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a b s t r a c t

Hybrid theoretical, experimental and numerical method is proposed for free vibration and buckling of
composite shell with unavoidable scatter in elastic moduli. Based on the Goggin’s measurement tech-
niques, the elastic moduli for material T300-QY8911 are measured, and a set of experimental points
are obtained. The measurements of elastic moduli are quantified by either (1) the smallest ellipsoid
and (2) the smallest four-dimensional uncertainty hyper-rectangle. Then uncertainty propagation in
vibration and buckling problems of composite shell by ellipsoidal analysis and interval analysis are,
respectively, studied from the theoretical standpoint. Comparison between these analyses is performed
numerically.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction uncertainty were coming from, was not addressed. This resulted in
Due to high strength-to-weight and stiffness-to-weight ratios,
composite materials are widely used in various types of engineering
structures. However, usually composite materials experience larger
uncertainties in their material properties than conventional materi-
als due to a number of parameters involved in their fabrication and
manufacturing processes (Tewary, 1978). In past years, extensive lit-
eratures were devoted to study the influence of the uncertainties on
the mechanical performance of the composite structures, including
probabilistic method and non-probabilistic method. For example,
Ramu and Ganesan (1993) treated the scatter in material properties
within the realm of stochastic finite element method. When the
available limited uncertain information is not sufficient to determine
the probabilistic characteristics of uncertain parameters, the non-
probabilistic methods were shown to possess great advantage. Eli-
shakoff, Li and Starnes used convex modeling to incorporate uncer-
tainties in elastic moduli into the structural analysis (Elishakoff
et al., 2001). Qui (2005) performed a comparison between convex
models and interval analysis method to predict the effect of uncer-
tain-but-bounded parameters on the buckling of composite struc-
tures. Nevertheless, these studies evaluated only the bounds of
natural frequency or buckling load based on the presumed hyper-
rectangular or ellipsoidal uncertainties. The basic precondition,
namely the problem of where these hyper-rectangle or ellipsoid of
ll rights reserved.

elishako@fau.edu (I. Elishak-
the difficulty of applications of both convex models and interval
analysis in practical problems. Pantelides adopted convex models
to examine the buckling and postbuckling behaviour of thin-walled
stiffened elements under uniform compression with geometric and
material uncertainties (Pantelides, 1996). Based on Goggin’s experi-
mental data (Goggin, 1973), variations of natural frequency and
buckling load due to uncertainty in material properties by convex
modeling were predicted by Li et al. (1996). In the paper by Wang
et al. (2008), two methods for uncertainty quantification, namely,
convex modeling and interval analysis, were extensively compared
by use of the simulated data points, where the smallest ellipsoid
and the smallest hyper-rectangle enclosing them were determined.

The present paper proposes a hybrid theoretical, experimental and
numerical method to investigate uncertainties in the elastic moduli.
It gives a complete procedure of uncertainty analysis, containing
three parts. The first part is to quantify the uncertainty based on
the real experimental data points. The second part constitutes the
theoretical analysis of the uncertainty propagation in the structural
problems at hand. The third part is represented by numerical inves-
tigation. The procedures outlined in this paper are deemed to pro-
vide a needed tool not just for an intellectual exercise, but for
solution of the practical problems involving uncertainty.
2. Problem statement

Cylindrical shells of composite materials are usually significant
parts of the engineering structures. Free vibration and buckling of
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composite cylindrical shell with simply supported boundary condi-
tions have been extensively studied in previous literature.

The closed-form expressions for the natural frequency and the
buckling load (for details see Appendix), are, respectively,

x2
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1
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From Eqs. (1) and (2), it can be seen that before any prediction
can be made on the vibration and buckling properties of the com-
posite shell, the values of the elastic moduli should be known in
advance. However, due to the scatter or uncertainty in elastic mod-
uli stemming from their fabrication and manufacturing processes,
the influences of them on the natural frequency and buckling load
need to be analyzed.

In the following, based on the real experimental data points ob-
tained by one of us (C.K.), ellipsoidal and interval analyses will be
adopted to quantify uncertainties of the elastic moduli and inves-
tigate their propagation in the free vibration and buckling of the
composite cylindrical shell.

3. Ellipsoidal and interval analyses

3.1. Convex modeling and interval modeling of experimental data for
elastic moduli of T300-QY8911

Before the analysis of uncertainty propagation, the uncertain
elastic moduli need to be quantified. By virtue of the concept in
the paper by Wang et al. (2008), we will determine the smallest
ellipsoid and the smallest hyper-rectangular containing the real
experimental data of the elastic moduli for T300-QY8911.

The elastic modulus in the first direction E1, the elastic modulus
in the second direction E2, the Poisson ratio v21 and the shear mod-
ulus G12 are measured. The four parameters constitute a four-
dimensional parameter space, namely, E = (E1,E2,v21,G12)T. Experi-
mental techniques given by Goggin (1973) and adopted by Elishak-
off et al. (2001) are used to measure these elastic moduli. Table 1
shows the measured 18 data points of the elastic moduli for
T300-QY8911.

The 18 experimental points are represented by E(r)(r =
1,2, . . .,18). By the method introduced in the paper by Wang
Table 1
Experimental data of the elastic moduli for T300-QY8911.

No. E1 (GPa) E2 (GPa) v21 G12 (GPa)

1 129.20 9.34 0.28 5.23
2 131.59 9.53 0.33 4.97
3 130.63 9.08 0.33 5.16
4 132.01 9.34 0.33 5.15
5 131.04 8.94 0.34 5.15
6 120.61 9.04 0.33 4.81
7 127.69 8.99 0.32 5.11
8 133.65 9.36 0.35 5.08
9 132.19 9.07 0.30 4.85

10 132.00 9.73 0.35 5.00
11 130.39 9.21 0.34 5.34
12 128.28 8.67 0.33 4.98
13 135.30 9.18 0.32 5.13
14 137.33 9.28 0.33 5.25
15 141.69 10.73 0.31 5.47
16 126.91 9.39 0.33 5.65
17 133.75 9.34 0.32 5.33
18 129.24 9.35 0.32 5.16
et al. (2008), convex modeling assumes that all these experimental
points belong to an ellipsoid

ZðW; hÞ ¼ fE : E 2 R4; ðE� E0ÞT WðE� E0Þ 6 1g ð3Þ

where E0 is the state vector of the central point of the ellipsoid, and
W is the weight matrix. Interval modeling assumes that all experi-
mental points belong to a hyper-rectangle.

By using transformation matrix TN(h1,h2, . . .,hN�1) given in the
paper (Zhu et al., 1996), the above 18 points in the rotated coordi-
nate system will have their new coordinates denoted by
b(r)(r = 1,2, . . .,18). Here, N = 4, so the transformation matrix will be

T4ðh1; h2; h3Þ ¼

cos h1 � sin h1 0 0
sin h1 cos h2 cos h1 cos h2 � sin h2 0

sin h1 sin h2 cos h3 cos h1 sin h2 cos h3 cos h2 cos h3 � sin h3

sin h1 sin h2 sin h3 cos h1 sin h2 sin h3 cos h2 sin h3 cos h3

2
6664

3
7775

ð4Þ

To obtain the smallest ellipsoid, let us first examine a four-
dimensional box of the form

jb� b0j 6 d ð5Þ

which contains all 18 points. The vector of semi-axes d = (d1,d2,d3,d4)T

and the vector of central points b0 = (b10,b20,b30,b40)T of the ‘‘box” in
the rotated coordinate system are given by

dk ¼ 1
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r
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We now enclose this box by an ellipsoid

X4
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ðbk � bk0Þ2

g2
k

6 1 ð7Þ

where gk are the semi-axes of the ellipsoid. There are infinite num-
ber of ellipsoids which contain the box given in Eq. (5). Clearly, the
best choice is the one with minimum volume. The volume of an m-
dimensional ellipsoid is given by

Ve ¼ C4

Y4

k¼1

gk ð8Þ

where C4 is a constant.
Following the monograph by Elishakoff et al. (2001) and the pa-

per by Qiu (2003), the semi-axes of the smallest ellipsoid should be

gi ¼
ffiffiffiffiffi
m
p

di ði ¼ 1;2;3;4Þ ð9Þ

Thus, once the size of the box Eq. (5) is known, the semi-axes of
the minimum-volume ellipsoid enclosing the box of the experi-
mental data are readily determined by utilizing Eq. (9). If there
are no experimental points at the corner of the box, the size of such
an ellipsoid may further be reduced until one of the experimental
points reaches the surface of the ellipsoid. The semi-axes of the
ellipsoid in this case may be replaced by ggk, where the factor is
determined from the condition

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r

X4

k¼1

bðrÞk � bk0

� �2

g2
k

vuuut
6 1; ðr ¼ 1;2; . . . ;18Þ ð10Þ

If there are some experimental points in the corner of the multi-
dimensional box, the factor g equals unity. The ellipsoid (7) can
be written in the form

ðb� b0ÞT Dðb� b0Þ 6 1 ð11Þ
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in which b0 is the vector of central points whose components are gi-
ven by Eq. (6), and D is a diagonal matrix

D ¼ diag ðgg1Þ
�2
; ðgg2Þ

�2
; ðgg3Þ

�2
; ðgg4Þ

�2
� �

ð12Þ

The volume of the ellipsoid now reads

Ve ¼ C4g4
Y4

k¼1

gk ð13Þ

which is a function of a set of parameters hk(k = 1,2,3). Therefore,
the best ellipsoid among these ellipsoids is the one which contains
all given points and possesses the minimum volume, i.e.,

Ve ¼ min
h1 ;h2 ;h3

Veðh1; h2; h3Þf g ð14Þ

A possible approach to determine this ellipsoid is to search among
all possible cases by increasing hk(k = 1,2,3) from 0 to p/2 in suffi-
ciently small increments Dhk, and to compare the volumes of so ob-
tained ellipsoids. Once one finds the ellipsoid with minimum
volume in one direction, say hk0(k = 1,2,3), the ellipsoid can be
transformed back into the original coordinate system by applying
the transformation matrix T4. Hence, the vector a0 of central point
and the weight matrix W in Eq. (3) become

E0 ¼ TT
4b0; W ¼ TT

4DT4 ð15Þ

where T4 = T4(h10,h20,h30). So Eq. (15) constitutes the smallest ellip-
soid containing all experimental points. The ‘‘box” corresponding to
the smallest ellipsoid is the smallest hyper-rectangle.

In order to avoid the numerical problem due to the different or-
der of magnitude for elastic moduli, the dimensionless uncertainty
coefficients of elastic moduli are introduced as follows:

e1 ¼
E1

131:0 ðGPaÞ ; e2 ¼
E2

9:4 ðGPaÞ ; l21 ¼
v21

0:3
; g12 ¼

G12

5:3 ðGPaÞ
ð16Þ

So the data points for the uncertainty coefficients of elastic
moduli can be obtained as Table 2.

According to the experimental data shown in Table 2, the opti-
mal rotation angle is h* = (h10,h20,h30) = (38�,30�,60�), which im-
plies that the smallest ellipsoid is not parallel to the global
coordinate system, and the dimensionless e0 and W can be ob-
tained as

e0 ¼ ðe1; e2;l21; g12Þ
T ¼ ð1:0189;1:0185;1:0405; 0:9652ÞT ð17Þ

and
Table 2
The dimensionless uncertainty coefficients of the elastic moduli for T300-QY8911.

No. e1 e2 l21 g12

1 0.9863 0.9936 0.9333 0.9868
2 1.0045 1.0138 1.1000 0.9377
3 0.9972 0.9660 1.1000 0.9736
4 1.0077 0.9936 1.1000 0.9717
5 1.0003 0.9511 1.1333 0.9717
6 0.9207 0.9617 1.1000 0.9075
7 0.9747 0.9564 1.0667 0.9642
8 1.0202 0.9957 1.1667 0.9585
9 1.0091 0.9649 1.0000 0.9151

10 1.0076 1.0351 1.1667 0.9434
11 0.9953 0.9798 1.1333 1.0075
12 0.9792 0.9223 1.1000 0.9396
13 1.0328 0.9766 1.0667 0.9679
14 1.0483 0.9872 1.1000 0.9906
15 1.0816 1.1415 1.0333 1.0321
16 0.9688 0.9989 1.1000 1.0660
17 1.0210 0.9936 1.0667 1.0057
18 0.9866 0.9947 1.0667 0.9736
W ¼

148:2163 �89:0543 7:9058 �2:3375
�89:0543 103:8088 10:1189 �2:9919

7:9058 10:1189 49:0595 �6:5762
�2:3375 �2:9919 �6:5762 65:2416

2
6664

3
7775 ð18Þ

Corresponding to the smallest ellipsoid, the smallest hyper-
rectangle also can be obtained. Its 16 vertices are given in Table
3, which can be denoted by the following set

ê ¼ fe : e 2 R4; e ¼ eðiÞ; i ¼ 1;2; . . . ;16g ð19Þ

It can be seen from Table 3 that the smallest hyper-rectangular
is also not parallel to the global coordinate system.

3.2. Determination of bounds on the natural frequency and buckling
load

After quantifying the elastic moduli with the ellipsoid and the
hyper-rectangle based the measured experimental points, both
ellipsoidal and interval analyses for uncertainty propagation in
the free vibration and buckling problems ought be proceeded. As
has been stated in the previous section, the objective function
(the natural frequency xmn,0 or the critical external pressure pmn)
of the composite shell depends on the four basic elastic moduli.
One can also discuss the natural frequency xmn,N if the external
pressure is present, having in mind that the external pressure is be-
low its critical value. For the sake of generality, in the following
analysis, a generic formula for the objective function is adopted in-
stead of relying on a more concrete expression such as Eq. (1) or
(2).

The objective function is written in the following generic form:

F ¼ Fðe1; e2;l21; g12Þ; F ¼ xmn;0 or pmn ð20Þ

or more simply

F ¼ FðeiÞ; ði ¼ 1;2;3;4Þ ð21Þ

where e3 = v21 and e4 = g12. The function F in the above equation also
depends on the form of structure, boundary conditions as well as
geometric properties.

Let e0
i ði ¼ 1;2;3;4Þ be the nominal values of the elastic moduli,

which can be derived from Eq. (17). Then, the elastic moduli of val-
ues different from those nominal values could be denoted as
e0

i þ di, di being deviations from nominal values. So the deviation
vector will be dT = (e � e0)T = (d1,d2,d3,d4). The objective function
corresponding to these elastic moduli, retaining only the first order
terms in di, is written as follows:

F e0
i þ di

� �
¼ F e0

i

� �
þ f Td ð22Þ
Table 3
Vertices of the smallest hyper-rectangle.

No. (e1,e2,l21,g12)

e(1) (0.8863,0.9177, 1.0034,0.9868)
e(2) (0.9326,0.9769, 1.1335,1.0736)
e(3) (0.9094,0.9473,1.0684,0.8568)
e(4) (0.9557,1.0065,1.1985,0.9436)
e(5) (1.0153,1.0828,0.8825,0.9868)
e(6) (1.0615,1.1420,1.0126,1.0736)
e(7) (1.0384,1.1123,0.9474,0.8568)
e(8) (1.0846,1.1715,1.0776,0.9436)
e(9) (0.9532,0.8655, 1.0034,0.9868)
e(10) (0.9995,0.9247, 1.1335,1.0736)
e(11) (0.9763,0.8951, 1.0684,0.8568)
e(12) (1.0226,0.9543,1.1985,0.9436)
e(13) (1.0821,1.0305,0.8825,0.9868)
e(14) (1.1284,1.0897, 1.0126,1.0736)
e(15) (1.1052,1.0601,0.9474,0.8568)
e(16) (1.1515,1.1193,1.0776,0.9436)
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where
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Based on the smallest ellipsoid (3), the deviation d from the
nominal elastic moduli is to vary in the following ellipsoidal set

ZðW; hÞ ¼ fd : d 2 R4; dT Wd 6 h2g ð24Þ

where the size parameter h is set equal to unity and the weight ma-
trix W can be obtained from Eq. (18).

If ellipsoidal analysis (Chernousko, 1993) is adopted, then the
problem is formulated as follows: based on the ellipsoid (24) of
the elastic moduli, find the extreme natural frequency (or the crit-
ical external pressure)

Fext ¼ extermum
d2ZðW;hÞ

F e0
i

� �
þ f Td

� �
ð25Þ

In Eq. (25), Fext is the lowest or the highest value of the funda-
mental natural frequency (or the critical external pressure) of the
composite structure with the elastic moduli varying within the
range of the ellipsoidal set Z. Since Eq. (25) calls for finding the
extremum of the linear functional fTd on the convex set Z(W,h),
the extreme values take place on the set of the extreme points,
or the boundary, of the set Z as discussed by Ben-Haim and Elishak-
off (1990) and Qui (2005).

To arrive at the extreme values, we use the method of La-
grange multipliers. Since the analysis which follows is mathe-
matically analogous to that described in monograph by Ben-
Haim and Elishakoff (1990), here we only list the final result.
The extreme values of the objective function F result in the fol-
lowing expressions:

xmn;max ¼ hxmn;0i þ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T
xW�1fx

q
;

xmn;min ¼ hxmn;0i � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T
xW�1fx

q
pcr;max ¼ hpcri þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T
p W�1fp

q
;

pcr;min ¼ hpcri � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T
p W�1fp

q
ð26Þ

where hxmn;0i ¼ xmn;0ðe0
1; e

0
2; e

0
3; e

0
4Þ and hpcri ¼ pcrðe0

1; e
0
2; e

0
3; e

0
4Þ are

values of the natural frequency and critical extreme pressure calcu-
lated at the middle values of the elastic moduli, and

f T
x ¼

oxmn;0 e0
i

� �
oe1

;
oxmn;0 e0

i

� �
oe2

;
oxmn;0 e0

i
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;
oxmn;0 e0

i
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oe4
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f T
p ¼

opcr e0
i

� �
oe1

;
opcr e0

i

� �
oe2

;
opcr e0

i

� �
oe3

;
opcr e0

i

� �
oe4
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If interval analysis (Moore, 1979; Alefeld and Herzberger, 1983;
Neumaier, 1990; Hansen, 1992) is adopted, then the problem is
formulated as follows: based on the hyper-rectangle of the elastic
moduli from Table 3, find the extreme natural frequency (or the
critical external pressure). Due to the convexity of the derived
smallest hyper-rectangle and the linearity of Eq. (22), the extreme
values of the objective function F will reach at the 16 vertices in Ta-
ble 3, i.e.,

xmn ¼ min xðiÞmn; i ¼ 1;2; . . . ;16
	 


; �xmn ¼ max xðiÞmn; i ¼ 1;2; . . . ;16
	 


ð29Þ

and

pcr ¼min pðiÞcr ; i ¼ 1;2; . . . ;16
	 


; �pcr ¼ max pðiÞcr ; i ¼ 1;2; . . . ;16
	 


ð30Þ
where xðiÞmn ¼ xmnðeðiÞÞ and pðiÞcr ¼ pcrðeðiÞÞðE
ðiÞ ¼ ðeðiÞ1 ; e

ðiÞ
2 ; e

ðiÞ
3 ; e

ðiÞ
4 ÞÞ are

values of the natural frequency and critical extreme pressure calcu-
lated at the vertices of the elastic moduli.

From the above ellipsoidal and interval analyses, the upper-
and lower-bounds of the natural frequency x and the critical
external pressure pcr, respectively, can be calculated by using
the approximate expression for F. These results show that the
uncertainties in elastic moduli have a significant effect on the
values of the natural frequency and the buckling load of the
composite structure.
4. Numerical examples

In order to illustrate the efficacy the presented hybrid method,
numerical analysis of two cases of the free vibration and buckling
problems of composite shells will be used to investigate the influ-
ence of uncertainties in the material properties for T300-QY8911
on the natural frequency and buckling load.

The derived smallest ellipsoid Eqs. (17) and (18) and the verti-
ces of the derived smallest hyper-rectangular in Table 3 obtained
from the experimental data in Table 1 are used in the following
ellipsoidal analysis (EA) and interval analysis (IA), respectively.

Consider the composite cylindrical shell with a radius
R = 125.0 mm and the thickness of each laminate t = 0.5 mm subject
to simply supported boundary conditions. The length of the shell is
L = 2000.0 mm. The density of T300-QY8911 is 1380.0 kg/m3. The
following two cases are considered:

Case 1: The 10-layer laminated shell, with ply angle being
[h,�h,h,�h,h]sym, h ranging from 0� to 90�.

Case 2: The 5-layer laminated shell, with ply angle being
[h,�h,h,�h,h], h ranging from 0� to 90�.

The percentage value b is defined to quantify the degree of
uncertainty of the natural frequency or the critical external pres-
sure of the composite shell as follows:

b ¼ ðFu � FÞl=2Fn � 100% ð31Þ

where subscripts u, l and n, respectively, denote the upper-bound,
lower-bound and the nominal value.

The variability of the fundamental natural frequency and the
critical external pressure obtained by ellipsoidal and interval anal-
yses are shown in Figs. 1 and 2 for the 10-layer laminated cylindri-
cal shell, and Figs. 3 and 4 for the 5-layer laminated cylindrical
shell, where the abrupt turns at some points of these curves imply
the change of vibration or buckling mode. Figs. 5–8 portray the
percentagewise degree of uncertainty of the fundamental natural
frequency and the critical external pressure corresponding to Figs.
1–4, respectively.

It can be seen from these figures that the effect of uncertainty in
elastic moduli on both the fundamental natural frequency and the
critical external pressure varies greatly with the laminate configu-
ration and the number of layers of the composite shell. It is
remarkable that the variability of the critical external pressure
due to the uncertainty in elastic moduli is bigger than that of the
fundamental natural frequency. For example, the percentagewise
degree of uncertainty for the fundamental natural frequency is
about 5%, while that for the critical external pressure is about
11%. From Figs. 5–8, it appears that certain differences exist be-
tween the degree of uncertainty predicted by ellipsoidal analysis
and interval analysis. In fact, numerically the maximum differ-
ences between the two methods only are 0.53%, 1.66%, 0.85% and
3.1% for the four results given in Figs. 5–8. Therefore, both ellipsoi-
dal modeling and interval analysis appear to constitute viable
methods for uncertainty quantification.
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5. Conclusion

In this paper, a hybrid theoretical, experimental and numerical
method is proposed to evaluate the influence of the scatter in elas-
tic moduli on the natural frequency and critical external pressure
of composite shell. The smallest ellipsoid and hyper-rectangle con-
taining the measured experimental points for material T300-
QY8911 are derived, which may be not parallel to the global coor-
dinate system. Based on the obtained ellipsoid and hyper-rectan-
gle, uncertainty propagation in vibration and buckling problems
are studied by ellipsoidal analysis and interval analysis. The results
of theoretical analysis and numerical analysis show that there is a
significant influence of scatter in elastic moduli on both the natural
frequency and critical buckling load of composite shell.

This study proposes a complete framework for uncertainty
analysis in structures with uncertain parameters. Remarkably, it
makes both ellipsoidal modeling and interval analysis as practical
tools apparently for the first time in the literature.
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Appendix. Basic equations for free vibration and buckling of
composite shell

Donnell shell theory is used to analysis the buckling of cylindrical
shells of composite materials. The strain–displacement relations are
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where x and y are the axial and circumferential coordinates in the
shell middle surface; u and v are the shell displacement along axial
and circumferential directions, and w is the radial displacement, po-
sitive outward; ex, ey and cxy are strain components; jx, jy and jxy

are middle surface curvature of the shell; R is the radius of the cylin-
drical shell.

The constitutive relations for the composite laminate read
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where Nx, Ny and Nxy are stress resultants, Mx, My and Mxy are bend-
ing and twisting moments, acting on a laminate; the laminate stiff-
ness Aij, Bij and Dij are defined as

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Q ðkÞij ð1; z; z

2Þdz ðA:3Þ
where h is the total thickness of the laminate, and z is the coordi-
nate in the direction of the laminate thickness; Qij are the trans-
formed reduced stiffness and can be expressed in terms of the
lamina orientation and four independent engineering material con-
stants in principal material directions, i.e., E1, E2, v21 and G12.

The equilibrium equations of the cylindrical shell read
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ðA:4Þ

where q is the mass per unit volume of the shell and t is time.
Using Eqs. (A.1) and (A.2), Eq. (A.4) can be written as
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where the operators Lij are
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We consider the cylindrical shell with simply supported bound-
ary conditions which are satisfied by the following displacement
functions

u
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w
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where km = mp/L, kn = n/R and x is the natural frequency of the shell.
Similar to studies by Tasi (1966), and Hirano (1979), here the

coupling stiffness (A16,A26,B16,B26,D16,D26) are neglected. They
actually vanish for symmetric cross-ply laminates. As for symmet-
ric angle-ply laminates, B16 and B26 are zero, and A16, A26, D16 and
D26 can be neglected for laminates with many layers.

Substitution of Eqs. (A.1) and (A.2) into Eq. (A.4) leads to a set of
homogeneous linear algebraic equations, and the existence of non-trivial
solutions requires that the determinant of the coefficient matrix vanish
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where elements Cij’s are expressed as
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From Eq. (A.8), the following expression can be readily derived
for the natural frequency
qx2 ¼ C33 þ
ð2C12C23 � C13C22ÞC13 � C2

23C11

C11C22 � C2
12

þ k2
mNx þ kmknNxy þ k2

nNy � qx2
mn;N ðA:10Þ
where the subscript ‘‘N” indicates the presence of external loading
acting in the mid-surface of the shell.

If the shell in question is free from external loading, i.e.,
Nx = Ny = Nxy = 0, the natural frequency becomes

x2
mn;0 ¼

1
q

C33 þ
2C12C23 � C13C22ð ÞC13 � C2

23C11

C11C22 � C2
12

" #
ðA:11Þ

where the subscript zero indicates that the external loads acting in
the mid-surface of the shell are absent. To determine the funda-
mental natural frequency for a cylindrical shell with given dimen-
sions and material properties, one determines those integer
values of m and n which minimize xmn. With x = 0, Eq. (A.10) yields
an expression for the buckling load. Consider the buckling of shells
under external pressure p, for which

Ny ¼ �pR; Nx ¼ �
pR
2
; Nxy ¼ 0 ðA:12Þ

The expression for the critical external pressure can be readily de-
rived as follows:

p ¼ 2
ðk2

m þ 2k2
nÞR

C33 þ
ð2C12C23 � C13C22ÞC13 � C2

23C11

C11C22 � C2
12

" #
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ðA:13Þ

Again, one has to perform a search with respect to integer variables
m and n to minimize the objective function pmn in order to obtain
the critical external pressure pcr for a cylindrical shell with given
dimensions and material properties.
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