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Abstract

In this paper we present a new approach for the analysis of rule-based specification of system dynamics. We
model system states as simple digraphs, which can be represented with boolean matrices. Rules modelling
the different state changes of the system can also be represented with boolean matrices, and therefore the
rewriting is expressed using boolean operations only.
The conditions for sequential independence between pair of rules are well-known in the categorical ap-
proaches to graph transformation (e.g. single and double pushout). These conditions state when two rules
can be applied in any order yielding the same result. In this paper, we study the concept of sequential
independence in our framework, and extend it in order to consider derivations of arbitrary finite length.
Instead of studying one-step rule advances, we study independence of rule permutations in sequences of
arbitrary finite length. We also analyse the conditions under which a sequence is applicable to a given host
graph. We introduce rule composition and give some preliminary results regarding parallel independence.
Moreover, we improve our framework making explicit the elements which, if present, disable the application
of a rule or a sequence.

Keywords: Graph Transformation, Matrix Graph Grammars, Parallelism, Sequential Independence.

1 Introduction

Graphs are pervasive in many areas of computer science, e.g. to model different

kinds of diagrams in software engineering, data structures, or the state space of a

dynamical system. Graph transformation is a visual, formal and declarative tech-

nique for graph manipulation [4,5]. It is based on the concepts of grammar, rule

and derivation. A graph grammar is made of a set of rules – each having graphs

in its left and right hand sides (LHS and RHS) – and an initial host graph. If an

occurrence (a morphism) of a rule’s LHS is found in the host graph, then it can

be substituted by the RHS. Graph transformation is becoming increasingly popu-

lar, e.g. to specify the operational semantics of diagrammatic languages and visual
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simulation [8], to express and analyse refactorings or re-designs [9], or for model-to-

model transformations [14]. The main advantages of graph grammars with respect

to other behavioural specification techniques is that they are a visual, formal and

declarative means to express transformations of different kinds of graphs. Different

formalizations provide analysis techniques e.g. to study rule independence, conflu-

ence or termination (partially) [4,5,11]. The most popular formalizations are based

on category theory and include the single [3] and double pushout [2,4] (SPO and

DPO).

Graph transformation can be used to model parallel computations in two ways [2].

The first one is using an explicit approach, where a processor is assigned to each

process and actions are carried out simultaneously (this is also called truly concur-

rency). In the second one, processes are modelled by arbitrary interleavings of their

actions. These two approaches are related to the notions of parallel and sequential

independence. In the latter, two sequences of actions are independent if they can

be performed in any order yielding the same result. Sequential and parallel inde-

pendence have been studied in the categorical approaches for pairs of rules, and

conditions have been stated for both of them.

We have recently introduced a formalization of (simple di)graph transformation

based on boolean matrix algebra [11,12]. In our approach, the rewriting as well

as the analysis techniques can be expressed using boolean matrix operations only.

In previous work [11], we introduced some analysis techniques that can be used

independently of the host graph. Then, we introduced derivations [12] and how

they influence these results. Here we focus on sequential independence, extending it

to derivations of arbitrary finite length. Sequential independence for pairs of rules

does not extrapolate to sequences of arbitrary length, as sometimes it is possible

to advance a rule two or more positions in a derivation, even if the rule is not

independent with the following one in the sequence. We also present new results

concerning the problem of sequence applicability: given a sequence and a host graph,

we seek the conditions under which the sequence is applicable to the graph. This

is relevant if the sequence should be applied atomically (e.g. when implementing

transactional properties for rule-based programs).

We also introduce in this paper the notion of rule composition, which allows

calculating a single rule able to produce the same result as a rule sequence. Using

this concept, we give some preliminary results regarding parallel independence,

where we assume that no dangling edges are produced.

Finally, we have improved our approach by making explicit (i.e. representing

them as a proper graph) the elements (edges) which if present in the host graph,

would prohibit a rule or sequence application. These graphs are the nihilation

matrix and the negative initial digraph respectively, and contain information about

potential dangling edges (i.e. edges that would become dangling when deleting

certain nodes) and edges that cannot be present as another edge with the same

source and target is added by the rule or sequence (simple graphs do not allow more

than one edge with same source and target). To the very best of our knowledge,

this idea is not present in any other graph transformation approach.
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Paper organization. We start with a brief presentation of parallel and se-

quential independence. Then, Section 3 gives an overview of our Matrix Graph

Grammars, introducing the new characterization of the Nihilation matrix and the

new concept of rule composition and sequence compatibility. Section 4 briefly intro-

duces the match, together with some new considerations concerning the handling of

dangling edges (that we call marking). Section 5 shows the new results for sequence

applicability and the new concept of negative initial digraph. Section 6 presents the

new results for sequential independence for derivations. Section 7 shows new pre-

liminary results concerning parallel independence. Section 8 compares with related

research and section 9 ends with the conclusions and future work.

2 Rule Independence

We briefly introduce sequential and parallel independence for SPO and DPO as

included in [3]. Parallel independence checks whether two alternative direct deriva-

tions H1
p1,m1

⇐= G
p2,m2

=⇒ H2, are not in conflict (i.e. if each can be applied after the

other has been performed, and thus could be applied in parallel) [5]. Sequential

independence checks if two consecutive direct derivations G
p1,m1

=⇒ G
p2,m2

=⇒ X can be

swapped.
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Fig. 1. Sequential (left) and Parallel Independence (right).

Single Pushout. For sequential independence we have m′
2 (L2)∩m∗

1 (R1 \ p1 (L1)) =

∅ and m′
2 (L2 \ dom (p2)) ∩ m∗

1 (R1) = ∅, and for parallel independence m2 (L2) ∩
m1 (L1 \ dom (p1)) = ∅ and m1 (L1) ∩ m2 (L2 \ dom (p2)) = ∅ (see Fig. 1, taken

from [3], which we synthesized in Fig.2).

In [3] it is demonstrated that d1 is sequential independent of d′2 (written d1⊥ d′2)

iff ∃m2 : L2 → G such that m′
2 = p∗1 ◦ m2 and d1 is weakly parallel independent of

derivation d2 (this condition is known as weak sequential independence).

Double Pushout. In DPO, two direct derivations are parallel independent

(resp., sequential independent) if all elements in the intersection of both matches

(resp., of the comatch of the first derivation and the match of the second) are already

gluing items with respect to both transformations. Gluing items of a production p

are edges and nodes of its LHS not deleted by p.

3 Matrix Graph Grammars

This section briefly introduces Matrix Graph Grammars (MGGs). Refer to [11] for

a more comprehensive presentation. Subsection 3.1 presents the encoding of graphs

and rules by means of boolean matrices. Subsection 3.2 studies rule sequences,
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Fig. 2. Sequential and Parallel Independence (synthesized).

and some analysis techniques that can be used independently of the host graph.

Subsection 3.3 presents new results concerning rule composition.

3.1 Graphs and Productions

Graphs. We work with simple digraphs, which can be represented as a tuple (M,N)

where M is a boolean matrix for edges and N a boolean vector for nodes. The latter

is necessary as in the rewriting we can add and delete nodes. Fig. 3(a) shows an

example of a graph representing a manufacture system made of a machine, which

receives and produces pieces through conveyors. The output conveyor is connected

to a terminal element. The machine needs an operator in order to perform its task.

Generators produce pieces in conveyors, which have unbounded capacity. Self loops

in operators and machines indicate that they are busy.

TerminalConveyor

Machine

Conveyor’

Operator
Generator

Piece

Fig. 3. (a) A Simple Digraph Example. (b) Matrix Representation.

Compatibility. Well-formedness of graphs (i.e. no dangling edges) can be

checked by verifying the identity
∥∥(

M ∨ M t
)
� N

∥∥
1

= 0, with M the edges matrix,

N the negation of the nodes vector, � the boolean matrix product (like the regular

matrix product, but with and and or instead of mutiplication and addition), and

‖ · ‖1 is an operation (a norm, actually) that results in the or of all the components

of the vector. We call this property compatibility [11].

Typing. A type is assigned to each node by a function from the set of nodes

V = |N | to a set of types T , type:V → T . In Fig. 3, types were represented as
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an additional column in the matrices. For edges we use the types of their source

and target nodes. The primas in the figure allow distinguishing individual elements

with same type.

Productions. A production, or rule, p : L → R is a partial injective function

of simple digraphs. Using a static formulation, we can represent a rule by two

boolean matrices and two vectors p =
(
LE, RE ;LN , RN

)
, (where E stands for

edges and N for nodes) to characterize the LHS and RHS. The actions performed

by a production are addition and deletion of nodes and edges. Therefore, using a

dynamic formulation, a rule can be represented by p =
(
LE, eE , rE;LN , eN , rN

)
,

where eE and eN are the deletion boolean matrix and vector, while rE and rN are

the addition boolean matrix and vector. These matrices and vectors have a 1 in

the position where the element is to be deleted or added respectively. The output

of rule p can be calculated by the boolean formula R = p(L) = r ∨ e L, where the

formula applies both to nodes and edges. Superindices E and N are omitted if the

formula applies to both cases. Moreover, we usually omit the ∧ (and) symbol.

Fig. 4 shows a rule and its associated matrices. The rule models the consumption

of a piece by a machine. Compatibility of the resulting graph must be ensured,

therefore the rule cannot be applied if the machine is already busy, as it would end

up with two self loops, which is not allowed in a simple digraph. This restriction

of simple digraphs can be useful in this kind of situations, and acts like a built-in

negative application condition [4]. Later we will see that the Nihilation matrix takes

care of this restriction.

Conveyor

Machine

OperatorR

Conveyor

Machine

OperatorL Piece

(a)

startProcess

Fig. 4. (a) Rule Example. Static (b) and Dynamic (c) Formulations. (d) Nihilation Matrix

Completion. In order to operate graphs of different sizes, an operation called

completion adds extra rows and columns with zeros (to matrices and vectors) and

rearranges rows and columns so that the identified edges and nodes of the two

graphs match. In the examples, we omit such operation, but assume that matrices

are completed when necessary. Later we will operate with the matrices of different

productions, which means that we have to select the elements (nodes and edges) of

each production which get identified to the same element in the host graph. Thus

the completion has to preserve such identifications.

Nihilation Matrix. In order to consider the elements in the host graph that

disable a rule application, we extend the notation for rules with a new graph N .

Its associated matrix specifies the two kinds of forbidden edges: those incident to

nodes which are going to be erased and any edge added by the rule (which cannot
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be added twice, since we work with simple digraphs). Notice that N considers only

potential dangling edges with source and target in the nodes belonging to LN .

The concept of rule remains unaltered because we are just making explicit some

implicit information. Matrices are derived in the following order: (L,R) �→ (e, r) �→
N . Thus, a rule is statically determined by its LHS and RHS p = (L,R), from

which it is possible to give a dynamic definition p = (L; e, r), with e = LR and

r = RL, to end up with a full specification including its environmental behaviour

p = (L,N ; e, r). Thus, no extra effort is needed from the grammar designer, as

matrix N can be automatically calculated as the image by rule p of a certain matrix:

Theorem 3.1 (Nihilation matrix) Using tensors, 2 let D = eN ⊗ (eN )t then

NE = p
(
D

)
.

Proof. The following matrix specifies potential dangling edges incident to nodes

appearing in the LHS of p.

D = di
j =

⎧⎨
⎩ 1 if (ei)N = 1 or (ej)N = 1.

0 otherwise.

Note that D = eN ⊗ (eN )t. Every incident edge to a node that is deleted becomes

dangling, except those explicitly deleted by the production. In addition, edges added

by the rule cannot be present in the host graph, NE = rE ∨ eE
(
D

)
= p

(
D

)
. �

Fig. 4(d) shows the nihilation matrix NE for the example rule. The matrix

indicates any dangling edge from the deleted piece (the edge to the conveyor is not

indicated as it is explicitly deleted), as well as self-loops in the machine and in the

operator. Matrix NE can be extended to a graph by taking the nodes that appear

in the LHS: N = (NE , LN ). The nihilation matrix should not be confused with the

notion of Negative Application Condition [4], which is an additional graph specified

by the designer (i.e. not derived from the rule) containing extra negative conditions.

3.2 Studying Rule Sequences

Given a collection of productions {p1, . . . , pn}, sn = pn; pn−1; . . . ; p1 defines a se-

quence (or concatenation) of rules establishing an order in their application, starting

with p1 and ending with pn (i.e. from right to left). A concatenation is said to be

coherent if actions carried out by one production do not prevent the application

of those coming afterwards. We assume a certain identification of nodes and edges

between rules (i.e. matrices have been completed in a certain way and some over-

lapping of rule elements can occur, which is one of the effects of matches) thus,

coherence is calculated with respect to the given identification. Productions can

appear more than once in a sequence, even completed in different ways. Next the-

orem gives the conditions for sequence coherence (see [11] for a complete proof).

2 Symbol ⊗ denotes tensor product, which sums up the covariant and contravariant parts and multiplies
every element of the first vector by the whole second vector.
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Theorem 3.2 (Sequence Coherence) Sequence sn = pn; . . . ; p1 is coherent if∨n
i=1

(
Ri �

n
i+1 (ex ry) ∨ Li �

i−1
1 (ey rx)

)
= 0 where

�t1
t0

(F (x, y)) =

t1∨
y=t0

(
t1∧

x=y

(F (x, y))

)
(1)

�t1
t0

(G(x, y)) =

t1∨
y=t0

(
y∧

x=t0

(G(x, y))

)
(2)

Coherence allows the grammar designer to check dependencies between rules,

and to realize possible conflicts. The problematic elements are shown as non-zero

elements in the resulting matrix.

Fig. 5 shows additional rules for the example. Sequence s3 = breakdown;

endProcess; startProcess (where we have identified nodes with same type across

productions) is not coherent as a “1” is obtained in the position corresponding to

the self-loops edges of the operator and the machine. This means that both loops

are needed in order to execute the given sequence. A possible solution is to have

an additional machine and operator. Thus, conflicts detected by coherence may be

solved if the initial host graph provides enough edges and nodes (i.e. with a different

identification of elements across productions). This is related to the minimal initial

digraph (MID), which is a graph containing the necessary elements for a sequence

to be applicable. Next theorem presents the formula for its calculation.

Piece

ConveyorConveyor

GeneratorL

genPiece

Piece

GeneratorR

Conveyor

Piece

Conveyor

Operator

Conveyor’Conveyor

Piece

Conveyor’Conveyor

Operator

Machine

Conveyor Conveyor’

Operator

Conveyor’Conveyor

Conveyor Conveyor’ Conveyor’Conveyor

Machine

R Operator

endProcess

Machine

L

repairbreakdown

R OperatorL L R

Machine

Operator

Piece
L R

move

Fig. 5. Additional rules for the example.

Theorem 3.3 (Minimal Initial Digraph) Given a coherent concatenation of pro-

ductions sn = pn; . . . ; p1, its MID is defined by: Mn = �n
1 (rxLy).

Consider sequence s′3 = startProcess; startProcess; genPiece, which is not co-

herent if we identify both operators and machines. Therefore, we need two different

machines and two operators, one machine can consume the generated piece, while a

different piece is needed for the other machine. For the case of three productions, the

formula for the MID expands to M3 = (r1L1)∨ (r1L2)(r2L2)∨ (r1L3)(r2L3)(r3L3).

Its calculation for s′3 is shown in Fig. 6. Note that although two copies of rule

startProcess appear in the sequence, they are completed in different ways, thus

e.g. L3r1 �= L2r1.

The following result states conditions to keep coherence in case of permuting one

production inside a sequence [11]. We study advancement of the left-most rule to
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Piece’

Conveyor

Machine
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Conveyor

Generator

L  r2  1 L  r2  2

Conveyor

Piece

Machine

Operator

Conveyor

Piece’

Machine’

Operator’

L  r3  1 L  r3  2

L  r3  3

Machine

Operator

Machine’

L  r1  1=L  1 =L  2 =

=

=

Operator’

Generator

Conveyor

Fig. 6. MID for sequence s′
3

= startP rocess; startP rocess; genP iece.

the front and delay of the right-most rule to the back of a sequence, because these

are the most common permutations. However our techniques allow studying other

permutations as well.

Theorem 3.4 (Production Permutation) Let tn = pα; pn; pn−1; . . . ; p1 and sn =

pn; pn−1; . . . ; p1; pβ be two coherent sequences of productions and let φ and δ be two

permutations.

(i) φ (tn) is coherent if: eE
α �n

1

(
rE
x LE

y

)
∨ RE

α �n
1

(
eE
x rE

y

)
= 0.

(ii) δ (sn) is coherent if: LE
β �n

1

(
rE
x eE

y

)
∨ rE

β �n
1

(
eE
x RE

y

)
= 0.

where φ advances the last production to the front, that is, moves the left-most

rule to the right n−1 positions in a sequence of n rules. Thus, φ is the permutation

φ = [ 1 n n − 1 . . . 3 2 ]. This is a notation for permutation cycles that means

that rule 1 (the left-most one) is sent to position n, then rule in position n is moved to

position n−1, and similarly until rule 3, which is moved to position 2, and this one to

position 1. In a similar way, δ delays the first production n−1 positions in a sequence

of n rules, moving it to the last position. Thus, δ = [ 1 2 . . . n − 1 n ] (i.e. each

rule is moved to the right, and rule n to position 1). As an example, for sequence

t2 = startProcess; repair; breakdown, φ(t2) = repair; breakdown; startProcess is

coherent, as we obtain a 0 matrix.

G-congruence guarantees that two compatible concatenations have the same ini-

tial digraph G. The conditions to be fulfilled are known as Congruence Conditions

(CC). The interest of these conditions is that a coherent and compatible concate-

nation sn and a coherent and compatible permutation of it, σ (sn), which have the

same MID G are potentially sequential independent. This means that, when consid-

ering a host graph, if the matches of the productions in the sequence coincide with

G, then they are sequential independent. Next theorem presents the congruence

conditions for advancement and delay of productions (see [11] for the proof):

Theorem 3.5 (G-congruence) Given sequence sn, the congruence conditions for

rule advance (φn−1) and delay (δn−1) are given by:

CCn (φn−1, sn) = Ln∇
n−1
1 (ex ry) ∨ rn∇

n−1
1 (rx Ly) = 0

CCn (δn−1, sn) = L1∇
n
2 (ex ry) ∨ r1∇

n
2 (rx Ly) = 0

Note that it is possible to check sequential independence between a rule and

a sequence, in contrast with results in the categorical approaches. For example,

previous sequences t2 and φ(t2) are not G-congruent. The MIDs for t2 and φ(t2)
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are shown in Fig. 7(a and b). Actually, the congruence condition results in a zero

vector, but in a matrix with a 1 in the edges corresponding to the self-loops in the

operator and the machine, as well as in the edge from the piece to the machine.

These edges are precisely the difference between both MIDs.

On the other hand, sequence t′2 = startProcess; genPiece;move (where we iden-

tify the conveyor of genPiece with the source conveyor of move and the input con-

veyor of startProcess) is G-congruent with φ(t′2) = move; genPiece; startProcess.

This means that they share a common MID (shown in Fig. 7 (c)), and that they

output the same result (not the same graph, but an isomorphic one, as the Piece

that ends up in Conveyor′ is a different one). Note however that we cannot advance

startProcess only one step in t′2. We use symbol ⊥ for sequential independence,

thus writing startProcess⊥(move; genPiece) and startProcess �⊥ move (always

relative to the given identification of elements across productions).

(c)

Conveyor Conveyor’

Machine

Operator

Conveyor Conveyor’

Piece

Machine

Machine

Conveyor’Conveyor

Piece Operator
GeneratorOperator

(a) (b)

Fig. 7. (a) MID for startP rocess; repair; breakdown. (b) MID for repair; breakdown; startP rocess. (c)
MID for startP rocess; genP iece;move and move; startP rocess; genP iece.

3.3 Sequence Composition

Next we introduce sequence composition, for which we require the sequence to

be compatible. Composition defines a unique production that to a certain extent

performs the same actions as the sequence. Recall that compatibility is a means

to deal with dangling edges, equivalent to the dangling condition in DPO. When a

concatenation of productions is considered, we are not only concerned with the final

result but also with intermediate states of the sequence. Compatibility should take

this into account and thus a concatenation is said to be compatible if the overall

effect on its MID results in a compatible digraph starting from the first production

and increasing the sequence until we get the full concatenation. We should then

test compatibility for the growing sequence of concatenations S = {s1, s2, . . . , sn}
where sm = qm; qm−1; . . . ; q1, 1 ≤ m ≤ n.

Definition 1 (Seq. Compatibility) A coherent sequence sn is compatible if the

following identity is verified ∀m ∈ {1, . . . , n}:∥∥∥[
sm

(
ME

m

)
∨

(
sm

(
ME

m

))t
]
� sm (MN

m )
∥∥∥

1
=0(3)

where Mm is the minimal initial digraph of sequence sm.

This definition coincides with the notion of compatibility for one production

(see [12]) when the sequence has length one, and with the case of a single graph

when considering the identity production.

When we introduced the notion of production, we first defined its LHS and

RHS and then we associated some matrices (e and r) to them. The situation for
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defining composition is similar, but this time we first observe the overall effect of

the production and then decide its left and right hand sides. If sn = pn; . . . ; p1 is

coherent, then its composition is a production defined by c = pn ◦ pn−1 ◦ . . . ◦ p1.

The description of its erasing and its addition matrices e and r are given by: SE =∑n
i=1

(
rE
i − eE

i

)
; SN =

∑n
i=1

(
rN
i − eN

i

)
. We operate (i.e. perform the composition)

through the identified elements across rules in the sequence.

Due to coherence, elements in SE and SN are either +1, 0 or −1, so they can

be split into their positive and negative parts, SE = rE
+ − eE

−, SN = rN
+ − eN

− , where

all elements in r+ and e− are either zero or one. Thus:

Proposition 3.6 (Composition) Let sn = pn; . . . ; p1 be a coherent and compatible

concatenation of productions. Then, the composition c = pn◦pn−1 ◦ . . .◦p1 defines a

production with matrices rE = rE
+, rN = rN

+ , eE = − eE
−, eN = − eN

− , and (LE , LN )

the MID of sn.

The LHS is the minimal digraph necessary to carry out all operations specified

by the composition (plus those preserved by the matrix), thus its LHS equals its

MID and its RHS is just the image.

Example. Fig. 8 shows the resulting rule of composing startProcess; genPiece;move.

startProcess o genPiece o move

Machine

Conveyor’Conveyor

PieceGenerator
L Operator

Machine

Conveyor’Conveyor

Piece

Generator
R Operator

Fig. 8. startP rocess ◦ genP iece ◦ move.

Note that the formula for composition coincides with that for the image of the

concatenation (see [13]) applied to its MID. This is stated in the next corollary.

Corollary 3.7 With the above notation, c (Mn) = sn (Mn).

4 Derivations

This section introduces the concepts of match and derivation. Matching is the

operation of identifying the LHS of a rule inside a host graph. In our work, we

consider only injective matches. Thus, given a production p : L → R and a simple

digraph G, any m : L → G total injective morphism is a match for p in G. The match

can be considerd as one of the ways of completing L in G (see section 3.1 and [12]).

We do not explicitly care about types in the matching, but this can be thought as

restrictions for the completion procedure, which cannot identify elements of different

types. The following definition of derivation considers not only the elements that

should be present in the host graph G, but those that should not, N .

Definition 2 (Direct Derivation) Given a production p : L → R as in Fig. 9(a),

d = (p,m) – with m = (mL,mN ) – is called a direct derivation with result H =

p∗ (G) if the following conditions are fulfilled:
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(i) There exist mL : L → G and mN : N → G total injective morphisms, where

G = (GE , GN ) is the negation of graph G, constructed by taking the negation

of the edge matrix and the nodes vector of G.

(ii) mL(n) = mN (n), ∀n ∈ LN ∩ NN .

(iii) The square in Fig. 9 commutes (m∗

L ◦ p (L) = p∗ ◦ mL (L)) and is a pushout.

=N
m*

L
m

L

GG

LN R

H

p

p*

m

Fig. 9. Direct Derivation

Fig. 10 shows a simple example of derivation, where rule startProcess is applied

to host graph G. We have also depicted the inclusion of N in G (bidirectional

arrows have been used for simplification).

Machine

OperatorN Piece

Conveyor

G

OperatorR

Machine

OperatorG

Machine

OperatorH

startProcess

Machine

OperatorL Piece

Conveyor Conveyor

Conveyor

Piece

Conveyor

Machine

Conveyor’ Conveyor’

Fig. 10. Direct Derivation Example

When applying a rule to a host graph, dangling edges can occur if a connected

node in the host graph is deleted by a rule, and the rule does not delete all the

connections. This problem is differently addressed in SPO and DPO. In DPO, if an

edge becomes dangling then the rule is not applicable for that match, while SPO

allows the production to be applied, deleting any dangling edge. In MGGs, we

propose an SPO-like behaviour (as DPO can be seen as a special case of SPO). The

main idea is that if a rule p produces dangling edges, the rule is enlarged (by means

of operator Tε(p), see [12]) to explicitly consider the dangling edges in the LHS

(by using the extended morphism mε(L), which considers the neighborhood of the

original match), and delete them. In [12], we proved that this is equivalent to adding

a pre-production (that we call ε−production) to be applied before the original rule

(i.e. the original rule p is transformed into sequence p; pε). The ε−production

deletes the dangling edges and the original rule can be applied as it is. Here we

improve that idea, as there is no way to guarantee that when a rule is splitted,

both productions are applied to the same elements (in general, matches are non-

deterministic). This issue is addressed for example in [14] (for a very different

reason) and the solution proposed there is to “pass” the match from one production

to the other.
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Another possible solution is to define an operator Tμ for a type α acting on

production p as follows: if no node has type α in the host graph, then a new

node α is added and connected to every already existing node in the RHS of p.

If, on the contrary, there exists a node with that type, then it is connected to

every node in p’s LHS. In essence the idea is to mark nodes with a special type

α. Using functional analysis notation: R = 〈L, p〉 �→ R = 〈mε(L), Tε(p)〉 �→ R =

〈mμ ◦ mε(L), Tμ ◦ Tε(p)〉

Where (as in [12]) R is the extended rule’s RHS, which considers the dangling

edges. Morphism mμ is quite similar to mε in [12] but enlarging L with elements

in dom(mε)\L.
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Conveyor’’

Conveyor

Conveyor’

α

Conveyor

Piece

Conveyor’

R Operator

Conveyor

Operator

Conveyor’

L

Machine

Conveyor’

Conveyor’’

Conveyor α

Conveyor’

Conveyor’’

T  (breakdown)μ μT

Conveyor

Piece

Operator

Conveyor’’

Conveyor

Conveyor’

Generator

Machine

G

T  (breakdown   )εμ

Conveyor’’

Conveyor’

Generator

Conveyor
α

Machine

D
Operator

T  (breakdown)μ

Conveyor’’

Conveyor
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Machine

Operator R Operator
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Fig. 11. Marking in sequence s = breakdown; breakdownε.

Thus, if p and pε are to be applied in the same place, we may proceed as follows:

(i) Enlarge pε to add one node of some non-existent type (α) together with edges

starting in this node and ending in nodes used by pε. (ii) Enlarge p to delete the

node of type α mentioned in previous point. 3

Fig.11 illustrates the process for rule breakdown. Its application to graph G

produces a dangling edge (the one stemming from Conveyor′′), therefore an ε-

production is needed (breakdownε) to delete the dangling edge. In addition, oper-

ator Tμ is applied to both rules. In case of breakdownε, it adds the marking node,

for the other rule the operator deletes it. The right of the figure shows the two steps

in the derivation. As this process can be easily automated, we can safely ignore it

and assume that it is somehow being performed.

Initial Digraph Set. Concerning the MID, the matches in a derivation induce

different ways of completing the rule matrices. Thus if we consider them all, we no

3 Being precise, a new ε-production is created but no recursive process should arise as there shouldn’t be
any interest in permuting this new ε-production.
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longer have a unique MID, but a set. Thus:

Definition 3 (Initial Digraph Set) Given sn = pn; . . . ; p1, the initial digraph set

M (sn) is the set of simple digraphs Mi such that ∀Mi ∈ M (sn) the following

properties hold:

(i) Mi has enough nodes and edges for every production of the concatenation to be

applied in the specified order.

(ii) Mi has no proper subgraph with previous property.

Every element Mi ∈ M (sn) is an initial digraph for sn.

The initial digraph set contains all graphs that can potentially be identified by

matches in concrete host graphs. The maximal initial digraph is the element Mn ∈
M (sn) that considers all elements in pi to be different. This graph is unique up to

isomorphism, and corresponds to the parallel application of every production in the

sequence. In a similar way, graphs Mi ∈ M (sn) in which all possible identifications

are performed are MIDs, which in general are not unique.

5 Applicability

Unless otherwise stated we shall consider sn to be a sequence of productions and

dn its associated derivation once matchings are found in host graph G. Derivation

dn may contain ε-productions, due to the appearance of dangling edges. We start

this section by enunciating the applicability problem. Our aim is to characterize

applicability with simpler concepts and provide explicit formulae.

Problem 1 (Applicability) Given sequence sn (made of rules in grammar G)

and a simple digraph G, is it possible to apply sn to host graph G?.

The elements generated by the rules in a sequence that may disturb its applica-

bility are given by one of the parts of the formula for coherence (see Theo. 3.2):

∇n
1 (exry) = (e1r1) ∨ (e1r2)(e2r2) ∨ (e1r3)(e2r3)(e3r3) ∨ · · · (3)

This expression can be used to calculate the negative initial digraph N for a

coherent sequence sn = pn; . . . ; p1. It is the smallest simple digraph whose elements

cannot be found in the host graph in order to guarantee the applicability of sn. It

is the symmetric concept to that of MID, but for nihilation matrices.

Theorem 5.1 (Negative Initial Digraph) The minimum digraph that must be

found in G in order to permit the application of sequence sn is given by: N =

∇n
i=1 (exNy).

Proof. (Sketch) We can prove the result taking into account elements added by

productions in the sequence (but not dangling edges for now) and proceed as in

theorem 5.1 in [11]. Then, if necessary, we may use the part of coherence associated

to (3) to simplify any cumbersome expression. 4

4 It was not used in the demonstration of the minimal initial digraph.
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In order to consider not only elements added by previous rules but also dangling

edges, it suffices to substitute ry by Ny, which specifies edges added by rules (ri)

and those incident to nodes which are to be erased (dangling edges). �

Remark. Operations performed by a sequence are generalized by operators ∇
and Δ which represent ascending and descending sequences, e.g., ∇3

1exry = p1p2(r3)

and Δ3
1exry = p3p2(r1). Generalization in the sense that it allows the application of

this operational structure but not limited to matrices e and r, e.g. �5
2exLx (ry ∨ Ly).

Operator

Conveyor

Machine

OperatorPiece

Conveyor’Conveyor

Machine

OperatorPiece

e  N2 2

Conveyor’

e  N1 2

Conveyor’ Conveyor

e  N1 1

Conveyor’Conveyor

Machine

Machine
OperatorPiece

Piece

Fig. 12. Negative Initial Digraph for sequence startP rocess;move.

Fig. 12 shows the negative initial digraph for sequence startProcess;move,

where the target conveyor in move is identified with the input one in startProcess.

The resulting graph shows that the piece cannot have any connection, except the

one explicitly removed by rule move, as the Piece is deleted by the second rule, and

otherwise would produce dangling edges. Moreover, neither the Operator nor the

Machine can have self-loops. The example shows very clearly the need to complete

matrices of all graphs before proceeding to the calculations, as otherwise e1N1 and

e1N2 would not take into account the edges from Piece to Conveyor′.

Asking for coherence and compatibility (refer to [11]) of dn is equivalent to

finding its minimal and negative initial digraphs in the host graph and its negation,

respectively. Applicability can be fully characterized in terms of coherence and

compatibility or minimal and negative initial digraphs.

Theorem 5.2 (Characterization) Sequence sn is applicable with respect to G if

there are matches for every production such that:

• derivation dn is coherent and compatible

or, equivalently,

• its minimal initial digraph is in G and its negative initial digraph is in G.

Proof. (Sketch) If productions are well defined (in the sense of definition 3.2

in [11]) then compatibility is guaranteed by ε-productions.

Coherence depends on the node identification performed by matches (the so-

called actual initial digraph in [12]) and its formula is equivalent in some sense (or

guaranteed) if some actual initial digraph and negative initial digraphs (precisely

those given by identifications proposed by matches) are respectively found in G and

G (see definition 2). �

Next, we enunciate the reachability problem, which is an extension of applica-

bility as introduced in problem 1.

P.P. Pérez Velasco, J. de Lara / Electronic Notes in Theoretical Computer Science 206 (2008) 133–152146



Problem 2 (Reachability) For two given states (initial S0 and final ST ), is there

any sequence that transforms S0 into ST ?.

For Petri nets there is an algebraic characterization deriving the so called state

equation, which we generalized to cope with Matrix Graph Grammars in [13].

6 (Sequential) Independence

Sequential independence for derivations can be stated similarly to problems 1 and

2. Here σ will represent an element of the group of permutations and derivation dn

will have associated sequence sn. Note that two sequences sn and s′n = σ(sn) carry

out the same operations but in different order.

Problem 3 (Independence) For two given derivations dn and d′n applicable to

host graph G, do they reach the same state?.

Note the close similarity with local confluence [4]. The problem can be easily

extended to consider any finite number of derivations. Again, our objective is to

characterize under which circumstances, depending on the permutation applied and

on the definition of the grammar (which includes both grammar rules and the host

graph), it is possible to conclude that their final states are isomorphic.

Problem 4 (Sequential Independence) For two given derivations dn and d′n =

σ(dn) applicable to host graph G, do they reach the same state?.

In both cases there is a dependence relationship w.r.t. problem 1. Problem 2 is

also related to problems 3 and 4: every solution of the state equation specifies the

productions to be applied but not the order. Sequences associated to different solu-

tions of the state equation are independent but may not be sequential independent.

Thus, reachability splits independence and sequential independence.

Definition 4 (Sequential Independence) Two derivations dn and d′n = σ (dn) are

sequential independent w.r.t. G if dn (G) = Hn
∼= H ′

n = d′n (G).

Note that even though s′n = σ(sn), if ε-productions appear then it may not

be true that d′n = σ(dn), unless they are equal. A restatement of def. 4 is the

following proposition. The existence of an initial digraph guarantees coherence for

both derivations.

Proposition 6.1 If for two applicable derivations dn and d′n = σ(dn) ∃M0 ⊂ G

such that ∅ �= M0 ∈ M (sn) ∩ M (s′n) then dn(M0) and d′n(M0) are sequential

independent.

Proof. Apply results in [11], composition in particular. �

In order to calculate M0 in prop. 6.1 it is possible to follow two complementary

approaches: either we start by the maximal initial digraph or by different minimal

elements in the initial digraph set. In the first case the following identity may be of

some help:

Mdn
= Md′n

⇔ Mdn
Md′n

∨ Mdn
Md′n

= 1(4)

P.P. Pérez Velasco, J. de Lara / Electronic Notes in Theoretical Computer Science 206 (2008) 133–152 147



For the maximal initial digraph M , every element is different across productions

in derivations. Let all elements (except those already known) be represented by

variables in M and use a SAT solver on (4) to obtain conditions. The same can be

applied to the negative intial digraph to guarantee applicability.

If two derivations (with underlying permuted sequences) are not a permutation

of each other due to ε-productions but are confluent, then in fact it is possible to

write them as a permutation of each other:

Proposition 6.2 If dn and d′n are sequential independent and s′n = σ(sn), then

∃ σ̂ | d′n = σ̂(dn) for some appropriate composition of ε-productions.

Proof. Let T̂ε : pε �→ T̂ (pε) be an operator acting on ε-productions, which splits

them into a sequence of n productions, each one of them deleting one edge. If T̂ε is

applied to dn and d′n we must get the same number of ε-productions. Morover, the

number must be the same for every type of edge or a contradiction can be derived

as ε-productions only delete elements. �

Example. Assume we have rules release and remove and a host graph G as

shown in Fig. 13. Suppose we want to apply sequences s2 = remove; release and

s′2 = release; remove, identifying the released machine and the one to be removed.

With this identification remove and release are not sequential independent. If we

apply s′2, then an ε-production (deleting the edge from the operator to the machine)

has to be added to the derivation, leading to d′2 = release; remove; removeε which

makes release inapplicable. However, if in both sequences we identify separately

the released and the removed machine, then both sequences are applicable obtaining

graph H, and thus remove⊥release for this particular identification. Note that M0

is the actual initial digraph for this identification and that M0 (s′2) ∈ M (s2)∩M (s′2)

(see Fig. 13). This agrees with previous propositions because there is sequential

independence when remove does not generate any associated ε-productions. Note

how, the explicit deletion of dangling edges by means of productions facilitates the

study of rule independence.

R

Machine

OperatorL

Machine

Operator

Conveyor

Machine

Machine’

Operator

Machine’

Machine

Machine’’

Conveyor

Machine’

Conveyor’

G
Operator

Machine

Conveyor

Machine’

H

Operator

M0
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Machine’’

Machine’
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Operator
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R Operator
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Fig. 13. Sequential independence with free matching.

The theory we developed in [11] (without considering the host graph) fits very

well here and all results for sequential independence are recovered. Moreover, we

can relate the corresponding theorems in [11] for advancement and delaying of

productions with composition. One interesting point is that we can study a priori

the conditions that need to be fulfilled in order to obtain sequential independence

and interpret them as graph constraints or application conditions.
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7 Parallel Independence

In this section we analize which productions or group of productions can be com-

puted in parallel and what conditions guarantee this operation, for the moment

without considering the host graph (or assuming that no ε−productions are pro-

duced by the derivation).
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�������

�������

Fig. 14. Parallel Execution.

In the categorical approach the definition for two productions is settled consider-

ing the two alternative sequential ways in which they can be composed, looking for

sameness in their final state. Intermediate states are disregarded using categorical

coproduct of the involved productions. Then, the main difference between sequen-

tial and parallel execution is the existence of intermediate states in the former, as

seen in Fig. 14. We follow the same approach saying that it is possible to execute

two productions in parallel if the result does not depend on generated intermediate

states. However, in DPO, it is possible to identify different elements in the parallel

rule (p1 +p2) to the same element in the host graph through non-injective matches.

In our case we have to decide which elements will get identified before performing

the composition.

Definition 5 (Parallel Independence) Productions p1 and p2 are truly concurrent

if it is possible to define their composition and it does not depend on the order:

p2 ◦ p1 = p1 ◦ p2.

We use the notation p1 ‖ p2 to denote true concurrency (i.e. parallel indepen-

dence). It defines a symmetric relation so it does not matter whether p1 ‖ p2 or

p2 ‖ p1 is written.

Next proposition compares parallel and sequential independence for two produc-

tions, in the style of the parallelism theorem (see [2]). The proof is straightforward

in our case and is not included.

Proposition 7.1 Let s2 = p2; p1 be a coherent concatenation and assume compat-

ibility, then: p1 ‖ p2 ⇐⇒ p2⊥p1.

Proof. Assuming compatibility frees us from ε-productions. Elements are identified

in the same way in p1 ‖ p2 and p2⊥p1. �

So far we have just considered one production per branch when parallelizing, as

represented in Fig. 14. One way to deal with more general schemes (see Fig. 15)

is to test parallelism for each element in one branch against every element in the
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other. In the figure, sequences s1 = p6; p5; p4 and s2 = p3; p2; p1 can be computed

in parallel if there is sequential independence for every interleaving. This is true if

pi ‖ pj, ∀i ∈ {4, 5, 6}, ∀j ∈ {1, 2, 3}. There are many combinations that keep the

relative order of s1 and s2, e.g. p6; p3; p2; p5; p1; p4 or p3; p6; p2; p5; p1; p4. In order

to apply these two sequences in parallel, all interleavings that maintain the relative

order should have the same result.

p7

p6; p5; p4





 p0
������

p7

p3; p2; p1
������ p0







Fig. 15. Parallel Execution Example.

Though there are some similarities between this concept and the concurrency

theorem [4], here we rely on the possibility to characterize production advancement

or delaying inside sequences more than just one position, hence, being more general.

Theorem 7.2 Let sn = pn; . . . ; p1 and tm = qm; . . . ; q1 be two compatible and

coherent sequences with the same MID, where either n = 1 or m = 1. Suppose

rm+n = tm; sn is compatible and coherent and either tm⊥sn or sn⊥tm. Then,

tm ‖ sn through composition.

Proof. Using proposition (7.1). �

Through composition means that the concatenation with length greater than one

must be transformed into a single production using composition. This is possible

because it is coherent and compatible (see prop. 3.6). In fact it would not be

necessary to transform the whole concatenation using composition, but only the

parts that present a problem.

Setting n = 1 corresponds to advancing a production in sequential independence,

while m = 1 to moving a production backwards inside a concatenation. In addition,

in the hypothesis we ask for coherence of rn and either tm⊥sn or sm⊥tn. In fact, if

rm+n is coherent and tm⊥sn, then sn⊥tm. It is also true that if rm+n is coherent

and sn⊥tm, then tm⊥sn (it could be proved by contradiction).

The idea behind Theo. 7.2 is to erase intermediate states through composition

but, in a real system, this is not always possible or desirable if for example these

states were used for synchronization of productions or states.

8 Related Work

The literature for SPO and DPO has mainly studied pair of rules, whereas in our

approach we consider derivations of arbitrary finite length. The only study for

derivations we are aware of is shift-equivalence [2], which is a relation between

derivations (used in models of computation for graph grammars) that equates them

if they are related by a finite number of one-step advancements of a rule inside one of

the derivations. This is modelled through the application of analysis and synthesis
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operations on parallel rules (made of a set of rules where each rule is parallel-

independent of all the others) and derivations respectively. In addition, in order

to compute shift-equivalent canonical derivations [2] (where each rule is applied as

soon as possible), rules are advanced in single steps, but only if they are independent

with the following one. As we have seen in the example for G-congruence, our

notion of independence for derivations is stronger, as a rule can be advanced two

(or more) positions even if it is not independent with the following one. Moreover,

we explicitly give the conditions, instead of first assuming independence and then

using categorical operators. In addition, we believe that explicitly modelling the

deletion of dangling edges by means of ε-productions facilitates this study.

With respect to composition, note that we identify accross rules the elements

through which composition is performed. This is similar to the concurrency the-

orem [4]. Non-injective matches in DPO allow identifying different elements in

a parallel rule, while we have to decide such identification before calculating the

composition.

With respect to other similar approaches to Matrix Graph Grammars, in [15]

the DPO approach was implemented using Mathematica. In that work, (simple)

digraphs were represented with their boolean adjacency matrices. This is the only

similarity with our work, as our goal is to develop a theory for (simple) graph

rewriting based on boolean matrix algebra. Other somehow related work is the

relational approaches of [7] and [10]. However, they rely on category theory for

expressing the rewriting.

9 Conclusions and Future Work

In this paper we have presented some new concepts of MGGs. In particular we

have introduced the nihilation matrix and the negative initial digraph, which make

explicit the elements that must not be present in a rule or sequence for their appli-

cation. We have also studied applicability of sequences and sequential independence

(for derivations). This latter concept has been extended to sequences of arbitrary

finite length. Our approach of explicitly modelling the deletion of dangling edges

by means of ε-productions greatly facilitates this analysis. We have also introduced

rule composition and parallel independence in the absence of dangling edges.

The next step after problem 4 is the study of confluence [4,6], which can be

settled as a problem very much like those introduced so far. We are also working

on the study of parallel independence in the presence of ε−productions, application

conditions and tool support, taking AToM3 [8] as a basis.
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