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Abstract

From the constellation mentioned in Jones andst§d (J. Comput. Appl. Math. 105 (1999) 51-91) we have
choserorthogonality of polynomialandmoment problemenriching them wittoperator theoryapparatus. Thus
this essay resumes the theme of Szafraniec (J. Comput. Appl. Math. 49 (1993) 255) and culminates in updating it
with the results of Stochel and Szafraniec (J. Funct. Anal. 159 (1998) 432).
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1. Assorted examples

The general formnot normalizedsay, of the recurrence relation for polynomials orthogonal on the
real line is

Pn+1=(ApnX + By)pn — Cypp—1, n= 0,1,.... (1)

with A,’s and C,’s being positive; for shortening the expression we make the innocent assumption:
p—1 = 0. Pretty often there is a need to normalize the polynomials in this or another way (sometimes to
have them monic, sometimes &f2-norm 1, for instance). This always reflects the eventual form of the
relation; for the orthonormal case it becomes symmetric, that is the associated matrix is Jacobi. A similar
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behaviour can be recognized in the other classical case, the unit circle one. In what follows we illustrate
our intentions by special cases.

1.1. Hermite polynomials

The sequence of polynomia]#/, },, satisfy thethreeterm recurrence
2XH,=Hy41+2nH,_1, n=0,1.... (2)

The normalizatiork, = (2"n!)~Y/2 H, makes the relatiosymmetriqthe associated tridiagonal matrix is
symmetric, hence Jacobi):

Xhy=/3(n+Dhys1+/3nha_1, n=01.... 3)

Another normalizations? = b, (A)~Y/2H,, where, for 0< A < 1,

/A [ 1+ A\"
2 n!

b =1"4\*124

brings relation (2) to the form

[1+A [1-A

This recurrence isi0 longersymmetric. However, they both lead to orthonormal sequences: the first,
for {h,},, benefits from the very classical orthonormality otfez real linewith respect to the Gaussian
measure; the latter, fdh2},, does it ovethe complex planaccording to (cf[5])

f hA (2)hA(z) exp[—(l — A)x?— (% — 1) y2i| dedy=0,, z=x-+iy.
C

1.2. The monomials

Though the monomialg, d Z",n=0,1,..., are never orthogonal on the real line, they enjoy a
lot of orthogonality possibilities over the complex plane (including that over the unit circle). They are
orthogonal with respect to any radially invariant measur€ ohheir recurrence is the simplest possible,
theone-ternrelation

an:pn+17 n:o,l,-...
Normalization calls upon introducing some coefficients in the above like
an=0‘npn+1, fl=0, 1,

and it allows a unique orthonormal solution with a rotationally invariant orthogonality measure if and
only if {Jag- - - oy |2},‘§O:O is a Stielties moment sequence. The set of orthogonality measures may be pretty
sizable and, among them, measures which are not rotationally invariant may appear as well.
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1.3. Newton polynomials

This is the case when the recurrence relation tsvofterms The polynomials are defined, with> 0,
as
if n=0,

1
h oy df ) 1) (r —
Nj(z)={ I'hn! z(z—1---(z—n+1) if n>1,

I'(h 4+ n) n!

and their recurrence is

ZN" =/ + D+ )N+ N n=0,1,... .
They are orthonormal with respect to some measure (of unbounded support) on the complex plane, details

in [3,6].

1.4. Conclusions

1° The same polynomials, the Hermite ones, may have orthogonality measures of rather contrasting
support, though their recurrence relations (3) and (4) are both of the standard forMmT{¢ 2currence
relation for polynomials orthonormal over the complex plane is no longer symmetric and may be of
arbitrary length. 3 Orthonormality is usually in some reproducing kernel Hilbert space of analytic
functions, in which the sequence constitutes a basis, and which is a proper subsefafmace provided
such a space exists (this conclusion is behind the exhibited examples and is disc(is2pd in

2. The core

2.1. From the recurrence to moments. The Hessenberg operator

Suppose we are given a sequenpéjé{pn}n =0 c C[Z] such that deg, =n forn =0,1,....
Therefore{p,}, is a Hamel basis of[Z] and consequently

Zp,=ag,po+ainp1+---+ant1npn+1, n=0,1 ... (5)
with
An+1,n # 0. (6)

This is therecurrence relatiorfor p, which in case of the real line orthogonality reduces to the last three
terms.

Declaring the polynomialg, to be orthonormal means we are going to define an inner produet),,
by extending sesquilinearly

<pmapn>p:5mnv m,n=0,1...; (7)
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this is in fact an inner product becausé a Hamel basis. Completing[ Z] with respect to this inner
product, we come to the Hilbert spac€, in which p becomes an orthonormal basis. Moreover, the
recurrence coefficients can be expressed as

ak.n = (Zpy, Pi)p- (8)
The inner product -, —), determines its moments {cﬁ,n};ﬁnzo by

df
cP =

o =(Z", 2", m,n=0,1,... . (9)
The explicit expression for the moments can be calculated by means of the \t@g&(vg,n, My,
n=20,1,...,which, in turn, can be obtained iterating (5) so as to come toati@rrencerelation

)

tim= Y tim-aaij, foo=1 (10)
j=0

Asa; =0fori <k + 1, the above sum terminates with=i — 1 andt; ,, = 0 fori >m.
The final expression for the moments looks like

00
C,%’n = Z ti,mfi,n (11)
i=0

and the right-hand-side sum terminates with min{m, n}.

Notation:/(z)ﬁ lin{e,; n=0,1,...}, where{e, }>°, is the canonical zero—one basis/th Thus/3 is

composed of all sequences with entries equal to 0 but a finite number.
The infinite matrix(a,-j)?j.zo of the coefficients in (5) turns out to be oHessenberg typand it is
apparently of the form

ap0 do1 @02 403

ai0 ai1l ar2 ai3
0 a2y az2 a2z ---|. (12)
0 0 az2 ass

The matrix (12) represeritsa densely defined operatdr, in /2 with Z(Ap), its domain, to be safely
chosen agé. The unitary operatol/ : #p — /2 such that/p, = e, establishes a unitary isomorphism

2The word ‘moments’ as it is used on many occasions in the literature on orthogonal polynomials stands routinely for
a sequence, or less often a multisequence, of numbers, which can be easily attached to a linear or multilinear functional on
polynomials, say; thus when exempted from a deeper context, it means practically very little. We are aware of this contentional
trap; fortunately, our ‘moments’ will gain importance as soon as the integral representation problem enters the game.

3We do not make any distinction between Hessenberg matrices and the corresponding operators defined in this way, once
we know the relationship.
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betweerC[Z] and/Z. Under these circumstances, it is clear that
UMz C ApU,

whereM 7 stands for the operator of multiplication by the independent variabigiwith (M z)=C[ Z],
and, consequently,

Up(Mz) C p(ApU (13)
foranyp € C[Z].

Remark 1. Because (10) can be writttrast,, = Apt,,—1 performing the iteration with the initial vector
to = eg, We can write (11) as

ch.n = (Ap e, Afeo).

2.2. From moments to the recurrence

: . df . . ,
Suppose we are given a matl (¢,,,»),, ,—o Of complex numbers, which is positive definite.

Occasionally we think of it as a bisequence to come closer to what appears in the moment theory; double
live of some objects is sometimes acceptable.

SetG, df def(c; j)l’{ =0 and assume all th€,,’s are positive. Set also

c0 co1 -+ con-1 1
c c s Clp— Z
pgﬂ;det ]:70 ]:71 . 1”:1 1 . ’ nzovlv"'
A/ GnGn—l . . : : :
Ch0 Cpnl - Cpn-1 z"

with Go 9 1. Thenthe sequenap@ﬂ{pg}n is orthonormal with respect to the inner product-). which
extends sesquilinearly

(2", 2N s min=0,1,... (14)

to C[Z].
Remark 2. Here we have arrived upon the point when the two approaches, the present and that of the

preceding section, meet (9) accords with (14). This gives rise to sometimes drop super- or subscripts
indicating the logical path creating the symbols in question; no confusion guaranteed.

4We abandon the usual notation of linear algebra in favour of shapeless operator theory encoding, also because our matrices
are infinite dimensional, therefore operators; cf. footnote 3.
5This sometimes is called positive semidefinite.
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Remark 3. Due to (8), the recurrence coefficienis, can be written down explicitly in a determinantal

way as well. The recurrence, however, may break down (it can hagpan, = 0 for somen). This
corresponds to the situation when soGigis equal to O or, still another way, when the Gram—-Schmidt
orthonormalization loops in. While for orthogonality of analytic polynomials this is not very dramatic
(the case of measures of finite mass points has to be excluded), in the several variable cases it creates
severe problem, cf4].

3. What is necessary
3.1. Some operator theory

A densely defined operat&in a Hilbert space# is said to besubnormalf there is another Hilbert
spacex” which contains# isometrically, and a normal operatrin .#" such thatS c N (this means
2(8) C 9(N) as for their respective domains asid = Nf for f € 2(S)). If E stands for the spectral
measure oN, then

(P(S)f.q(S)g) = A p@q@(E2)f.8) . p.q€CIZ], f. g€ 2(S) (15)

providedSZ(S) C 2(S). This is the part of the spectral theorem subnormal operators inherit from their
normal extensions and it fits in with our need of finding orthogonality measuses ifi, as defined via
the Hessenberg matrix (12) coming from the recurrence (5). Moreover, due to (11), the oggrestor
cyclic® with the cyclic vectoryg. This is a fortunate circumstance and it will help us later on.

The following is a necessary condition for subnormality.

Fact A. Suppos&2(S) C 2(9). If S is subnormal then

k
> (8" £, 8" fu) >0, for any finite sequencgy. ..., fi in Z(S). (16)

m,n=0

The converse is not true!

3.2. The complex moment problem

A bisequence (which we sometimes prefer to see here as an infinite niafrix));,_o is said to be a
complex moment bisequernitéere exists a measugesuch that

Cm,n = / ZmZ”u(dz), m,n=01,... .
C

A result which is parallel to Fact A is as follows.

6 An operatorSwith invariant domain is calledyclic with a cyclic vectorfy if 2(S) = lin{p(S) fo; p € C[Z]}.



F.H. Szafraniec / Journal of Computational and Applied Mathematics 179 (2005) 343—-353 349

FactB. If {cm,,,};ﬁn:o is a complex moment bisequentieen

k

> CmtgnipEmnép.q >0 for any finite bisequence,, ,}y, ,—o in C. (17)
m,n,p,q=0

The converse is not true either!

3.3. Thelink
The interrelation between subnormality and the complex moment problem is simple and very useful.

Fact C (Stochel and Szafranig¢€]). A cyclic operator S with a cyclic vectgp is subnormal if and only
if {(S™ fo, S" fo)}oy n—o IS @ COMplex moment bisequence

Any solution to either of these two affects the other. We are going to exploit this kind of brotherhood
in the sequel: either the Hessenberg operagdthe recurrence relation) or the would-be moments will
be examined so as to squeeze out of it representing measures to exist. One has to point out that they ar
both very resisting objects. Anyway, we can establish the following.

Link. Given a polynomial sequenpe={p,}, with deg p,, = n, the following conditions are equivalent

(i) the operatorA, is a subnormal operator with a cyclic vectey;
(ii) there is a measurg on C such thatp is a sequence of polynomials orthonormal with respegt to
(iii) cpis a complex moment sequence

Proof. Supposedp andA is subnormal an& is the spectral measure of some of its normal extensions
in 27", say. Then, due to (15), (13) and (7), we have

/C Pm(2) pn(2)u(dz) = /@ Pm(2) pn(2)(E(dz)eo, €0) »» = (pm(Ap)eo, pn(Ap)eo) 2

= (Up,,(M2)U teq, Up,(Mz)U eq) 2
= (Pm(MZ)L Pn(MZ)]-)p = (Pn» pn)p

= 5m,n

wherepu d (E(-)eq, eo). This establishes (ii).

Suppos@ is orthonormal in some?? (). Denote byM’, the operator of multiplication bg in L2(w);
Mg is densely defined as functions of compact support are dengé(in, it is apparently normal. Let
ViAHp—> #2(u) be the inclusion mapping which is an isometry with respect to the corresponding norms
(this is so due to orthonormality @). ThenV Mz c M4,V. By (13), we haveV U~1A, c MLVvU L.
Because/ U1 is an isometry of? into #2(y), after proper identification we get subnormalityAf.

The equivalence of (i) and (iii) is the matter of Fact Q.
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Remark 4. If one wants to go the other way around, starting from the (prospective) moments getting to
orthonormality, the alike link is easy to state and to prove.

4. What is sufficient
4.1. Non-iterative methods

Here are some results which do not need higher powers of the Hessenberg operator to get involved or
are based on a very truncation of the complex moment problem.

Our first approach is based on a deep-rooted theorem of Bighpddr a more contemporary proof
and a much extended version of it, §&8]). It can be viewed as a sort of approximation result.

Theorem 5. Given an infinite Hessenberg matux= (4, ;); ;. Then the operator A is subnormal&nd

only if) for everye > 0 and for every finite subset | ¢0, 1, ...} there is an infinite Hessenberg matrix
A= (af,j)i,j which as an operator is subnormal and such that

o0
Z laj , — airl®><e i€l (18)

k
Proof. Condition (18) implies thatd’ is in a strong operator topology neighbourhoodfofThe rest

follows from the aforesaid result of BishopO

Denote byiNT the collection of all polynomial sequences which are orthonormal in sgfepace.
Then a more explicit version of Theorem 5 follows.

Corollary 6. Given a sequence of polynomialsatisfying(5) and(11),p € INT if (and only i) for every
¢ and for every finite subset | ¢, 1, ...} there isp’ € INT with the recurrence relation

/ / / / / / ! !
an =dpPo + ay nP1 +ee Tt An1nPny1r M= 0,1..., Ant1n 70

such that(18) holds

The next result is of different nature, though still no higher power of the Hessenberg is required. It, in
turn, relies on the Markoff—-Kakutani fix point.

Theorem 7 (Szafranied11]). Given a Hessenberg matrix fhe operator A is subnormal {&nd only
if) there is a family{y ¢} - 2 of positive measures satisfying

W)= [ 2. mon=0.1
C
and such that

Hfye + 1o — 21y is @ positive measure for everyy g € /(2).
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In terms of ‘moments’, it takes the following form. First notation: et {c;u,n },,,,_o @nd a polynomial
P=>"1i0 pijZ'Z7, set

n
df
Cmn(p) = E Di,jCm+in+j, m,n=0/1....
i,j=0

Corollary 8. ¢ is a complex moment bisequence if and only if there is a famjily, ., ; 7, of measures
satisfying

Cm,n(p):/ 2"7"ny(dz), m,n=0,1 (19)
C

and such that

Hptg t Hp—q — 21, is @ positive measure for evepy, g € C[Z, 7. (20)

The point here is that one has to solve a familywefy truncateccomplex moment problems of the
form (19) which can be solved numerically leading to measurewith finite mass points. The only
constraint is for them to fulfil the consistency condition (20). The same refers to Theorem 7.

4.2. lterative methods

By this we mean results which involve all the powers of the Hessenberg operator in question or need
to solve the whole complex moment problem. To calculate powers of an infinite matrix is an iterative
process in matrix multiplication. It may not be an easy task in general, but for those who are lucky enough
it may become a delightful way to proceed.

Actually, what we want to do here is to try to reverse Fact A or Fact B, depending on circumstances.
One case is relatively simple, that of bounded support.

Theorem 9. Given a sequence of polynomiglsatisfying(5) and(11),p € INT if Ap satisfieg16) on
/% and

o
> lak.al* < M with M independent ok =0, 1, ... . (21)
n=0

The orthonormality measure is unigue and compactly supported

Proof. Condition (21) guarantees the operatigyto be bounded, which together with (16) ensures its
subnormality, cf[2]. Now Link makes the conclusion.O

For the moment approach we have a necessary and sufficient conditif@106f.

Theorem 10. c is a complex moment sequence with a unique compactly supported measure if and only
if it satisfies(17) and for some nonnegative a and

|Cm,n|<a05m+n, m,n=0,1,....



352 F.H. Szafraniec / Journal of Computational and Applied Mathematics 179 (2005) 343-353

A solution (in fact, one of the two) which is [8] gives a complete characterization of complex moment
bisequences and, in parallel, of unbounded subnormal. Let us state it for the moment probl@n, see
Theorem 1] the operator version, which would be applicable to the Hessenberg matrix, is tfgat of
Corollary 36]

Theorem 11. A sequencéc,, »}o,_o C C is a complex moment sequence if and only if there exists
{Cmn)pin—o C C such that

Cm,n =6m’n fOf m,n =0, 1,
and

Z Cmtqntplmntpq =0 for any finite{ A nlminso C C. (22)

m+n >0
p+q>0

The perspective€ondition (17) allows one to extend the inner product—),, from C[Z] to C[Z, 71,
which is the background for further analysis. This brings up a question of completing the sequence
and the recurrence relation (5) and (11) at once, to a sequence (or rather a doubly indexed sequence) o
polynomials fromC[Z, Z] to a Hamel basis therein; this would result in completing the aforementioned
recurrence as well.

Condition (22) calls for further extension: complete the above to polynomialgift\{0} andw € T,
which are of the form

. ' k
Z O‘m,nzmzn + Z ﬁk,lbk+l,0w s Om,ns ﬁk,l eC,
m+n=0 k+1>0

wheredyy; o is the Kronecker symbol; this is a suggestion which comes out fByrRemark 7] The
problem of how to implement this is challenging. Anyway, it comes close to the frontier ddibilatus
research terrain.
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