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Given a sequence (g,) of Fourier multipliers for LP(R), | < p < =, let g :=
3. 2aXn Where x, denotes the characteristic function of the interval {27, 2**}] in
R. Assuming (g.) € £ (M(p)) for some s with 0 < s = x_ we determine the values
of s for which g is, or is not, a multiplier of L7(R). Our results sharpen a result of
Littman et al. who, in 1968, considered the case when s = =, The same problem is
also considered for multipliers in £7-spaces defined on a locally compact Vilenkin
group. © 1994 Academic Press, Inc.

1. MULTIPLIERS FOR L?(R)

We first introduce some notation. For f € L(R) we denote its Fourier
transform by f:

fiey = [ feoemiced,

The inverse Fourier transform of f will be denoted by . A function g €

L*(R) is a (Fourier) multiplier of L?(R), 1 < p < =, if the operator T,

defined initially for f € LXR) N LM(R) by T,f = (gf)V, can be extended as

a bounded operator to LP(R); we write g € M,(R). The norm of 7,: L(R)
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— LP(R) will be denoted by ||g|lm. For 1 = p < xand 0 < g = =, the
mixed-norm space €9(M{p)) consists of the set of all sequences of LP(R)-
multipliers (g,)~~ for which

o g
Hé’n“é«(M(p» = ( Z (”gn“Mlp))q) < =,

n=-x

with the usual modification if ¢ = . In this section only, we shall use the
notation x , to denote the characteristic function of the interval [27, 27! in
R, n € Z. As usual, C will denote a generic constant.

In their 1968 paper [2] on L7(R)-multipliers Littman et al. gave an
example of a sequence of functions (g,)Z- such that

(i) supp(g,) C [27, 27"'] for each n € Z,
(i) (g2« € €*(M(p)), where | < p < xandp # 2,
(i) g := 25-_x guXn & M,(R).

The example in [2] raises the question stated in the Abstract: given
functions g, such that (g,) € ¢ (M(p)) for some s > 0, determine the
values of s for which g as defined in (iii) belongs, or does not belong, to
M (R).

In [1] Cowling et al. proved that if (g,) satisfies (ii) and if the function g
is defined by g = 2%, a,g,x . for some sequence (a,) € £*(Z) with l/s =
[1/p — 1/2| and 1 < p < =, then § € M,(R). Thus, expressing g as

&) = > |l gallar i a&)/1 &nllsae pp) X nlE).

n=-x%

we obtain immediately the following.

THEOREM 1.1. Let | < p < = and let s = |2p/(2 — p)| (withs = < in
case p = 2). For each n € Z let g, € M,(R) and assume (g,)-. €
€(M(p)). Define g by g(§) = Z%. gu&)xulé). If g € LX(R) then g €
M,(R).

We now prove the sharpness of Theorem 1.1, thereby significantly
extending the result of Littman et al. The example we construct in the
proof of Theorem 1.2 is obtained by means of some modifications in the
example used by Triebel to prove that, for I =< p = and p # 2, the set of
multipliers for the Besov spaces B, (R"), 0 < p = = and 5 € R, does not
coincide with the set of multipliers for LP(R"). Our proof of Theorem 1.2
will be brief; for additional details we refer to [7]. We mention here in
passing that the example we shall give also shows that the choice of 1/s =
[1/p — 1/2| in the aforementioned theorem of Cowling et al. is the best
possible.
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THEOREM 1.2. Let 1 <p<=,p #2,andletq>s = [2p/(2 — p)|. Then
there exist functions g, € M,(R), n € Z, so that

(a) supp(g,) C (2%, 2""Y] for eachn € Z,
(b) (gn) € €4M(p)),
(c) ifg:= 25 _.g, then g € L(R) and g & M,(R).

Proof. Assume 2 < p < =, so that I/s = 1/2 — 1/p, and assume g < x
(if ¢ = = the following proof requires some minor modifications). Choose
asothat [/g < a < 1/s. Let ¢ € F(R) with ¢(€) # 0 and supp(yr) C {0 <
£ =< 1}. For k = 0, let gi(¢) = 0 and for & € N define g, by

gi(€) = keI Ty (¢ — 24).
Furthermore, define the function g by g(¢) = 27 gi«(é). It is easy to see

that (g,) satisfies conditions (a) and (b). To prove that g & M,(R), con-
sider for each N € N the function fy defined by

N
fylx) = Z ezniZ‘(,r—?i(w)v(_\, — 2k,
k=1

Then

N
(V' (€) = 2 e ey = 2

k=1

and on p. 125 (8) of [7} it is shown that || fx||, = CN'". Also,

-~ N ' \/
(gfwVx) = | > k=g = 20 (x),
k=1

so that
- N v
il = (2 ke —29) |,
k=1
N 172
= (Z k= - 2*)»'!2)
k=1 r
N 2
= N (}3 e - 2k))V|2)
k=1 P

= CN-=N'2
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according to [7, p. 125 (9)]. Thus, assuming g € M,(R), we have
N~ < Cligfw¥ll, = Clifull, = CN™,

that is,

N-et12-1p < C forall N € N.

Since « < 1/2 — 1/p we have a contradiction and we may conclude that
g & M,(R), that is, (c) holds.

As an application of Theorem 1.1, we give a simple generalization of
Theorem 2 in [1].

THEOREM 1.3. Let 1 < p < =, Assume that for each n € Z we have
gn € M,(R) and let (g,)%= € €4(M(p)) for some q = s = [2p/(2 — p)|. Let
B=qgsi(qg—s)withB=sifqg==and B = =<if q=s). Assume (a,)" . €
¢A(Z) and define g:R — C by g(&) = 2% a,gulé)xal€). If g € L*(R)
then g € M,(R).

Proof. We have, by Holder’s inequality,

x {g—s)
S o) <

n=-—

x * sig
S fanalivn = ( S Ulealun)

n=-x

Thus Theorem 1.1 implies that g € M,(R).

2. MULTIPLIERS FOR LP(G)

In this section we prove the analogue of the results of Section 1 for
multipliers for Lebesgue spaces defined on a locally compact Vilenkin
group G. We start with a brief description of such Vilenkin groups and
introduce some additional notation.

DerFINITION 2.1. A locally compact Abelian group G is said to be a
locally compact Vilenkin group if there exists a strictly decreasing se-
quence of compact open subgroups (G,)Z.. such that UZ. G, = G, NI,
G, = {0} and sup {order G./G,,,:n € Z} < =,

We shall denote the dual groupof Gby I"'and foreachne Z, T, ;= {y €
I':vy(x) = 1 for all x € G,}. We choose Haar measures won Gand Aon T
so that w(Gy) = AM(Ig) = 1. Then u(G,) = (A ([,) ' forall n € Z; we set m,

409/187,/2-11
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:= A(T",). The Fourier transform for functions on G and the inverse
Fourier transform for functions on I' will be denoted by " and Vv, respec-
tively. We define the function A,: G — C by A,(x) = m,x¢ (¥); an easy
computation shows that (A,)" = xy. . The space of Fourier multipliers for
L,(G), 1 < p <=, is defined as in Section 2 and will be denoted by M,(G).
If ¢ € M,(G) the corresponding operator norm is denoted by ||¢||u» . The
definition of the mixed-norm spaces €9 M(p)), | <p <xand0< g ==, is
the same as in Section 1. In this section we shall use the notation x, for
the characteristic function of the set I',. A\, in T,

Examples of such locally compact Vilenkin groups are the p-adic num-
bers and, more generally, the additive group of a local field, see [6]. For
additional information about the harmonic analysis on such groups, see
also [3-S5].

We now prove the analogue on G of Theorem 1.1.

THEOREM 2.1. Let1 <p <wxandlets=2p/(2—p)|(withs == ifp =

2). Let ()= be a sequence of functions in €5(M(p)). If ¢:T — C is
defined by ¢(y) = 27w duly)xn(y) and if ¢ € L*(T) then ¢ € M,(G).

Proof. We shall assume that 1 < p < 2. First we observe that if f €
LYG) N LAG) then, according to Minkowski’s inequality,

= Z ”((bnx"j‘)v}‘l-

n=-%

> (@axaf WV

n=-x

1

Moreover, since the functions x, have mutually disjoint support, Plan-
cherel’s equality implies that

> baxaf

n=-x

> (@nxaf )V

n=-—x

2 2
2 2

S a2

n=-%

3 loadVE.

n=-x

Thus, interpolation yields for 1 < p <2

= X l@xHVI5-

n=—x

> (Daxaf)V ]

n=-x
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Therefore,

Z (¢>nxnfw

n=-x

Nl =
P boxad12)

. 1ip

; ”(d)"((An-H - A,) *f)/\)vug)

=
- (
= (3 toultunlian - a0 -115)”
=(2,

=c (Z @er = a0 0 1F) |

n=—x

= Clfll,-

The penultimate inequality follows from the assumption of the theorem
and from Minkowski's integral inequality, whereas the last inequality is a
consequence of the Littlewood—Paley theory for L”(G)-functions. A de-
tailed discussion of this Littlewood—Paley theory in case G is the additive
group of a local field can be found in Chapter V of [6]. These results in [6]
and their proofs can easily be extended to arbitrary locally compact Vi-
lenkin groups.

Next we prove the sharpness of Theorem 2.1. The example constructed
in the proof of Theorem 2.2 is obtained by modifying an example used in
the proof of Theorem 3 in 3], where we established the existence ofa ¢ &
L*(T') such that sup,|/(dx.)V| < > and ¢ &€ M(HG)).

THEOREM 2.2. Letl1 <p <=,p # 2, and assume q > s = |2p/(2 — p)|.
There exist functions ¢, € M(G) such that
(a) supp(d,) C T\, foralln € Z,
(b) (P € €9(M(p)),
(€) ifp:= 2% ¢, then ¢ € L") and ¢ & M,(G).
Proof. We assume that 2 < p <= sothats = 2p/(p — 2). Choose « s0

that 1/¢g < a < 1/s and for each n € N choose an x, € G_,\ G_,.,. Next,
define the functions ¢,:I" — C as follows:
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(bn(‘)’) =0, ifn=0,
baly) = 17 %y (x) xn(7), ifn e N.

Then we have for n € N, (¢)V(x) = n"*(4,,; — AM)x — xp), so that
KbVl = 2n~*. Hence,

el = suplll@ VI, Ifll, = 1} = 2n7=,
so that the sequence (¢,)~= satisfies conditions (a) and (b). Next, let 8 =
1/2 — o and for every n € N choose a character y, € I',. \I',,. If we define
the functions h,: G — C by h,(x) = n Py, (x — x)xc(x — x,), then
(hn)A('Y) = H’HY(X::)Xl‘n(V = Yn).

Let ¢(y) = Zi-) ¢uly) and h(x) = 27—, h,(x). Since supplh,) C x, + G, C
G_\G_,., we see immediately that

hl|5 =
ellg = [, |2

= [ 3 Intwjrdx
G sy

P
AX)| dx

< i n-Br < 20,
n=1

because Bp = (1/2 ~ a)p > 1. Now we consider f:= (d)fl)\/. First observe
that

flx) = Z ne By (x) xG,(x).

n=1

A straightforward computation in which we use the Littlewood-Paley
theory for || f]|, shows that
,

. "
Ifll, = C 2 [(Aksy — AY) *f(')‘z)

.
(E kP CxaOF) )
Je

x ] Up
([, (2 wese) an) " = =
k=1
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because 2(a + 8) = 1. Thus 4 € L”(G) and ((bfz)\/ & LP(G); consequently
¢ & M,(G). This completes the proof of Theorem 2.2.

Clearly, we can also formulate an analogue of Theorem 1.3 for Vilenkin
groups. Such a result extends Theorem 2.4 in [4] from Hardy spaces
HP(G),0<p =1, to the Lebesgue spaces L(G), | <p < =. We omit the
trivial proof of the following theorem.

THEOREM 2.3. Let | < p < =, For each n € Z let ¢, € M,(G) and
assume (¢,)~ . € €4(M(p)) for some g > s = [2p/(2 — p)|. Let (a,) € €¢F(Z)
for B = gsl(q — 5). If :T — C is defined by $(y) = 277~ = audbn(¥)Xn(¥),
then ¢ € M,(G).

Concluding remark. We have also considered multipliers on Hardy
spaces HP(R") and H”(G), 0 < p = 1, where the assumption on the
multiplier is expressed in terms of a mixed-norm condition. The tech-
niques for proving multiplier theorems for Hardy spaces, however, are
very different from the techniques used in this paper. For the spaces
H?(G) our main result in this context is Corollary 2.3 in [4]. The results
we have obtained for such multipliers on H?(R") are presented in {5].
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