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Abstract

This work studies global exponential stability of impulsive delay differential systems. By employing the Razumikhin technique
and Lyapunov functions, several global exponential stability criteria are established for general impulsive delay differential
equations. Our results show that delay differential equations may be exponentially stabilized by impulses. An example and its
simulation are also given to illustrate our results.
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1. Introduction

Impulsive delay differential equations arise in many applied fields such as control technology, communication
networks, and biological population management and hence they have attracted considerable attention. See [1–4,6,
9–13] and the references therein. In recent years, stability of differential equations has been extensively studied. One
of the most investigated problems in the stability analysis of such systems is exponential stability since it has played
an important role in many areas such as designs and applications of neural networks and synchronization in secure
communication [5,7,8].

On the other hand, various methods, such as LMI tools, Laplace transform, and Lyapunov functional or function
methods (combined with the Razumikhin technique) and so on, have been successfully utilized in the investigation of
exponential stability; see [1,4–6,12] for example. And the well-known Razumikhin technique has been successfully
applied in the study of asymptotic and exponential stability of impulsive delay differential equations; see [9–13] and
relevant references cited therein. However, to the best of our knowledge, there have been few results obtained for
impulsive exponential stabilization of delay differential equations [8,13]. The aim of this work is to establish global
exponential stability criteria for impulsive delay systems by employing the Razumikhin technique which illustrate that
impulses do contribute to the stabilization of some delay differential systems.
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2. Preliminaries

Given a constant τ > 0, we equip the linear space PC([−τ, 0],Rn) with the norm ‖ · ‖τ defined by ‖ψ‖τ =

sup−τ≤s≤0 ‖ψ(s)‖.
Consider the following impulsive system:

x ′(t) = F(t, xt ), t 6= tk,
1x(tk) = Ik(tk, xt−k

), k ∈ N ,

xt0 = φ,

(2.1)

where F, Ik : R+× PC([−τ, 0],Rn) → Rn
;φ ∈ PC([−τ, 0],Rn); 0 ≤ t0 < t1 < t2 < · · · < tk < · · ·, with tk → ∞

as k → ∞; 4x(t) = x(t)−x(t−); and xt , xt− ∈ PC([−τ, 0],Rn) are defined by xt (s) = x(t +s), xt−(s) = x(t−+s)
for −τ ≤ s ≤ 0, respectively.

In this work, we assume that functions F, Ik, k ∈ N , satisfy all necessary conditions for the global existence and
uniqueness of solutions for all t ≥ t0 [2]. Denote by x(t) = x(t, t0, φ) the solution of (2.1) such that xt0 = φ. We
further assume that all the solutions x(t) of (2.1) are continuous except at tk, k ∈ N , at which x(t) is right continuous,
i.e., x(t+k ) = x(tk), k ∈ N .

Definition 2.1. Function V : R+ × Rn
→ R+ is said to belong to the class ν0 if

(i) V is continuous in each of the sets [tk−1, tk) × Rn and for each x ∈ Rn, t ∈ [tk−1, tk), k ∈ N ,
lim(t,y)→(t−k ,x)

V (t, y) = V (t−k , x) exists; and

(ii) V (t, x) is locally Lipschitzian in all x ∈ Rn , and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.2. Given a function V : R+ × Rn
→ R+, the upper right-hand derivative of V with respect to system

(2.1) is defined by

D+V (t, ψ(0)) = lim sup
h→0+

1
h

[V (t + h, ψ(0)+ hF(t, ψ))− V (t, ψ(0))],

for (t, ψ) ∈ R+ × PC([−τ, 0],Rn).

Definition 2.3. The trivial solution of system (2.1) is said to be globally exponentially stable if there exist some
constants α > 0 and M ≥ 1 such that for any initial data xt0 = φ

‖x(t, t0, φ)‖ ≤ M‖φ‖τ e−α(t−t0), t ≥ t0,

where (t0, φ) ∈ R+ × PC([−τ, 0],Rn).

3. The Lyapunov–Razumikhin method

In this section, we shall present some Razumikhin-type theorems on global exponential stability for system (2.1)
based on the Lyapunov–Razumikhin method. Our results show that impulses play an important role in stabilizing
delay differential systems.

Theorem 3.1. Assume that there exist a function V ∈ ν0 and constants p, c, c1, c2 > 0 and α > τ , λ > c such that

(i) c1‖x‖
p

≤ V (t, x) ≤ c2‖x‖
p, for any t ∈ R+ and x ∈ Rn;

(ii) D+V (t, ϕ(0)) ≤ cV (t, ϕ(0)), for all t ∈ [tk−1, tk), k ∈ N, whenever qV (t, ϕ(0)) ≥ V (t + s, ϕ(s)) for
s ∈ [−τ, 0], where q ≥ e2λα is a constant;

(iii) V (tk, ϕ(0)+ Ik(tk, ϕ)) ≤ dk V (t−k , ϕ(0)), where dk > 0, ∀k ∈ N, are constants;
(iv) τ ≤ tk − tk−1 ≤ α and ln(dk)+ λα < −λ(tk+1 − tk).

Then the trivial solution of the impulsive system (2.1) is globally exponentially stable and the convergence rate is
λ
p .
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Proof. Choose M ≥ 1 such that

c2‖φ‖
p
τ < M‖φ‖

p
τ e−λ(t1−t0)e−αc < M‖φ‖

p
τ e−λ(t1−t0) ≤ qc2‖φ‖

p
τ . (3.1)

Let x(t) = x(t, t0, φ) be any solution of system (2.1) with xt0 = φ, and v(t) = V (t, x). We shall show

v(t) ≤ M‖φ‖
p
τ e−λ(tk−t0), t ∈ [tk−1, tk), k ∈ N . (3.2)

We first show that

v(t) ≤ M‖φ‖
p
τ e−λ(t1−t0), t ∈ [t0, t1). (3.3)

From condition (i) and (3.1), we have, for t ∈ [t0 − τ, t0]

v(t) ≤ c2‖x‖
p

≤ c2‖φ‖
p
τ < M‖φ‖

p
τ e−λ(t1−t0)e−αc.

If (3.3) is not true, then there must exist some t̄ ∈ (t0, t1) such that

v(t̄) > M‖φ‖
p
τ e−λ(t1−t0) > M‖φ‖

p
τ e−λ(t1−t0)e−αc

> c2‖φ‖
p
τ ≥ v(t0 + s), s ∈ [−τ, 0], (3.4)

which implies that there exists some t∗ ∈ (t0, t̄) such that

v(t∗) = M‖φ‖
p
τ e−λ(t1−t0), and v(t) ≤ M‖φ‖

p
τ e−λ(t1−t0), t0 − τ ≤ t ≤ t∗; (3.5)

and there exists t∗∗
∈ [t0, t∗) such that

v(t∗∗) = c2‖φ‖
p
τ , and v(t) ≥ c2‖φ‖

p
τ , t∗∗

≤ t ≤ t∗. (3.6)

Then we obtain, for any t ∈ [t∗∗, t∗]

v(t + s) ≤ M‖φ‖
p
τ e−λ(t1−t0) ≤ qc2‖φ‖

p
τ ≤ qv(t), s ∈ [−τ, 0], (3.7)

and thus by condition (ii), we get D+v(t) ≤ cv(t) for t ∈ [t∗∗, t∗], and then we have v(t∗∗) ≥ v(t∗)e−αc, i.e.,
c2‖φ‖

p
τ ≥ M‖φ‖

p
τ e−λ(t1−t0)e−αc, which contradicts (3.1). Hence (3.3) holds and then (3.2) is true for k = 1.

Now we assume that (3.2) holds for k = 1, 2, . . . ,m (m ∈ N , m ≥ 1), i.e.

v(t) ≤ M‖φ‖
p
τ e−λ(tk−t0), t ∈ [tk−1, tk), k = 1, 2, . . . ,m. (3.8)

From condition (iii) and (3.8), we have

v(tm) ≤ dmv(t
−
m )

< e−λαe−λ(tm+1−tm )M‖φ‖
p
τ e−λ(tm−t0)

< M‖φ‖
p
τ e−λ(tm+1−t0). (3.9)

Next, we shall show that (3.2) holds for k = m + 1, i.e.

v(t) ≤ M‖φ‖
p
τ e−λ(tm+1−t0), t ∈ [tm, tm+1). (3.10)

For the sake of contradiction, suppose (3.10) is not true. Then we define

t̄ = inf{t ∈ [tm, tm+1)|v(t) > M‖φ‖
p
τ e−λ(tm+1−t0)}.

From (3.9), we know t̄ 6= tm . By the continuity of v(t) in the interval [tm, tm+1), we have

v(t̄) = M‖φ‖
p
τ e−λ(tm+1−t0) and v(t) ≤ M‖φ‖

p
τ e−λ(tm+1−t0), t ∈ [tm, t̄]. (3.11)

From (3.9), we have

v(tm) < e−λαM‖φ‖
p
τ e−λ(tm+1−t0) < v(t̄),

which implies that there exists some t∗ ∈ (tm, t̄) such that

v(t∗) = e−λαM‖φ‖
p
τ e−λ(tm+1−t0) and v(t∗) ≤ v(t) ≤ v(t̄), t ∈ [t∗, t̄]. (3.12)
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Then we know t + s ∈ [tm−1, t̄] for t ∈ [t∗, t̄] and s ∈ [−τ, 0] since τ ≤ tk − tk−1 ≤ α. By (3.8) and (3.11), we get,
for t ∈ [t∗, t̄],

v(t + s) ≤ M‖φ‖
p
τ e−λ(tm−t0)

= M‖φ‖
p
τ e−λ(tm+1−t0)eλ(tm+1−tm )

≤ eλαM‖φ‖
p
τ e−λ(tm+1−t0)

= e2λαv(t∗) ≤ qv(t), s ∈ [−τ, 0].

Then from condition (ii), we get D+v(t) ≤ cv(t); since λ > c, we have, from (3.12)

v(t̄) ≤ v(t∗)eαc
= e−λαM‖φ‖

p
τ e−λ(tm+1−t0)eαc < v(t̄),

which is a contradiction. This implies the assumption is not true, and hence (3.2) holds for k = m + 1. Thus by
mathematical induction, we obtain that (3.2) holds, and hence we have

v(t) ≤ M‖φ‖
p
τ e−λ(t−t0), t ∈ [tk−1, tk).

Then by condition (i), we get

‖x‖ ≤ M∗
‖φ‖τ e−

λ
p (t−t0), t ∈ [tk−1, tk), k ∈ N ,

where M∗
≥ max{1, [ M

c1
]

1
p }; this implies that the trivial solution of system (2.1) is globally exponentially stable with

convergence rate λ
p . �

Remark 3.1. If the condition λ > c is removed in Theorem 3.1, then we have to require q ≥ max{eαc, e2λα
} in

condition (ii) and condition (iv) to be strengthened. The details are stated in the following result whose proof is
similar and thus omitted.

Theorem 3.2. Assume that there exist a function V ∈ ν0 and constants p, c, c1, c2, λ > 0 and α > τ such that

(i) c1‖x‖
p

≤ V (t, x) ≤ c2‖x‖
p, for any t ∈ R+ and x ∈ Rn;

(ii) D+V (t, ϕ(0)) ≤ cV (t, ϕ(0)), for all t ∈ [tk−1, tk), k ∈ N, whenever qV (t, ϕ(0)) ≥ V (t + s, ϕ(s)) for
s ∈ [−τ, 0], where q ≥ max{eαc, e2λα

} is a constant;
(iii) V (tk, ϕ(0)+ Ik(tk, ϕ)) ≤ dk V (t−k , ϕ(0)), where dk > 0, ∀k ∈ N, are constants;
(iv) τ ≤ tk − tk−1 ≤ α and ln(dk)+ (λ+ c)α < −λ(tk+1 − tk).

Then the trivial solution of the impulsive system (2.1) is globally exponentially stable and the convergence rate is
λ
p .

Remark 3.2. It is well known that, in the stability theory of delay differential equations, the condition D+V (t, x) ≤

cV (t, x) allows the derivative of the Lyapunov function to be positive which may not even guarantee the stability of a
delay differential system (see [9,13] and Example 4.1). However, as we can see from Theorems 3.1 and 3.2, impulses
have played an important role in exponentially stabilizing a delay differential system.

Next, we shall apply the previous theorems to the following linear impulsive delay system:
ẋ(t) = Ax(t)+ Bx(t − τ(t)), t ∈ [tk−1, tk),
1x(t) = Ck x(t−), t = tk, k ∈ N ,
xt0 = φ,

(3.13)

where t − τ(t) is strictly increasing on R+ and 0 ≤ τ(t) ≤ τ .

Corollary 3.1. Suppose there exist some constants α, λ > 0 such that

(i) for some constant q ≥ e2λα , λmax(A)+ q
1
2 ‖B‖ < λ

2 ;
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(ii) τ ≤ tk − tk−1 ≤ α and

ln‖I + Ck‖ +
λα

2
< −

λ

2
(tk+1 − tk). (3.14)

Then system (3.13) is globally exponentially stable and its convergence rate is λ
2 .

Proof. It follows from Theorem 3.1 on choosing V (x) = ‖x‖
2.

Corollary 3.2. Suppose there exist some constants α, λ > 0 such that

(i) there exists some constant q > 0 such that q ≥ max{ecα, e2λα
}, where c = 2(λmax(A)+ q

1
2 ‖B‖);

(ii) τ ≤ tk − tk−1 ≤ α and

ln‖I + Ck‖ +
α

2
(λ+ c) < −

λ

2
(tk+1 − tk). (3.15)

Then system (3.13) is globally exponentially stable and its convergence rate is λ
2 .

Proof. It follows from Theorem 3.2 on choosing V (x) = ‖x‖
2. �

4. An example

In this section, we give an example and its simulation to illustrate our results.

Example 4.1. Consider the following linear impulsive delay system:
ẋ(t) = Ax(t)+ Bx

(
t −

1
40
(1 + e−t )

)
, t 6= k

1x(t) = Ck x(t−), t = k, k ∈ N ,
xt0 = φ,

(4.1)

where

A =

0.1 0.2 −0.1
0.2 0.15 0.3
0 0.24 0.1

 , B =

−0.12 0.03 0
0.12 −0.2 0.05

0 0.14 −0.1


and

Ck =

−0.5 0 0
0 −0.8 0
0 0 −0.4

 .
Then λmax(A) = 0.4388, ‖B‖ = [λmax(B BT )]

1
2 = 0.2905 and ‖I + Ck‖ = 0.6. Choosing q = 2, λ = 1.7, τ =

0.05, α = 0.2, we find that the conditions of Corollary 3.1 hold:

(i) q = 2 ≥ e2λα
= 1.9739, λmax(A)+ q

1
2 ‖B‖ = 0.8496 < λ

2 = 0.85;

(ii) 0.05 = τ ≤ tk − tk−1 ≤ α = 0.2, ln‖I + Ck‖ +
λα
2 = −0.6808 < −

λ
2 (tk+1 − tk) = −0.17.

Thus by Corollary 3.1, we know that the trivial solution of (4.1) is globally exponentially stable with convergence
rate 0.85.

Furthermore, we can also find that the conditions of Corollary 3.2 hold:

(i) c = 2(λmax(A)+ q
1
2 ‖B‖) = 1.6992, q = 2 ≥ max{ecα, e2λα

} = 1.9739;
(ii) 0.05 = τ ≤ tk − tk−1 ≤ α = 0.2, ln‖I + Ck‖ +

(λ+c)α
2 = −0.1709 < −

λ
2 (tk+1 − tk) = −0.17.
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Fig. 1. Impulse-stabilized system.

Fig. 2. System without impulses.

Then we know from Corollary 3.2 that the trivial solution of (4.1) is globally exponentially stable with convergence
rate 0.85.

The numerical simulation of this impulsive delay differential equation with the initial function (3.7H(t),−2.1H(t),
2.502H(t))T , where H(t) is the Heaviside step function, is given in Fig. 1; the graph of the solution of the correspond-
ing system without impulses is given in Fig. 2.

Remark 4.1. As we see from the above pictures, the trivial solution of system (4.1) without impulses is unstable;
however, after impulsive control, the trivial solution becomes globally exponentially stable. This implies that impulses
may be used to exponentially stabilize some delay differential systems.
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