .., p (14)
μkhk(z∗) = 0, k = 1, 2, .., p (15)

μk ≥ 0, k = 1, 2, .., p (16)

Where equation 12 represents equilibrium between the gradients of the objective function and the active
constraints. Equations 13 and 14 represent the feasibility of the solution in the optimum point z∗. Equa-
tion 15 represent the complementarity conditions (i.e. μk = 0 or hk(z∗) = 0). Finally, equation 16
represents dual feasibility.
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Condition 16, establishes the Lagrange multipliers non negativity property. If the Lagrange multiplier
was a negative, then z∗ is within the feasible region, not at the boundary, and is even feasible to improve the
objective function. Therefore, we can conclude that its corresponding constraint is not active anymore. This
condition will be exploited to discriminate the active from the non active parts of the graph.

5. Algorithms

Let us define two boolean variables, isLBg and isUBg for each generator g. Equation 17 controls the
lower bound represented by isLBg

isLBg ←
⎧⎪⎪⎨⎪⎪⎩

true, si pg < �p� ∧ ¬isLBg

f alse, si ρg < 0 ∧ isLBg
(17)

whereas Equation 18 controls the upper bound given isLBg

isUBg ←
⎧⎪⎪⎨⎪⎪⎩

true, si pg > �p� ∧ ¬isUBg

f alse, si ρg < 0 ∧ isUBg
(18)

Both variables are initialized to f alse. Two algorithms will be defined: the first one ReduceIt(xi, xi−1),
algorithm 1, will reduce the graph applying the procedure described in Figures 3 and 4; and the second one
ResolveIt(xi, xi−1), algorithm 2, will solve the graph applying equations 8, 10, and 9, depending on the
actual node to be solved.

Algorithm 1 ReduceIt(G, λ)
for all g ∈ G do

if isLBg or isUBg then

if isLBg then

reduce(pg, ρg)
reduce(pg, λ)
reduce(λ, ρg)

else

reduce(pg, ρg)
reduce(pg, λ)
reduce(λ, ρg)

end if

end if

end for

Finally, the algorithm 3, main, will apply iteratively the algorithms reduceIt and solveIt until a conver-
gence criterion is achieved.

6. Study Case

In this section a three generators case will be analyzed. The Table 2 provides the data for this system.
In the search of clarity, the graph will only show the Δx values, in the lower semicircle of the node, as

well as the values for the variables x in each iteration, next to the node. Starting with the graph shown in
Figure 5, in this case all the constraints are assumed non actives.

Using algorithms 1 and 2, the graph values shown in Figure 6 are obtained.
In Figure 6 generator 1 power exceeds its maximum power whereas generator 3 power does not satisfy

its minimum power. The upper constraint in generator 1 has to be activated as well as the lower constraint
in generator 3. It is necessary a new iteration, but the graph will have new parts to include the constraints,
as Figure 7 shows.
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Algorithm 2 SolveIt(G, λ)
solve(λ)
for all g ∈ G do

if isLBg o isUBg then

if isLBg then

solve(ρg, λ)
ρg ← ρg + Δρg

solve(pg, ρg, λ)
pg ← pg + Δpg

if ρg < 0 then

isLB← F
end if

else

solve(ρg, λ)
ρg ← ρg + Δρg

solve(pg, ρg, λ)
pg ← pg + Δpg

if ρg < 0 then

isUB← F
end if

end if

else

if pg < �pg� then

isLB← T
else

if pg > �pg� then

isUB← T
end if

end if

end if

end for

Algorithm 3 main(G, λ)
Begin z
repeat

Evaluate ∇(L(z))
reduceIt(G, λ)
solveIt(G, λ)

until Convergence achieved

generador α β γ �p� �p�
1 459 6.48 0.00128 150 600
2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 250

Table 2. System components’ data
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Fig. 5. Initial Graph
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Fig. 6. Graph resolved first iteration
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Fig. 7. Initial graph, second iteration
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Using algorithms 1 and 2, the new graph values are showed in Figure 8.
Figure 8 shows generator 1 is at its maximum value whereas generator 3 at its minimum value and ρ3

is negative. Therefore, according to KKT condition 16, this constraint must not remain active. Another
iteration with a new graph topology, as shown in Figure 9, has to be applied.
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3Δp

Δλ

p2 =200
p3 =50

ρ1

λ=

p1
=600

=

1
=

=

= =

=0.61

8.626

Fig. 9. Initial graph, third iteration

Applying algorithms 1 and 2, the new graph values are showed in Figure 10.
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Fig. 10. Graph solved, third iteration

As it can be seen in Figure 10 the lower bound for generator 3 has been eliminated. Furthermore, as the
Δ’s are different than zero, it is necessary to apply a new iteration, with the same topology that is showed in
figure 11.
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3Δp

Δλ
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=
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=

= =

=0.56

8.576

Fig. 11. Initial graph, fourth iteration

Again, applying the algorithms 1 and 2, the new graph values are showed in Figure 12.
As it can be seen in Figure 12 all the Δ’s are zero, therefore it is not necesary to apply another iteration

i.e. convergence has been reached.
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Fig. 12. Graph solved, fourth iteration

7. Results

For the sake of completeness, in this section the results previously discussed are shown via some con-
vergence curves. Figure 13, shows the convergence for p1, p2, and p3, Figure 14, shows the convergence
for the dual variables i.e. λ, ρ1, and ρ3. Finally, Figure 15, shows the production functions behavior. It
has to be highlighted the time a dual variable lives within the process, if ever. For instance, as shown in
Figure 13, ρ1 lives from iteration 2 to the end of the process while ρ3 has a short period of life of only one
iteration. Furthermore ρ1, ρ2, ρ2, and ρ3 did not appear in the solution process at all. This has implications
of efficiency in time and memory which are not addressed by actual solvers at all.

Fig. 13. p1, p2, and p3 convergence.

8. Conclusions

In this document, a new elimination scheme has been presented. Under this scheme the graph reduction
process is granted to be free of singularities as non zero pivots are always chosen. To this end, an example
of how to use a graph reduction for the Economical Dispatch Problem has been presented. This has been
done introducing a topological model for the Newton step using its graph-based model. This graph model
is multilayer with only one kind of variables per layer: dual variables, decision variables, and dual bound
variables for the variables. Starting with an initial graph topology, this topology evolves along the solution
process in accordance with the actual solution of the problem. Even though there are methods that use the
dispersity of the matrix, this is not done in a dynamic way, i.e. they only use the initial model but without
the layer structure and the evolving characteristic. Therefore, it can be concluded that this representation
and and its graph solution process exploits dispersity of the system at the maximum with its the respective
computational savings.
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Fig. 14. λ, ρ1, and ρ3 convergence.

Fig. 15. C1(p1),C2(p2), and C3(p3) convergence.
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