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Abstract

An embedded pair of exponentially %tted explicit Runge–Kutta (RK) methods for the numerical integration
of IVPs with oscillatory solutions is derived. This pair is based on the exponentially %tted explicit RK method
constructed in Vanden Berghe et al., and we con%rm that the methods which constitute the pair have algebraic
order 4 and 3. Some numerical experiments show the e4ciency of our pair when it is compared with the
variable step code proposed by Vanden Berghe et al. (J. Comput. Appl. Math. 125 (2000) 107). c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last decade, a great interest in the research of new methods for the numerical integration
of initial value problems

y′ = f(t; y); y(t0) = y0; (1)

whose solution exhibits a pronounced oscillatory character has arisen. Such problems often arise in
di;erent %elds of applied sciences such as celestial mechanics, astrophysics, electronics, molecular
dynamics, and so forth; and they can be solved by using general purpose methods or using codes
specially adapted to the structure or to the solution of the problem. In the case of specially adapted
methods, particular Runge–Kutta (RK) algorithms have been proposed by several authors [1,2,4–7]
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in order to solve these classes of problems. A pioneer paper is due to [2], in which adapted RK
algorithms with 3 and 4 stages for the integration of ODEs with oscillatory solutions are presented.
More recently, Paternoster [4] considers the construction of RK and RK–NystrFom methods which
integrate trigonometric polynomials exactly. This author derives a family of two-stage RK methods
with trigonometric order 1 which present algebraic order up to 3, but the main handicap of these
methods is that they are fully implicit. Next, Simos and coworkers [1,5] constructed explicit RK
methods which integrate certain %rst-order initial value problems with periodic or exponential solu-
tions. On the other hand, Vanden Berghe et al. [6,7] introduced another exponentially %tted explicit
RK method which integrates exactly %rst-order systems whose solutions can be expressed as linear
combinations of functions of the form {e�t ; e−�t} or {cos(!t); sin(!t)}. In addition, these authors
have implemented a variable step code by using their four-stage exponentially %tted explicit RK
method [7] with error and step length control based on Richardson extrapolation.

Here, we derive a %ve-stage embedded pair of exponentially %tted Runge–Kutta (EFRK) methods
which is based on the four-stage explicit EFRK method presented in [6,7]. We con%rm that the
methods which constitute the pair have algebraic order 4 and 3, and that this pair corresponds in a
unique way to an algebraic pair: the Zonneveld 4(3) pair [3]. The numerical experiments presented
in Section 3 show the e4ciency of our pair when it is compared with the variable step code proposed
in [7].

2. Derivation of the exponentially �tted pair

Vanden Berghe et al. [6,7] constructed an explicit four-stage EFRK method based on the classical
fourth-order RK method. This method is derived in such a way that it integrates exactly di;er-
ential systems whose solutions can be expressed as linear combinations of the set of functions
{exp(�t); exp(−�t)} or equivalently {sin(!t); cos(!t)} when � = i!; !∈R. This means that the
stage equations and the %nal step equation have to integrate exactly these sets of functions (see [4]).
In order to carry out this goal, Vanden Berghe et al. [6] have modi%ed the classical explicit RK
methods in the following way:

g1 = yn;

gi = 
i(z)yn + h
i−1∑

j=1

aij(z)f(tj + cjh; gj); i = 2; : : : ; s (2)

yn+1 = yn + h
s∑

i=1

bi(z)f(tj + cjh; gj); z = �h: (3)

These authors introduce the factors 
i in the stage de%nition so that the family of functions
{exp(�t); exp(−�t)}, or equivalently {sin(!t); cos(!t)}, can be integrated exactly by method (2)–
(3). So, with the above conditions and the additional requirement that Eq. (3) is exact whenever
f(t; y) is 1 or t, Vanden Berghe et al. [6,7] have obtained their four-stage explicit EFRK method.
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2.1. The embedded pair

Now our interest is focused on the construction of an embedded pair of explicit EFRK methods
based on the above mentioned EFRK method [6,7]. In order to avoid numerical di4culties when
the parameter z is small, we impose that for z → 0 the pair of EFRK methods reduces to a classical
RK4(3) pair. This imposition implies that at least %ve stages are required and therefore we consider
the following table:

0 1 0

1
2 cosh(z=2)

sinh(z=2)
z

0

1
2

1
cosh(z=2)

0
tanh(z=2)

z
0

1 1 0 0
16sinh(z=2)

z
0

3
4 1 a51(z) a52(z) a53(z) a54(z) 0

b1(z) b2(z) b3(z) b4(z) 0

Mb1(z) Mb2(z) Mb3(z) Mb4(z) Mb5(z)

with

b1(z) = b4(z) =
2 sinh(z=2)− z

2z(cosh(z=2)− 1)
; b2(z) = b3(z) =

z cosh(z=2)− 2 sinh(z=2)
2z(cosh(z=2)− 1)

:

The %fth stage and the weights Mbi(z) are introduced in order to obtain another explicit EFRK
method so that ‖yn+1 − Myn+1‖ becomes a local error estimation at each step with a computational
cost smaller than the technique based on Richardson extrapolation.

Imposing that the new method integrates exactly the family of functions {exp(�t); exp(−�t)} and
that Eq. (3) is exact whenever f(t; y) is 1, their coe4cients satisfy the following %ve equations:

( Mb2 + Mb3) sinh(z=2) + Mb4 sinh(z) + Mb5 sinh(3z=4) = (cosh(z)− 1)=z;

Mb1 + ( Mb2 + Mb3) cosh(z=2) + Mb4 cosh(z) + Mb5 cosh(3z=4) = sinh(z)=z;

Mb1 + Mb2 + Mb3 + Mb4 + Mb5 = 1;

(a52 + a53) sinh(z=2) + a54 sinh(z) = (cosh(3z=4)− 1)=z;

a51 + (a52 + a53) cosh(z=2) + a54 cosh(z) = sinh (3z=4)=z: (4)

Eqs. (4) leave four degrees of freedom in the determination of the weights Mbi and the coe4cients
a5i. Inspired by the classical Zonneveld 4(3) pair (cf. [3]), we choose the parameter values

Mb2 = Mb3; Mb5 =− 16
3 ; a51 = 5

32 ; a52 = 7
32
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and the remaining coe4cients are given by

Mb1(z) =
3− 3 cosh(z)− 32z sinh(z=4) + 19z sinh(z=2)

6z sinh(z=2)− 3z sinh(z)
;

Mb3(z) =
−16z cosh(z=4) + 19z cosh(z=2)− 6 sinh(z=2)

12z sinh2(z=4)
;

Mb4(z) =
3− 3 cosh(z) + 16z sinh(z=4) + 19z sinh(z=2)− 16z sinh(3z=4)

6z sinh(z=2)− 3z sinh(z)
;

a53(z) =−32 cosh(z=4)− 32 cosh(z) + 7z sinh(z=2) + 5z sinh(z)
32z sinh(z=2)

;

a54(z) =
5z − 32 coth(z=2) + [16=sinh(z=4)]

32z
:

For z → 0 the EFRK pair obtained reduces to the well-known classical Zonneveld 4(3) pair. In
addition, the trigonometric form for this EFRK pair emerges having in mind the relations: cosh(i�)=
cos(�) and sinh(i�) = i sin(�).

2.2. Algebraic order of the EFRK pair

As it can be observed, the coe4cients of the EFRK pair derived above do not satisfy the row-sum
conditions usually imposed in the derivation of RK methods. Therefore, the algebraic order conditions
tabulated in [3] are not valid for these methods. Now, the question is to investigate if the methods
which constitute the EFRK pair are also of third and fourth order as in the classical Zonneveld
4(3) pair. In order to answer this question we have followed the way given in [3, pp. 143–148] for
obtaining the terms of the local truncation error for these methods in the case of nonautonomous
%rst-order di;erential systems. Having in mind that the parameters of the method are steplength
dependent and, with e = (1; 1; 1; 1; 1)T, they satisfy


(0) = e; 
′(0) = 0; 
′′′(0) = 0; : : : ;

A(0)e = c; A′(0) = 0; A′′′(0) = 0; : : : ;

the conditions up to fourth-order are the following ones:
Order 2 requires:

bT(z)e = 1 + O(z4); bT(z)c = 1
2 + O(z3); (5)

Order 3 requires in addition:

bT(z)
′′(0) = O(z2);

bT(z)c2 = 1
3 + O(z2); bT(z)A(0)c = 1

6 + O(z2); (6)
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Order 4 requires in addition:

bT(z)(c · 
′′(0)) = O(z); bT(z)A′′(0)e = O(z);

bT(z)c3 = 1
4 + O(z); bT(z)(c · A(0)c) = 1

8 + O(z);

bT(z)A(0)c2 = 1
12 + O(z); bT(z)A2(0)c = 1

24 + O(z): (7)

If we check the conditions (5)–(7), we obtain

bT(z)e = 1; bT(z)c = 1
2 ; bT(z)
′′(0) = 0; bT(z)(c · 
′′(0)) = 0;

bT(z)c2 =
1
3
− 1

1440
z2 +

1
161280

z4 − 1
19353600

z6 +
1

2452488192
z8 + · · · ;

bT(z)A(0)c =
1
6
− 1

2880
z2 +

1
322560

z4 − 1
38707200

z6 +
1

4904976384
z8 + · · · ;

bT(z)A′′(0)e =− 1
5760

z2 +
1

645120
z4 − 1

77414400
z6 +

1
9809952768

z8 + · · · ;

bT(z)c3 =
1
4
− 1

960
z2 +

1
107520

z4 − 1
12902400

z6 +
1

1634992128
z8 + · · · ;

bT(z)(c · A(0)c) = 1
8
− 1

1920
z2 +

1
215040

z4 − 1
25804800

z6 +
1

3269984256
z8 + · · · ;

bT(z)A(0)c2 =
1
12

− 1
5760

z2 +
1

645120
z4 − 1

77414400
z6 +

1
9809952768

z8 + · · · ;

bT(z)A2(0)c =
1
24

− 1
2880

z2 +
1

322560
z4 − 1

38707200
z6 +

1
4904976384

z8 + · · · ;

and therefore we can a4rm that the EFRK method with the weights bi is of fourth order. Analo-
gously, for the weights Mbi we obtain

Mb
T
(z)e = 1; Mb

T
(z)
′′(0) = 0;

Mb
T
(z)c =

1
2
− 1

24
z2 +

5
4608

z4 − 61
2211840

z6 +
277

396361728
z8 + · · · ;

Mb
T
(z)c2 =

1
3
− 137

2880
z2 +

739
645120

z4 − 34819
1238630400

z6 +
551849

784796221440
z8 + · · · ;

Mb
T
(z)A(0)c =

1
6
− 137

5760
z2 +

739
1290240

z4 − 34819
2477260800

z6 +
551849

1569592442880
z8 + · · · ;

and conditions (7) are not ful%lled. So, the EFRK method with the weights Mbi has algebraic order
three.
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Fig. 1. Linear problem with variable coe4cients: != 10; tend = 10.

Fig. 2. Undamped Du4ng’s equation: tend = 100.

3. Numerical experiments

In order to evaluate the e;ectiveness of the EFRK pair we use several model problems which
have periodic solutions. The criterion used in the numerical comparisons is the usual lest based
on computing the maximum global error over the whole integration interval. In Figs. 1–3 we have
depicted the e4ciency curves for the tested codes. These %gures show the decimal logarithm of the
maximum global error (sd(e)) against the computational e;ort measured by the number of function
evaluations required by each code. The codes used in the comparisons have been denoted by:
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Fig. 3. Nonlinear system: tend = 10:

• EFRK4(3): The trigonometric version of our embedded pair implemented in a variable step code
following the way given in [3, pp. 167–169].

• VBExtrapo: The variable step code proposed in [7].

Problem 1. We consider the linear problem with variable coe4cients

y′′ + 4t2y = (4t2 − !2) sin(!t)− 2sin(t2); t ∈ [0; tend];

y(0) = 1; y′(0) = !;

whose analytic solution is given by

y(t) = sin(!t) + cos(t2):

This solution represents a periodic motion that involves a constant frequency and a variable
frequency. In our test we choose the parameter values ! = 10; tend = 10 and the numerical results
stated in Fig. 1 have been computed with error tolerances Tol = 10−i; i¿ 2 and �= i10.

Problem 2. We consider the periodically forced nonlinear problem (undamped Du4ng’s equation)

y′′ + y + y3 = (cos(t) + � sin(10t))3 − 99� sin(10t); t ∈ [0; tend];

y(0) = 1; y′(0) = 10�

with �= 10−3. The analytic solution is given by

y(t) = cos(t) + � sin(10t)

and represents a periodic motion of low frequency with a small perturbation of high frequency. In
our test we choose the parameter value tend = 100 and the numerical results stated in Fig. 2 have
been computed with error tolerances Tol = 10−i; i¿ 3 and �= i.
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Problem 3. We consider the nonlinear system

y′′1 =−4t2y1 − 2y2√
y21 + y

2
2

; y1(0) = 1; y′1(0) = 0; t ∈ [0; tend];

y′′2 =−4t2y2 +
2y1√
y21 + y

2
2

; y2(0) = 0; y′2(0) = 0;

whose analytic solution is given by

y1(t) = cos(t2); y2(t) = sin(t2):

This solution represents a periodic motion with variable frequency. In our test we choose the pa-
rameter value tend = 10 and the numerical results stated in Fig. 3 have been computed with error
tolerances Tol = 10−i; i¿ 2 and �= itn (n¿ 1) at each step.

In view of the numerical results obtained in Problems 1–3, we may conclude that the code
EFRK4(3) is clearly more e4cient than the code VBExtrapo (see Figs. 1–3). This conclusion is not
surprising because the technique based on embedded pairs for to estimate the local error requires a
smaller computational cost than the technique based on Richardson extrapolation.

All the computations have been carried out in double-precision arithmetic in a PC computer of
the University of Zaragoza.
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