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Abstract

An embedded pair of exponentially fitted explicit Runge—Kutta (RK) methods for the numerical integration
of IVPs with oscillatory solutions is derived. This pair is based on the exponentially fitted explicit RK method
constructed in Vanden Berghe et al., and we confirm that the methods which constitute the pair have algebraic
order 4 and 3. Some numerical experiments show the efficiency of our pair when it is compared with the
variable step code proposed by Vanden Berghe et al. (J. Comput. Appl. Math. 125 (2000) 107). (© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last decade, a great interest in the research of new methods for the numerical integration
of initial value problems

V=71@y), )=y, (1)

whose solution exhibits a pronounced oscillatory character has arisen. Such problems often arise in
different fields of applied sciences such as celestial mechanics, astrophysics, electronics, molecular
dynamics, and so forth; and they can be solved by using general purpose methods or using codes
specially adapted to the structure or to the solution of the problem. In the case of specially adapted
methods, particular Runge—Kutta (RK) algorithms have been proposed by several authors [1,2,4—7]
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in order to solve these classes of problems. A pioneer paper is due to [2], in which adapted RK
algorithms with 3 and 4 stages for the integration of ODEs with oscillatory solutions are presented.
More recently, Paternoster [4] considers the construction of RK and RK—Nystrom methods which
integrate trigonometric polynomials exactly. This author derives a family of two-stage RK methods
with trigonometric order 1 which present algebraic order up to 3, but the main handicap of these
methods is that they are fully implicit. Next, Simos and coworkers [1,5] constructed explicit RK
methods which integrate certain first-order initial value problems with periodic or exponential solu-
tions. On the other hand, Vanden Berghe et al. [6,7] introduced another exponentially fitted explicit
RK method which integrates exactly first-order systems whose solutions can be expressed as linear
combinations of functions of the form {e”,e~*} or {cos(wt),sin(wt)}. In addition, these authors
have implemented a variable step code by using their four-stage exponentially fitted explicit RK
method [7] with error and step length control based on Richardson extrapolation.

Here, we derive a five-stage embedded pair of exponentially fitted Runge—Kutta (EFRK) methods
which is based on the four-stage explicit EFRK method presented in [6,7]. We confirm that the
methods which constitute the pair have algebraic order 4 and 3, and that this pair corresponds in a
unique way to an algebraic pair: the Zonneveld 4(3) pair [3]. The numerical experiments presented
in Section 3 show the efficiency of our pair when it is compared with the variable step code proposed
in [7].

2. Derivation of the exponentially fitted pair

Vanden Berghe et al. [6,7] constructed an explicit four-stage EFRK method based on the classical
fourth-order RK method. This method is derived in such a way that it integrates exactly differ-
ential systems whose solutions can be expressed as linear combinations of the set of functions
{exp(it),exp(—At)} or equivalently {sin(wt),cos(wt)} when A = iw, w € R. This means that the
stage equations and the final step equation have to integrate exactly these sets of functions (see [4]).
In order to carry out this goal, Vanden Berghe et al. [6] have modified the classical explicit RK
methods in the following way:

g1 = Vs
i—1

gi = 1@y + 1> ay@) [ty + cihgy), =28 (2)
j=1

Yui1 = Ya+h Y b2 f (4 + ¢;hgy),  z=Ih. (3)

i=1

These authors introduce the factors y; in the stage definition so that the family of functions
{exp(/it),exp(—At)}, or equivalently {sin(wt),cos(wt)}, can be integrated exactly by method (2)—
(3). So, with the above conditions and the additional requirement that Eq. (3) is exact whenever
f(t,y) is 1 or t, Vanden Berghe et al. [6,7] have obtained their four-stage explicit EFRK method.
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2.1. The embedded pair

Now our interest is focused on the construction of an embedded pair of explicit EFRK methods
based on the above mentioned EFRK method [6,7]. In order to avoid numerical difficulties when
the parameter z is small, we impose that for z — 0 the pair of EFRK methods reduces to a classical
RK4(3) pair. This imposition implies that at least five stages are required and therefore we consider
the following table:

0 1 0

% cosh(z/2) %2/2) 0

1 1 0 tanh(z/2) 0

2 cosh(z/2) z

1 1 0 0 16smfh(z/2) 0

3 1 asi(z) asy(z) as3(z) asq(z) 0
bi(z) by(z) b3(z) by(2) 0
bi(2) ba(2) b3(2) ba(2) bs(z)

with

by(z) = ba(z) = 2sinh(z/2) — z bo(z) = bi(z) zcosh(z/2) — 2 sinh(Z/Z)'

2z(cosh(z/2) — 1)’ 2z(cosh(z/2) — 1)

The fifth stage and the weights b;(z) are introduced in order to obtain another explicit EFRK
method so that ||y,1 — 7,,,|| becomes a local error estimation at each step with a computational
cost smaller than the technique based on Richardson extrapolation.

Imposing that the new method integrates exactly the family of functions {exp(At),exp(—A¢)} and
that Eq. (3) is exact whenever f(¢,y) is 1, their coefficients satisfy the following five equations:

(by + bs) sinh(z/2) + by sinh(z) + bs sinh(3z/4) = (cosh(z) — 1)z,
by + (by + bsy) cosh(z/2) + by cosh(z) + bs cosh(3z/4) = sinh(z)/z,
by + by + by + by + bs =1,

(asy + as3) sinh(z/2) + asq sinh(z) = (cosh(3z/4) — 1)/z,

as) + (asy + as3) cosh(z/2) + as4 cosh(z) = sinh (3z/4)/z. 4)

Eqs. (4) leave four degrees of freedom in the determination of the weights b; and the coefficients
as;. Inspired by the classical Zonneveld 4(3) pair (cf. [3]), we choose the parameter values

T T _ 16 _ s _ 7
by=b;, bs=—3, asi1=3, an=7x;
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and the remaining coefficients are given by

3 — 3cosh(z) — 32z sinh(z/4) + 19z sinh(z/2)

hz) = 6z sinh(z/2) — 3z sinh(z) :
by(z) = —16z cosh(z/4) 4+ 19z cosh(z/2) — 6 sinh(z/2)
W= 12z sinh?(z/4) ’
5 3 —3cosh(z) + 16zsinh(z/4) + 19z sinh(z/2) — 16z sinh(3z/4)
4(2) = 6z sinh(z/2) — 3z sinh(z) ’
_ 32cosh(z/4) — 32 cosh(z) + 7z sinh(z/2) + 5z sinh(z)
a53(2) = = 32z sinh(z/2) ’
5z — 32 coth(z/2) + [16/sinh(z/4)]
asa(z) = )

32z

For z — 0 the EFRK pair obtained reduces to the well-known classical Zonneveld 4(3) pair. In
addition, the trigonometric form for this EFRK pair emerges having in mind the relations: cosh(iv)=
cos(v) and sinh(iv) = isin(v).

2.2. Algebraic order of the EFRK pair

As it can be observed, the coefficients of the EFRK pair derived above do not satisfy the row-sum
conditions usually imposed in the derivation of RK methods. Therefore, the algebraic order conditions
tabulated in [3] are not valid for these methods. Now, the question is to investigate if the methods
which constitute the EFRK pair are also of third and fourth order as in the classical Zonneveld
4(3) pair. In order to answer this question we have followed the way given in [3, pp. 143-148] for
obtaining the terms of the local truncation error for these methods in the case of nonautonomous
first-order differential systems. Having in mind that the parameters of the method are steplength
dependent and, with e = (1,1,1,1,1)T, they satisfy

7(0) =e, 7'(0)=0, 7"(0)=0,...,
AOe=c, A0)=0, A"0)=0,...,

the conditions up to fourth-order are the following ones:
Order 2 requires:

bl(2)e=140@"),  b'(2)e=3+0@E), (5)
Order 3 requires in addition:
bi(z)y"(0) = (%),

b'(z)* =14 0(%),  b'(2)A0)c =1+ 0(), (6)
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Order 4 requires in addition:
b(z)(c-7"(0)) = 0(2),  b'(2)4"(0)e = ((2),

bi(2)® =+ 0(z),  b'(2)(c-A(0)c) = g + O(2),

b (2)A(0)c* = & + U(z), b (2)4*(0)c = & + 0(2). (7)
If we check the conditions (5)—(7), we obtain

bi(z)e=1, b'(z)c=73 b (2))"(0)=0, b'(z)(c-7"(0))=0,

1
29

1, 1,1

bi(=)e = % ~ 7440 T 1612807 193536007 T 24saaggionc T
bi(2)A(0)c = é - 28180 2+ 3221560 2= 387017200 2+ 49049176384 R
b (0)e = _57160 &+ 6451120 - 774114400 2+ 98099152768 &t

P =5~ 507+ To7sm0 7~ 0z s+ Tt b

bi(E)e - A(0)e) = é - 19120 &+ 2151040 2= 258014800 2+ 32699184256 SN
bH()A0) = % - 57160 &+ 6451120 - 774114400 2+ 98099152768 &t
bH()A(0)e = % N 28180 &+ 3221560 - 387017200 2+ 49049176384 &t

and therefore we can affirm that the EFRK method with the weights b; is of fourth order. Analo-
gously, for the weights b; we obtain

b'(z)e=1, b (z)"(0)=0,
T 11 5 61 277
5 _r_ 12 4 6
()e=3 =247 T2608° ~ 2211840° ' 396361728 °

Fopdo 37 o 739 34819 SSISA9
T3 28807 ' 645120 1238630400 ' 784796221440 ’
1137, 139, 34819 551849

6 57607 T 1290240° ~ 2477260800° T 1569592442880° T

8_|_...,

b (2)4(0)c =

and conditions (7) are not fulfilled. So, the EFRK method with the weights b; has algebraic order
three.
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Fig. 1. Linear problem with variable coefficients: w = 10, zng = 10.
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Fig. 2. Undamped Duffing’s equation: feng = 100.

3. Numerical experiments

In order to evaluate the effectiveness of the EFRK pair we use several model problems which
have periodic solutions. The criterion used in the numerical comparisons is the usual lest based
on computing the maximum global error over the whole integration interval. In Figs. 1-3 we have
depicted the efficiency curves for the tested codes. These figures show the decimal logarithm of the
maximum global error (sd(e)) against the computational effort measured by the number of function
evaluations required by each code. The codes used in the comparisons have been denoted by:
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Fig. 3. Nonlinear system: zeng = 10.

EFRK4(3): The trigonometric version of our embedded pair implemented in a variable step code

[
following the way given in [3, pp. 167-169].
e VBExtrapo: The variable step code proposed in [7]

Problem 1. We consider the linear problem with variable coefficients
re [07 Zend],

V' + 4y = (41 — o) sin(wt) — 2sin(1?),

yO)=1, Y (0)=o,

whose analytic solution is given by

(1) = sin(wt) + cos(1?).
This solution represents a periodic motion that involves a constant frequency and a variable
frequency. In our test we choose the parameter values w = 10, #,,g = 10 and the numerical results

stated in Fig. 1 have been computed with error tolerances Tol = 107", i > 2 and 4 =il0.

Problem 2. We consider the periodically forced nonlinear problem (undamped Duffing’s equation)
te [07 tend]a

V' + v+ y* = (cos(t) + esin(10¢))* — 99¢sin(10¢),

y0)=1,  »'(0)=10¢
with ¢ = 1073, The analytic solution is given by

y(t) = cos(t) + ¢sin(10¢)
and represents a periodic motion of low frequency with a small perturbation of high frequency. In
our test we choose the parameter value #,q = 100 and the numerical results stated in Fig. 2 have

been computed with error tolerances Tol =107, i >3 and A =i.
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Problem 3. We consider the nonlinear system

2

W=—aly — 2 p(0)=1, Y(0)=0, 1[0, tenal.
1t »
2y

W= —4ly, + »2(0)=0, 5(0)=0,

Vi3

whose analytic solution is given by

yi(t) = cos(r), ya(t) = sin(£?).

This solution represents a periodic motion with variable frequency. In our test we choose the pa-
rameter value #;,q = 10 and the numerical results stated in Fig. 3 have been computed with error
tolerances Tol = 107", i > 2 and A =it, (n > 1) at each step.

In view of the numerical results obtained in Problems 1-3, we may conclude that the code
EFRK4(3) is clearly more efficient than the code VBExtrapo (see Figs. 1-3). This conclusion is not
surprising because the technique based on embedded pairs for to estimate the local error requires a
smaller computational cost than the technique based on Richardson extrapolation.

All the computations have been carried out in double-precision arithmetic in a PC computer of
the University of Zaragoza.
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