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Abstract

Let L be an analytic Jordan curve and let {pn(z)}∞n=0 be the sequence of polynomials that are orthonor-
mal with respect to the area measure over the interior of L . A well-known result of Carleman states that

lim
n→∞

pn(z)
√
(n + 1)/π [φ(z)]n

= φ′(z) (1)

locally uniformly on a certain open neighborhood of the closed exterior of L , where φ is the canonical con-
formal map of the exterior of L onto the exterior of the unit circle. In this paper we extend the validity of
(1) to a maximal open set, every boundary point of which is an accumulation point of the zeros of the pn’s.
Some consequences on the limiting distribution of the zeros are discussed, and the results are illustrated
with two concrete examples and numerical computations.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Polynomials of a complex variable that are orthogonal over a bounded domain of the complex
plane were first investigated by Carleman [3] in 1922, and considerable progress has been made
since then in clarifying questions such as the convergence of Fourier series in these polynomials,
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their completeness in different Banach spaces of analytic functions, their asymptotic behavior
and more recently the limiting distribution of their zeros (see, e.g., the monograph by Suetin [15]
and the references therein, together with the papers [1,2,5,7,9–12]). Generally speaking, all these
questions are dependent of the boundary properties of the orthogonality domain, and in the
present paper we specifically consider the case of a domain with analytic boundary, having as the
subject of our investigation the asymptotic behavior and zero distribution of the corresponding
orthogonal polynomials.

Let L1 be an analytic Jordan curve in the complex plane C and let G1 be its interior domain,
that is, the bounded component of C \ L1. By applying the Gram–Schmidt orthonormalization
process to the sequence 1, z, z2, . . . , we can construct a unique sequence of complex analytic
polynomials {pn(z)}∞n=0 (each pn having degree n and positive leading coefficient) that are
orthonormal over G1 with respect to the normalized area measure π−1dxdy, that is, satisfying

1
π

∫
G1

pn(z)pm(z)dxdy =


0, n ≠ m,
1, n = m.

(2)

These polynomials were first examined by T. Carleman in his study [3] on the approximation
of analytic functions by polynomials over a bounded Jordan domain. In particular, Carleman
investigated the behavior of pn(z) as n → ∞, finding a fundamental result that we state below
after setting some needed notation.

For a planar set K and a function f defined on K , K and ∂K denote, respectively, the closure
and the boundary of K in the extended complex plane C, and f (K ) := { f (z) : z ∈ K }.

Given r ≥ 0, we set

Tr := {w : |w| = r}, ∆r := {w : r < |w| ≤ ∞}, Dr := {w : |w| < r}.

Let Ω1 be the unbounded component of C \ L1, and let ψ(w) be the unique conformal map
of ∆1 onto Ω1 satisfying that ψ(∞) = ∞, ψ ′(∞) > 0. Let ρ ≥ 0 be the radius of univalency
of ψ , that is, the smallest number such that ψ has an analytic and univalent continuation to
{w : ρ < |w| < ∞}. Because L1 is an analytic Jordan curve, ρ < 1. For every ρ ≤ r < ∞, set

Ωr := ψ(∆r ), Lr := ∂Ωr , Gr := C \ Ωr , (3)

and let

φ(z) : Ωρ → ∆ρ

be the inverse of ψ . Observe that for r > ρ, Lr is an analytic Jordan curve.
Carleman’s fundamental result mentioned above ([3, Satz IV], see also [6, Sec. 2]) states that

hn(z) :=
pn(z)

√
n + 1[φ(z)]n

− φ′(z) = o(1) (4)

locally uniformly on Ωρ as n → ∞. More precisely, Carleman proved that hn(z) converges
uniformly as n → ∞ to zero on each Ωr , r > ρ, with the rate

hn(z) =


O

√
nρn

, r ≥ 1,

O


n−1/2(ρ/r)n

, ρ < r < 1.

(5)

Progress in understanding the behavior of pn in C \ Ωρ has been recently made in [11],
where the following asymptotic integral representation for pn has been obtained. If ϕ(z) is a
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conformal map of G1 onto the unit disk, then ϕ has an analytic continuation across L1, so
that the composition ϕ(ψ(w)) is well-defined and analytic on the unit circle T1, and we have
(see [11, Theorem 2.1.2 and Eq. (14)])

pn(z) =

√
n + 1ϕ′(z)

2π i


T1

wndw
ϕ(ψ(w))− ϕ(z)

+ ϵn(z), z ∈ G1, n ≥ 0, (6)

where the functions ϵn(z) are analytic in G1/ρ and have the following property: if E ⊂ G1/ρ is
such that for some 0 < τ < 1/ρ,

pn(z) = O
√

nτ n
uniformly on E as n → ∞, then

ϵn(z) = O
√

n(τρ)n


uniformly on E as n → ∞.
This representation is used in [11] to derive finer asymptotics for pn and its zeros under the

assumption that (roughly speaking) the boundary of Ωρ is a piecewise analytic curve. As a little
bonus, one also obtains from (6) (see [11, Corollary 2.1.3]) that the

√
n factor occurring in (5)

for the case r ≥ 1 can be dropped.
In the present paper we exploit (6) to extend the validity of Carleman’s formula (4) from the

band Ωρ ∩ G1 toward a maximal open subset Σ1 of G1 that is, in general, larger than Ωρ ∩ G1.
Σ1 is the largest open subset of G1 where a strong asymptotic formula like (4) holds true, and
every point of ∂Σ1 ∩ G1 is an accumulation point of the zeros of the pn’s.

These results are stated in Section 2 as Theorems 1 and 2. Some consequences on the limiting
distribution of the normalized counting measures of the zeros of the pn’s are presented as
Theorem 3. The definition of Σ1 and its finding in concrete situations involves the meromorphic
continuation of the map ϕ(ψ(w)) occurring inside the integrand in (6). We study such a
continuation in Propositions 4–6 of Section 2. In Section 3, we discuss two concrete examples
to illustrate the main results and the use of the propositions, and the proofs of the results are
presented in Sections 4 and 5.

2. Main results

Let ϕ be a conformal map of G1 onto D1. Because L1 is a Jordan curve, ϕ can be extended
as a continuous and bijective function ϕ : G1 → D1. Moreover, L1 being analytic, ϕ has a
one-to-one meromorphic continuation to G1/ρ , which satisfies

ϕ(z) =
1

ϕ (z∗)
, z ∈ Ωρ ∩ G1/ρ, (7)

where

z∗
:= ψ


1/φ(z)


(8)

is the Schwarz reflection about L1 of the point z ∈ Ωρ ∩ G1/ρ (see [4] for details).
The function ψ is analytic and univalent on ∆ρ , mapping the annulus ρ < |w| < 1/ρ

conformally onto the band Ωρ ∩ G1/ρ , so that

ϕ(ψ(w)), ρ < |w| < 1/ρ,

is a one-to-one meromorphic function that is analytic on ρ < |w| ≤ 1.
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Definition 1. Let µ ≥ 0 be the smallest number such that ϕ(ψ(w)) has a meromorphic
continuation, denoted by hϕ(w), to the annulus

{w : µ < |w| < 1/ρ} .

Let Σ be the set of those points z ∈ G1 for which the equation

hϕ(w) = ϕ(z) (9)

has at least one solution in µ < |w| < 1. Let Σ0 := G1 \ Σ .

We say that a solution ω of (9) has multiplicity α ≥ 1 if

h(α)ϕ (ω) ≠ 0, h( j)
ϕ (ω) = 0 1 ≤ j < α.

Consider a z ∈ Σ . Since hϕ(w) is one-to-one on ρ < |w| < 1, among the solutions to (9), a finite
number, say ωz,1, . . . , ωz,s (s ≥ 1), will have largest modulus. Let αz,k denote the multiplicity
of ωz,k (1 ≤ k ≤ s). We decompose Σ in subsets Σp, p = 1, 2, . . . , defined by the relation

z ∈ Σp ⇔ αz,1 + · · · + αz,s = p. (10)

Thus, Σ1 consists of those points z ∈ Σ such that Eq. (9) has exactly one solution in
µ < |w| < 1 of largest modulus, and this solution is simple.

Let the function Φ : Σ1 → {w : µ < |w| < 1} be defined as

Φ(z) := ωz,1, z ∈ Σ1,

and let r : C → [µ,∞) be defined as

r(z) :=

|φ(z)|, z ∈ Ω1,

|ωz,1|, z ∈ Σ ,
µ, z ∈ Σ0.

(11)

It is easy to see (see the first two paragraphs of Section 4) that the number µ, the sets Σ , Σp,
and the functions Φ(z), r(z) are, indeed, independent of the choice of the interior map ϕ. Also
(see Corollary 12 in Section 4) Σ and Σ1 are open, Σ1 ⊃ Ωρ ∩ G1, the map Φ is a one-to-one
analytic function and r(z) is continuous.

Note that

Φ(z) = φ(z), z ∈ Ωρ ∩ G1,

and that r(z) = |Φ(z)| for all z ∈ Σ1. Our main result is the following theorem.

Theorem 1. (a) For every compact set E ⊂ Σ1, there exists a number 0 < δ < 1 such that

pn(z)
√

n + 1[Φ(z)]n
− Φ′(z) = O(δn)

uniformly on E as n → ∞.
(b)

lim sup
n→∞

|pn(z)|
1/n

= r(z), z ∈ G1. (12)

This result has several implications on the asymptotic zero distribution of the orthogonal
polynomials. Consider the set Z of accumulation points of the zeros of the pn’s, that is, Z
consists of those points t ∈ C such that every neighborhood of t contains zeros of infinitely many
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polynomials pn . A simple consequence of (4) and Theorem 1(a) is that every closed subset of
Ω1 ∪Σ1 may contain zeros of at most finitely many polynomials pn , and therefore, Z ⊂ G1 \Σ1.
Moreover, we have

Theorem 2. ∂Σ1 ∩ G1 ⊂ Z .

Let now zn,1, . . . , zn,n be the zeros of pn , let δz denote the unit point mass at z, and let

νn :=
1
n

n−
j=1

δzn, j

be the so-called normalized counting measure of the zeros of pn . The sequence {νn}
∞

n=1 is said
to converge in the weak*-topology to the measure ν if

lim
n→∞

∫
C

f dνn =

∫
C

f dν

for every continuous function f : C → C.
In preparation for the next theorem concerning the weak*-limit points of the sequence {νn},

we recall that the logarithmic potential of a compactly supported measure ν is the superharmonic
function

U ν(z) := −

∫
C

log |t − z|dν(t), z ∈ C.

Theorem 3. There exists a unique measure λ having logarithmic potential

Uλ(z) = − log r(z)+ logφ′(∞), z ∈ C. (13)

This λ is a probability measure whose support coincides with ∂Σ1 ∩ G1. If the interior of Σ0
is connected, then some subsequence of {νn}

∞

n=1 converges in the weak*-topology to λ, and this
is true of the entire sequence {νn}

∞

n=1 if the interior of Σ0 is empty.

Remark 1. The recent paper [7] investigates polynomials qn(z), n = 0, 1, . . . , that are
orthonormal with respect to area measure over a set G (briefly called an archipelago) that is
a finite union of bounded Jordan domains with mutually disjoint closures. An important role
in their study is played by a function h(z) constructed out of the Green function gΩ (z,∞) of
Ω := C \ G with pole at ∞ and the reproducing kernel K (ξ, z) of the Hilbert space of analytic
functions in G that are square integrable with respect to area measure. Namely, the function

h(z) :=


gΩ (z,∞), z ∈ Ω ,
− log R(z), z ∈ G,

where R(z) is the supremum of those numbers R ≥ 1 such that K (·, z) has an analytic
continuation to C \ {z ∈ Ω : gΩ (z,∞) ≥ log R}.

Theorem 6.1 of [7] establishes the connection between h(z) and the nth root/zero asymptotic
behavior of the qn’s. Briefly, that

lim sup
n→∞

1
n

log |qn(z)| = h(z), z ∈ C, (14)

with equality holding true if lim sup is replaced by lim and z lies outside the convex hull of G,
and that there exists a unique positive probability measure β with support contained in G, whose
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logarithmic potential Uβ(z) satisfies

Uβ(z) = log
1

cap(∂G)
− h(z), z ∈ C,

(here cap(∂G) is the logarithmic capacity of the compact set ∂G). Moreover, sufficient conditions
are given for this measure β to be a weak*-limit point of the normalized counting measures of
the qn’s.

In the case treated in the present paper of a single-island archipelago G = G1 with analytic
boundary, we have gΩ (z,∞) = log |φ(z)|, cap(∂G) = 1/φ′(∞), and

K (ξ, z) =
ϕ′(z)ϕ′(ξ)

π [1 − ϕ(z)ϕ(ξ)]2
.

Comparing (14) with (12), we see that Theorem 1 carries a statement about the location of the
nearest singularities of K (·, z), namely, that R(z) = 1/r(z) for z ∈ G1, a fact that can be verified
directly with the help of Proposition 4 below. One can also deduce from that proposition that if
z ∈ Σp, p ≥ 1, then K (·, z) has finitely many singularities on L1/r(z), all of which are poles
whose total multiplicity is p, while if z ∈ Σ0, then K (·, z) has a singularity other than a pole on
L1/µ.

Also, we see that the measures β and λ are one and the same, thus Theorem 3 provides
essential information about the location and structure of the support of β (by identifying it with
∂Σ1 ∩ G1) and refines Part (vii) of Theorem 6.1 of [7] for the case of a single-island archipelago
with analytic boundary.

Remark 2. Given that, by definition, hϕ(w) = ϕ(ψ(w)) for ρ < |w| < 1/ρ, it is easy to verify
that

µ = ρ ⇔ G1 = Σ1 ∪ Σ0 ⇔ Σ0 = C \ Ωρ .

Hence if G1 = Σ1 ∪ Σ0 and Σ0 = {z0} is a singleton, then ρ = 0 and the set G1 is an open disk
centered at z0, say G1 = {z : |z − z0| < s} for some s > 0. In this case,

pn(z) =
√

n + 1s−n−1(z − z0)
n, n ≥ 0,

as can be verified directly from the orthogonality relations (2), so that νn = δz0 = λ, n ≥ 1.
If G1 = Σ1 ∪ Σ0, Σ0 not a singleton, then ρ > 0, supp(λ) = ∂Σ1 ∩ G1 = ∂Σ0 and by (13),

Uλ(z) is (a finite) constant on Σ0. Hence λ is the equilibrium distribution with respect to the
logarithmic potential of the compact set Σ0 (cf. Section III.2 and Theorem III.15 of [16]).

The proofs of Theorems 2 and 3 can be accomplished by using a series of arguments
previously developed by Ullman [17] and Kuijlaars and Saff [8] in the context of Faber
polynomials. These arguments, which make essential use of several structural properties of the
Σp sets, are of a very general nature and can be extended to our setting without any essential
modification. We shall therefore provide only an outline of these proofs at the end of Section 4.

For concrete instances of a curve L1, the difficulty of finding the corresponding number µ and
set Σ1 may be reduced with the use of the following three propositions. These establish some
properties of the meromorphic continuation of the map ϕ(ψ(w)). Their use is illustrated in the
examples of the next section.

For a domain D ⊂ C, we denote by D∗ the reflection of D about the unit circle, i.e.,

D∗
:= {1/w : w ∈ D}.
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Proposition 4. Let ϕ be a conformal map of G1 onto D1 and let us denote by the same letter ϕ its
meromorphic continuation to G1/ρ . Let D be a domain such that {w : ρ < |w| < 1} ⊂ D ⊂ D1.

The function ϕ(ψ(w)), originally defined in ρ < |w| < 1/ρ, has a meromorphic continuation
to D, if and only if it has a meromorphic continuation to D∗, if and only if ϕ(z) has a
meromorphic continuation to G1 ∪ ψ(D∗). If hϕ(w) denotes the meromorphic continuation of
ϕ(ψ(w)) to D ∪ T1 ∪ D∗, then

hϕ(w) =
1

hϕ(1/w)
(15)

for all w ∈ D ∪ T1 ∪ D∗. In particular, for µ as in Definition 1, we have

sup {r ≥ 1/ρ : ϕ(ψ(w)) has a meromorphic continuation to ρ < |w| < r}

= sup {r ≥ 1/ρ : ϕ has a meromorphic continuation to Gr }

= 1/µ.

The next proposition tells us that if D ⊂ D1 is a domain that can be exhausted by continuously
expanding domains Dt , each satisfying that ψ(Dt ) ⊂ G1 ∪ ψ(D∗

t ), then ϕ(ψ(w)) has a
meromorphic continuation to D. The precise formulation is as follows.

Proposition 5. Let {Dt : a ≤ t < b} be a collection of domains such that for every
a ≤ t0 < t1 < b,

{w : ρ < |w| < 1} ⊂ Dt0 ⊂ Dt1 ⊂ D1,

t>t0

Dt = Dt0 \ T1. (16)

Let D := ∪a≤t<b Dt and suppose that ψ is meromorphic in D and satisfies

ψ(Da) ⊂ G1, ψ(Dt ) ⊂ G1 ∪ ψ(D∗
t ), a < t < b. (17)

Then, ϕ(ψ(w)) admits a meromorphic continuation to D.

Remark 3. Note that for a domain D as in Proposition 5, the meromorphic continuation of
ϕ(ψ(w)) to D ∪ T1 ∪ D∗ is likewise the composition of two meromorphic functions, since by
Proposition 4, ϕ is meromorphic in G1 ∪ψ(D∗) and obviously ψ(D∪T1 ∪D∗) ⊂ G1 ∪ψ(D∗).

Let ρa ≥ 0 be the smallest number such thatψ has an analytic continuation to ρa < |w| < ∞,
and let µ̄ ∈ [ρa, 1) be a number that has been fixed. Suppose z ∈ G1 and that the equation
ψ(w) = z has no solutions in µ̄ < |w| < 1. In this case we assign z ∈ C µ̄

0 . Otherwise, the
equation ψ(w) = z has finitely many solutions of largest modulus, say vz,1, . . . , vz,s (s ≥ 1), in
µ̄ < |w| < 1. Let βz,k be the multiplicity of ψ at vz,k .

For every integer p ≥ 1, we define the subset C µ̄
p of G1 by the relation

z ∈ C µ̄
p ⇔ βz,1 + · · · + βz,s = p.

Finally, for r ∈ [ρa,∞), we define

Lr := {z = ψ(w) : |w| = r} .

Note that for r > ρ, this definition of Lr is equivalent to that given in (3).
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Proposition 6. Suppose µ̄ is a number satisfying that ρa ≤ µ̄ < ρ and having the property that
Lr ⊂ G1/r for all µ̄ < r < 1. Then, µ ≤ µ̄, Σp ⊃ C µ̄

p for all p ≥ 1, and

Φ(z) = vz,1, z ∈ C µ̄
1 .

Moreover, if µ = µ̄, then Σp = C µ̄
p for every integer p ≥ 0.

Suppose, in addition, that there is a sequence {wn}n≥1, µ̄ < |wn| < 1, such that

ψ(wn+1) = ψ(1/wn), n ≥ 1. (18)

Then, |wn| > |wn+1| and µ = µ̄ = limn→∞ |wn|.

3. Examples

Two well-known sequences of polynomials orthogonal over the interior of an analytic Jordan
curve are those corresponding to L1 a circle and L1 an ellipse. In both instances, the orthogonal
polynomials can be computed explicitly. The case of L1 a circle is quite trivial and has been
already discussed in Remark 2 above. When L1 is an ellipse with foci at −1 and 1, pn
is, up to a multiplicative constant, the nth Tchebichef polynomial of the second kind (see,
e.g., [13, pp. 258–259]).

These examples are, however, of little relevance to us because in both of them Σ1 = Ωρ ∩ G1,
so that Theorem 1(a) reduces to the original result (4) of Carleman. We now provide two
examples in which Σ1 is actually larger than Ωρ ∩ G1. In particular, we shall see that the
inequalities ρa < µ < ρ and µ < ρa are both possible.

3.1. Cassini ovals

Let 0 < R < 1 be a number that has been fixed. The set |z2
− 1| = R consists of two disjoint

analytic Jordan curves known as Cassini ovals. One surrounds 1, the other −1. Of these two, let
us denote by L1 the one encircling the point 1.

Observe that the function

ϕ(z) := (z2
− 1)/R

conformally maps G1 (the interior of L1) onto the unit disk. Given that ϕ is an entire function,
we have in view of Proposition 4 that

µ = 0.

Proposition 7. Let a be the unique solution that the equation

27x4
− 18x2

− 4


R + R−1


x − 1 = 0

has in the interval (−1/3, 0). Then

hϕ(w) =
(1 − aw)w2

w − a
, w ∈ C, (19)

ψ(w) =


1 +

R(1 − aw)w2

w − a
, |w| > 1, (20)

where the branch of the square root in (20) is chosen so that ψ(1/a) = −1.
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Fig. 1. Curve ΓR for a = −.26 (R ≈ 0.8926,


1 − R2 ≈ 0.4506).

We shall see during the proof of this proposition that

w − a + R(1 − aw)w2
= −a R(w − b)2(w − c), (21)

with

b =

3a2
+1

2a −


3a2+1

2a

2
− 4

2
, c =

1 − 3a2

2a
+


3a2 + 1

2a

2

− 4, (22)

−1 < 1/b < c < a < 0, (23)

so that ψ admits an analytic continuation to C \ [c, a] given by

ψ(w) =
√

−a R(w − b)


w − c

w − a
, z ∈ C \ [c, a].

Moreover, ρ = |b|
−1, and so we have

0 = µ < ρa = |c| < ρ = |b|
−1. (24)

It is not difficult to verify that the set

ΓR :=

w ∈ D1 : −R ≤ hϕ(w) ≤ 0


is an analytic Jordan curve symmetric with respect to the real axis, intersecting it at 1/b and 0.
The function hϕ(w)maps ΓR ∩{z : ℑ(z) > 0} onto (−R, 0) in an injective way. Hence for every
x ∈ (

√
1 − R2, 1), the equation

hϕ(w) = ϕ(x)

has exactly two solutions in ΓR , say ωx,1, ωx,2. These are distinct, and ωx,1 = ωx,2.
Let 0 < θx < π be the angle formed by the two rays emanating from 0 and passing through

ωx,1, ωx,2 (see Fig. 1). Recall that νn denotes the normalized counting measure of the zeros
of pn .
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Fig. 2. Zeros of p50(z) for a = −.26 (R ≈ 0.8926,


1 − R2 ≈ 0.4506).

Theorem 8.

G1 = Σ1 ∪ Σ2, Σ2 =


1 − R2, 1


,

and {νn}
∞

n=1 converges in the weak*-topology to σ + δ1/2, where σ is the measure supported on

[
√

1 − R2, 1] with distribution function

σ


1 − R2, x


=
θx

2π
,


1 − R2 ≤ x ≤ 1, (25)

and δ1 is the unit point mass at 1.

Thus, in this example Σ0 = Σp = ∅ for all p > 2. The asymptotic formula of Theorem 1(a)
holds with Φ(z) the algebraic function analytic in C \ [

√
1 − R2, 1] that is the solution of the

equation

R(1 − aw)w2
− (z2

− 1)(w − a) = 0, Φ(−1) = 1/a.

In Fig. 2, we have plotted the zeros of the polynomial p50. They all seem to lie in the segment
[
√

1 − R2, 1], and only 26 of them show up. This is corroborated by the following theorem,
which we derive directly from the orthogonality property of the pn’s.

Theorem 9. For every integer n ≥ 0,

pn(z) = (z − 1)⌊n/2⌋qn(z),

where qn(z) is a polynomial with n − ⌊n/2⌋ simple roots, all lying in (
√

1 − R2, 1).
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Fig. 3. Sets Σ1, Σ2 and Σ0 for a curve L1 defined as in (26) for R = 2.5.

3.2. Level curves of the inverse of a shifted Joukowsky transformation

Let R > 2 be fixed, and set

L1 :=


w − 1 + (w − 1)−1

: |w| = R

. (26)

From very well-known properties of the Joukowsky transformation u → u + 1/u, it follows
that L1 is an analytic Jordan curve, with

ψ(w) = Rw − 1 +
1

Rw − 1
, z ∈ C, (27)

mapping ∆1 conformally onto the exterior Ω1 of L1. Moreover, ψ maps both {w : |w − 1/R| >

1/R} and {w : |w − 1/R| < 1/R} conformally onto C \ [−2, 2], and for every z ∈ C, the two
solutions of the equation z = ψ(w) are

vz,1 =
z + 2 +

√
z2 − 4

2R
, vz,2 =

z + 2 −
√

z2 − 4
2R

. (28)

Note that vz,1 and vz,2 are reflections of each other about the circle |w − 1/R| = 1/R,
and that if we choose the branch of the square root in (28) that is positive along (2,∞), then
|vz,1| > |vz,2| for every z ∈ C \ [−2, 2], with vz,1 and vz,2 lying, respectively, outside and inside
the circle |w − 1/R| = 1/R.

We appeal to Proposition 6 and find

Theorem 10.

µ =
R −

√
R2 − 4

2

and G1 = Σ0 ∪ Σ1 ∪ Σ2, where Σ1 is the image by ψ of the set of points in D1 that lie exterior
to both circles |w| = µ and |w − 1/R| = 1/R, and Σ2 = (R2µ2

− 2, 2] (see Fig. 3).

Given that Σ1 is connected, the function Φ is nothing but the analytic continuation of
φ(z) = (z+2+

√
z2 − 4)/(2R), and so it follows from Carleman’s formula (4) and Theorem 1(a)
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Fig. 4. Zeros of p80(z) for L1 as in (26) for R = 2.5.

that

lim
n→∞

(2R)n+1 pn(z)
√

n + 1

z + 2 +

√
z2 − 4

n =
z +

√
z2 − 4

√
z2 − 4

locally uniformly in Σ1∪Ω1. Theorem 2 gives us that every point of ∂Σ1∩G1 attracts zeros of the
pn’s, a fact illustrated in Fig. 4. Also, being the interior of Σ0 connected, Theorem 3 guarantees
that a subsequent of the normalized counting measures νn converges in the weak*-topology to
the measure λ.

Observe that, unlike the previous example in which we had µ < ρa (see (24)), we now have

1
R

= ρa < µ < ρ =
2
R
.

4. Proofs of the results of Section 2

We begin by recalling that if ϕ1 and ϕ are conformal maps of G1 onto D1, then they are related
through a Möbius transformation, that is, for all z ∈ G1,

ϕ1(z) = eiθ ϕ(z)− ϕ(z0)

1 − ϕ(z0)ϕ(z)
, ϕ(z) =

ϕ1(z)+ eiθϕ(z0)

eiθ + ϕ(z0)ϕ1(z)
,

where z0 ∈ G1 is such that ϕ1(z0) = 0, and θ = arg (ϕ′

1(z0)/ϕ
′(z0)).

Hence ϕ(ψ(w)) has a meromorphic continuation to the annulus µ < |w| < 1 if and only if
so does ϕ1(ψ(w)). Moreover, the meromorphic continuations hϕ(w) and hϕ1(w) satisfy

hϕ1(w)− ϕ1(z) =
eiθ


1 − |ϕ(z0)|

2


1 − ϕ(z0)ϕ(z)
·

hϕ(w)− ϕ(z)

1 − ϕ(z0)hϕ(w)
,
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so that for every z ∈ G1, the equations (in the unknown w) hϕ1(w) = ϕ1(z) and hϕ(w) = ϕ(z)
share the same solutions, multiplicities included. Therefore, the number µ, the sets Σ , Σp, and
the functions Φ(z), r(z) as defined in Section 2, are independent of the choice of the interior
conformal map ϕ.

Hereafter ϕ is a conformal map of G1 onto D1 that has been fixed. We shall employ the
notation

Dϵ(t) := {z : |z − t | < ϵ}, D∗
ϵ (t) := Dϵ(t) \ {t}.

As in Section 2 above, for z ∈ Σ , we denote by ωz,1, . . . , ωz,s the solutions to the equation

hϕ(w) = ϕ(z) (29)

in the annulus µ < |w| < 1 that have largest modulus. The multiplicity of hϕ(w) at ωz,k is
denoted by αz,k and Σp, p ≥ 1 is defined by relation (10).

Lemma 11. Let z ∈ Σp, p ≥ 1 and let µ′ with µ < µ′ < r(z) be a number satisfying that hϕ(w)
has no poles on Tµ′ and that the only solutions to (29) that lie in µ′

≤ |w| < 1 are precisely
those of largest modulus ωz,1, . . . , ωz,s (1 ≤ s ≤ p). Let δ > 0 be so small that the closed disks
Dδ(ωz,k), 1 ≤ k ≤ s, are pairwise disjoint and contained in the annulus µ′ < |w| < 1, that
hϕ(w) has no poles on ∪

s
k=1 Dδ(ωz,k) and that

h′
ϕ(w) ≠ 0, w ∈ D∗

δ (ωz,k), 1 ≤ k ≤ s. (30)

There exists ϵ > 0 such that if 0 < |ζ − z| ≤ ϵ, then the solutions to the equation

hϕ(w) = ϕ(ζ )

that lie in µ′
≤ |w| ≤ 1 are simple and contained in ∪

s
k=1 Dδ(ωz,k), and each disk Dδ(ωz,k)

contains exactly αz,k solutions.

Proof. Suppose z, µ′ and δ are as in the hypothesis of Lemma 11. Then, for

K := {w : µ′
≤ |w| ≤ 1} \ ∪

s
k=1 Dδ(ωz,k), (31)

we have that m := minw∈K |hϕ(w) − ϕ(z)| > 0. Select ϵ > 0 such that Dϵ(z) ⊂ G1 and
|ϕ(ζ )−ϕ(z)| < m for all ζ ∈ Dϵ(z). Then, for this ϵ, the conclusion of Lemma 11 follows from
Rouche’s theorem and (30). �

Corollary 12. Both Σ and Σ1 are open, the function Φ : z → ωz,1 is analytic and univalent on
Σ1, and the function r(z) is continuous on G1.

Proof. That Σ and Σ1 are open is a clear consequence of Lemma 11, as well as the fact that
Φ(z) is locally the inverse of ϕ−1


hϕ(w)


. Therefore, Φ is analytic in Σ1, and given that

ϕ(z) = hϕ(Φ(z)) for all z ∈ Σ1, Φ(z) is one-to-one in Σ1 and

Φ′(z) =
ϕ′(z)

h′
ϕ(Φ(z))

, z ∈ Σ1. (32)

The function r(z) is by definition constant in Σ0, and Lemma 11 trivially yields that it is
continuous in Σ . We prove now that it is also continuous at every point of ∂Σ0. Suppose, on
the contrary, that there exists z ∈ ∂Σ0, a sequence {zn}

∞

n=1 ⊂ Σ and a number µ1 > µ

such that limn→∞ zn = z and r(zn) ≥ µ1 > µ for all n ∈ N. For each n, let ωn ∈ Tr(zn)



P. Dragnev, E. Miña-Dı́az / Journal of Approximation Theory 162 (2010) 1982–2003 1995

be such that hϕ(ωn) = ϕ(zn). By extracting a subsequence if necessary, we may assume that
limn→∞ ωn = ω, with µ1 ≤ |ω| ≤ 1. But then, by the continuity of ϕ and hϕ , we must have
hϕ(ω) = ϕ(z). Given that z ∈ G1, this is only possible if |ω| < 1, contradicting that z ∈ Σ0. �

Lemma 13. (a) For every z ∈ Σ and δ > 0, there exist ϵ > 0 and a constant M such that

|pn(ζ )| ≤ M
√

n + 1[r(z)+ δ]n, ζ ∈ Dϵ(z), n ≥ 0.

(b) For every z ∈ Σ1 there exist ϵ > 0 and 0 < v < 1 such that

pn(ζ ) =
√

n + 1Φ′(ζ )[Φ(ζ )]n 
1 + O(vn)


uniformly in ζ ∈ Dϵ(z) as n → ∞.

(c) For every σ ∈ (µ, 1) and δ > 0, there exists a constant M1 such that for every ζ with
r(ζ ) ≤ σ ,

|pn(ζ )| ≤ M1
√

n + 1(σ + δ)n, n ≥ 0.

Proof. We first observe that

Σ = {z : µ < r(z) < 1} = ∪
∞

k=1


z : max{µ, ρk

} < r(z) < 1

,

and proceed to prove by mathematical induction on k that if k ≥ 1, then Parts (a) and (b) of
Lemma 13 hold true for every z with max{µ, ρk

} < r(z) < 1, while Part (c) holds true for every
σ with max{µ, ρk

} < σ < 1. That this is true for k = 1 clearly follows from (4) and (5), since
µ ≤ ρ and

{z : ρ < r(z) < 1} = Ωρ ∩ G1.

Then, suppose it is true for some given k ≥ 1. Let z ∈ Σ be a fixed number such that

max{µ, ρk+1
} < r(z) ≤ ρk .

Select η > 0 so small that

ρ(ρ + η)k < r(z) (⇒ ρ + η < 1). (33)

Let ωz,1, . . . , ωz,s be the solutions to the equation hϕ(w) = ϕ(z) in µ < |w| < 1 that have
largest modulus, so that |ωz,k | = r(z), 1 ≤ k ≤ s. Choose µ′ and δ satisfying the hypothesis of
Lemma 11, with the particularity that

ρ(ρ + η)k < µ′, ∪
s
k=1 Dδ(ωz,k) ⊂ {w : µ′ < |w| < (ρ + η/2)k}. (34)

Then, by the induction hypothesis that Lemma 13(c) holds whenever

max{µ, ρk
} < σ < 1,

there is a constant M1 such that for every ζ with r(ζ ) ≤ (ρ + η/2)k ,

|pn(ζ )| ≤ M1
√

n + 1(ρ + η)kn, n ≥ 0,

and so we obtain from (6) that

pn(ζ ) =

√
n + 1ϕ′(ζ )

2π i


T1

wndw
hϕ(w)− ϕ(ζ )

+ O
√

n(ρ + η)knρn


(35)

uniformly on {ζ : r(ζ ) ≤ (ρ + η/2)k} as n → ∞.
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Now, corresponding to the numbers z, µ′ and δ above, choose an ϵ > 0 for which the thesis of
Lemma 11 holds true, so that (recall (34)) for all ζ ∈ Dϵ(z), r(ζ ) < (ρ+ η/2)k and the function
(hϕ(w) − ϕ(ζ ))−1 is analytic on the compact set K defined as in (31). Hence we obtain from
(35) that uniformly in ζ ∈ Dϵ(z) as n → ∞,

pn(ζ ) =

√
n + 1ϕ′(ζ )

2π i


Tµ′

wndw
hϕ(w)− ϕ(ζ )

+ O
√

n(ρ + η)knρn


+

√
n + 1ϕ′(ζ )

2π i

s−
k=1


∂Dδ(ωz,k )

wndw
hϕ(w)− ϕ(ζ )

. (36)

Now, the function (hϕ(w)− ϕ(ζ ))−1 is continuous as a function of (w, ζ ) on the compact set
K × Dϵ(z) and we obtain from (36), (33) and (34) that uniformly in ζ ∈ Dϵ(z) as n → ∞,

pn(ζ ) = O(
√

nµ′n)+ O
√

n[r(z)+ δ]n
+ O

√
n(ρ + η)knρn


= O

√
n + 1[r(z)+ δ]n


.

If z ∈ Σ1, i.e., if s = 1, then every ζ ∈ Dϵ(z) belongs to Σ1 as well, so that (hϕ(w)−ϕ(ζ ))−1

is analytic on Dδ(ωz,1), except at the point Φ(ζ ) := ωζ,1, where it has a simple pole. Therefore
(recall (32)),

1
2π i


∂Dδ(ωz,1)

wndw
hϕ(w)− ϕ(ζ )

= (ωζ,1)
n lim
w→ωζ,1

w − ωζ,1

hϕ(w)− hϕ(ωζ,1)

=
Φ′(ζ )[Φ(ζ )]n

ϕ′(ζ )
.

Hence we obtain from (34) and (36) that uniformly in ζ ∈ Dϵ(z) as n → ∞,

pn(ζ ) =
√

n + 1Φ′(ζ )[Φ(ζ )]n 
1 + O


vn

,

with 0 < v = µ′/(r(z)− δ) < 1. Given that δ could have been chosen arbitrarily small, we have
proven that Parts (a) and (b) of Lemma 13 hold true if max{µ, ρk+1

} < r(z) < 1.
Now, suppose σ is such that max{µ, ρk+1

} < σ ≤ ρk , and let δ > 0 be given. By the
continuity of the function r(z) and the fact that r(z) approaches 1 as z approaches ∂G1, we have
that the set {z : r(z) = σ } is compact, and we can find finitely many points z1, . . . , zm in this set,
and positive numbers ϵ1, . . . , ϵm , M1, such that {z : r(z) = σ } ⊂ ∪

m
j=1 Dϵ j (z j ), and

|pn(ζ )| ≤ M1
√

n + 1(σ + δ)n (37)

for all ζ ∈ ∪
m
j=1 Dϵ j (z j ), n ≥ 0. But the set {z : r(z) < σ } is a bounded open set whose

boundary is precisely {z : r(z) = σ }, so that by the maximum modulus principle for analytic
functions, (37) also holds for all ζ with r(ζ ) ≤ σ . �

Proof of Theorem 1. Part (a) of Theorem 1 is equivalent to Lemma 13(b). We then pass to prove
Part (b).

Let z ∈ G1. From the definition of r(z), we see that the function (in the variable w)
hϕ(w)− ϕ(z)

−1 is analytic in the annulus r(z) < |w| < 1/ρ, with a singularity on the
circle Tr(z) in case r(z) > 0, and therefore, it has a Laurent expansion in said annulus, say
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∞

k=−∞
ak(z)wk , whose coefficients

a−n(z) =
1

2π i


T1

wn−1dw
hϕ(w)− ϕ(z)

, n ≥ 0 (38)

satisfy

lim sup
n→∞

|a−n(z)|
1/n

= r(z). (39)

Let τ be a number satisfying that r(z) < τ < 1, and in the case r(z) ≠ 0, that τρ < r(z). By
Lemma 13(c), we can find a constant M such that

|pn(z)| ≤ M
√

n + 1τ n,

which combined with (6) and (38) yields

pn(z) =
√

n + 1ϕ′(z)a−n−1(z)+ O
√

n(τρ)n


(n → ∞).

This, in view of (39) and the fact that τ can be taken arbitrarily closed to r(z), forces
lim supn→∞ |pn(z)|1/n

= r(z). �

Proof of Proposition 4. From (7) and (8) we get that

ϕ(ψ(w)) =
1

ϕ(ψ(1/w))
, ρ < |w| < 1/ρ. (40)

If ϕ(ψ(w)) has a meromorphic continuation, denoted by hϕ(w), to the domain D (resp.
to D∗), then, by virtue of (40), the function w → 1/hϕ(1/w) provides the meromorphic
continuation of ϕ(ψ(w)) to D∗ (resp. to D), and (15) is satisfied.

Suppose now that ϕ(z) is meromorphic in G1 ∪ ψ(D∗). Then the composition ϕ(ψ(w)),
originally defined for ρ < |w| < 1/ρ, now makes perfect sense for z ∈ D∗, and it is obviously
meromorphic. Reciprocally, if ϕ(ψ(w)) has a meromorphic continuation hϕ(w) to D∗, then
hϕ(φ(z)) is a meromorphic function in ψ(D∗), and

hϕ(φ(z)) = ϕ(ψ(φ(z))) = ϕ(z), z ∈ Ω1 ∩ G1/ρ . �

Proof of Proposition 5. By the first inclusion in Eq. (17), the composition ϕ(ψ(w)) is well-
defined and analytic in Da . Hence there exists a largest number t0 ∈ [a, b] such that ϕ(ψ(w)) has
a meromorphic continuation to every Dt with a ≤ t < t0. Suppose t0 < b. From assumption (17),
we see that ψ(Dt0) ⊂ G1 ∪ ψ(D∗

t0), which combined with assumption (16) yields the existence
of some t0 < t1 < b such that ψ(Dt1) ⊂ G1 ∪ ψ(D∗

t0). Since ϕ(ψ(w)) is meromorphic in Dt0 ,
by Proposition 4, ϕ(z) is then meromorphic in G1 ∪ ψ(D∗

t0), so that the composition ϕ(ψ(w))
is well-defined and meromorphic in Dt1 , contradicting the definition of t0. Hence t0 = b and
ϕ(ψ(w)) has a meromorphic continuation to D = ∪a≤t<b Dt . �

Proof of Proposition 6. That µ ≤ µ̄ follows by applying Proposition 5 to the collection of
annuli Dt := {w : ρ + µ̄− t < |w| < 1}, µ̄ ≤ t < ρ.

To prove that Σp ⊃ C µ̄
p , p ≥ 1, we first make a couple of observations. The first one is that,

in view of Proposition 4, ϕ admits a meromorphic continuation (also denoted by ϕ) to G1/µ, and
since Lr ⊂ G1/r for µ̄ < r < 1, we then have ψ(µ̄ < |w| < 1/µ) ⊂ G1/µ and

hϕ(w) = ϕ(ψ(w)), µ̄ < |w| < 1/µ. (41)

The second observation is stated as a claim.
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Claim 1. If z ∈ G1 and wz with µ̄ < |wz | < 1 are such that hϕ(wz) = ϕ(z), then either
ψ(wz) = z or the equation hϕ(w) = ϕ(z) has a solution in |wz | < |w| < 1.

In effect, suppose first that ψ(wz) ∈ G1. Then, by (41) and the fact that hϕ(wz) = ϕ(z), we
must have ψ(wz) = z. Next, assume ψ(wz) ∉ G1. Then ψ(wz) ∉ L1 = ∂G1 either, because
ϕ maps L1 onto the unit circle and |hϕ(wz)| = |ϕ(ψ(wz))| = |ϕ(z)| < 1. Moreover, since
ψ(wz) ∈ L |wz | ⊂ G1/|wz | and ψ maps 1 < |w| < 1/|wz | conformally onto G1/|wz | \ G1, we see

that there is a unique number w′
z with |wz | < |w′

z | < 1 such that ψ


1/w′
z


= ψ(wz). By (41)

and (15), we then have

hϕ(w
′
z) =

1

hϕ


1/w′
z

 =
1

hϕ(wz)
=

1

ϕ (z)
.

This implies that ψ(w′
z) ∉ G1, which combined with the fact that ψ(w′

z) ∈ L |w′
z |

⊂ G1/|w′
z |

yields the existence of a unique w′′
z with |w′

z | < |w′′
z | < 1 such that ψ


1/w′′

z


= ψ(w′

z), and so

hϕ(w
′′
z ) =

1

hϕ


1/w′′
z

 =
1

hϕ(w′
z)

= ϕ(z),

which proves the claim.
We now proceed to prove that

C µ̄
p =


z ∈ Σp : r(z) > µ̄


. (42)

Suppose z ∈ Σp is such that r(z) > µ̄, that is, z ∈ G1 and there are finitely many numbers
ωz,1, . . . , ωz,s , with µ̄ < r(z) = |ωz,1| = · · · = |ωz,s | < 1, which are the only solutions that the
equation hϕ(w) = ϕ(z) has in |ωz,1| ≤ |w| < 1, and moreover

∑s
k=1 αz,k = p, with αz,k being

the multiplicity of hϕ at ωz,k .
Then, by (41), the only possible solutions that the equation ψ(w) = z could have in

|ωz,1| ≤ |w| < 1 are precisely these ωz,k . As a matter of fact, in view of the claim proven above,
we have ψ(ωz,k) = z for all 1 ≤ k ≤ s, and it clearly follows from (41) that the multiplicity of
ψ at ωz,k is αz,k . Thus, z ∈ C µ̄

p .

Assume now that z ∈ C µ̄
p , that is, z ∈ G1 and there are finitely many numbers vz,1, . . . , vz,s ,

with µ̄ < |vz,1| = · · · = |vz,s | < 1, which are the only solutions that the equation ψ(w) = z
has in |vz,1| ≤ |w| < 1, and moreover

∑s
k=1 βz,k = p, with βz,k being the multiplicity of

ψ at vz,k . These vz,k’s are the only possible solutions that the equation hϕ(w) = ϕ(z) could
have in |vz,1| ≤ |w| < 1, because by the claim proven above, among such solutions those of
largest modulus must be mapped by ψ to z. Moreover, by (41), we have that for all 1 ≤ k ≤ s,
hϕ(vz,k) = ϕ(z) and that βz,k is the multiplicity of hϕ at vz,k . Hence z ∈ Σp, and (42) is proven.

Since every element of Σp, p ≥ 1 satisfies r(z) > µ, (42) implies that if µ = µ̄, then

Σp = C µ̄
p for all p ≥ 1, which in turn implies that Σ0 = C µ̄

0 .
Finally, suppose that a sequence {wn}n≥1 satisfying (18) is found. Then, given that Lr ⊂ G1/r

for µ̄ < r < 1, we have ψ (1/wn) = ψ(wn+1) ∈ G1/|wn+1|, so that |wn| > |wn+1|, n ≥ 1.
Moreover, in view of (41) and (15),

hϕ(wn+2) = hϕ (1/wn+1) =
1

hϕ(wn+1)
=

1

hϕ (1/wn)
= hϕ(wn), n ≥ 1.
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Hence hϕ(w) remains constant along an infinite set of points contained in µ̄ < |w| < 1. This is
only possible if limn→∞ |wn| = µ̄ = µ. �

Outline of the proof of Theorems 2 and 3. In order to derive Theorems 2 and 3 from
Theorem 1, one needs first to establish several structural properties of the sets Σp, p ≥ 1. These
properties have been previously established for different, but similarly defined sets. For instance,
in [17], Ullman studied the zero distribution of the Faber polynomials Fn(z), n = 0, 1, 2, . . . ,
associated with a Laurent series about ∞ of the form

g(w) = w + b0 + b1w
−1

+ b2w
−2

+ · · · (43)

with radius of convergence ϱ := lim supn→∞ |bn|
1/n < ∞. The function g is locally invertible at

∞, and if g−1(z) denotes its inverse, then Fn(z) is defined as the polynomial part of the Laurent
expansion at ∞ of [g−1(z)]n .

For each p ≥ 1, Ullman introduced the set C p consisting of those points z ∈ C for which the
solutions of largest modulus that the equation g(w) = z has in |w| > ϱ, say uz,1, . . . , uz,s , have
total multiplicity p. Note the similarity of this definition with that of Σp given in (10). Setting
C0 := C \ ∪p≥1 C p, Ψ(z) := uz,1 for all z ∈ C1 and

ϱ̃(z) :=


|uz,1|, z ∈ ∪p≥1 C p,

ϱ, z ∈ C0.

Ullman proved that (see (3.7), (3.8), (5.1) and (5.4) in [17])

lim sup
n→∞

|Fn(z)|
1/n

= ϱ̃(z), z ∈ C, (44)

and more specifically, for points in C1, that

lim
n→∞

Fn(z)/[Ψ(z)]n
= 1 (45)

locally uniformly on C1. These asymptotic formulas are the analogue of Theorem 1 for the Faber
polynomials.

Ullman also proved that the sets C p have the following properties [17, Lemmas 4.1, 4.2]:
Every z ∈ C p, p ≥ 1 has a neighborhood that is fully contained in ∪

p
q=1 Cq . Every C p with

p > 1 has empty interior. Every neighborhood of a point z ∈ C p, p > 1 contains points that are
not in C1.

Combining these properties with (44) and (45), Ullman succeeded in proving that
[17, Theorem 1(b)] every point of ∂C1 is an accumulation point of the zeros of the Fn’s.
Following Ullman’s arguments, one can easily see that the properties just stated for the C p’s
are word for word valid for the sets Σp as well, and that these properties in conjunction with
Theorem 1 imply the validity of Theorem 2.

In another paper [18] dealing with the limiting behavior of the eigenvalues of Toeplitz matrices
associated with a semi-infinite Laurent series of the form

∑k
n=−∞

cnw
n (lim supn→∞ |c−n|

1/n <

∞), Ullman considered the smallest possible τ ≥ 0 for which there exists a meromorphic
function F(w) on |w| > τ having this expansion at ∞. He defined a corresponding set C that
for the case k = 1 (i.e., a simple pole at ∞) consists of those points z ∈ C for which the equation
F(w) = z has exactly one solution in |w| > τ of largest modulus, and this solution is simple (see
the definition of the set C in [18, Definition 1]). He proved two important lemmas [18, Lemmas 7
and 8] about the structure of the boundary of the set C , which can be established in a similar way
for both the set C1 (i.e., the C p corresponding to p = 1) and the set Σ1. Using the extension of
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these lemmas to C1 (see [8, Lemmas 2.2 and 2.4]) together with Ullman’s asymptotic formulas
(44) and (45), Kuijlaars and Saff proved the analogue of Theorem 3 for the Faber polynomials Fn
associated with (43) (see [8, Theorems 1.3, 1.4 and 4.1]). Their arguments are based on general
facts of logarithmic potential theory and can be used essentially without variation to derive our
Theorem 3. �

5. Proofs of the results of Section 3

Proof of Proposition 7. Given that ϕ(z) = (z2
− 1)/R is an entire function, Proposition 4

implies that µ = 0 and hϕ(w) is meromorphic in C \ {0}. By uniqueness of the meromorphic
continuation, we then have

hϕ(w) = ϕ(ψ(w)) =
[ψ(w)]2

− 1
R

, ρ < |w| < ∞. (46)

This and (15) imply that hϕ(w) is indeed a meromorphic function in C, whose only poles
are ∞ and some point a, 0 < |a| < 1, and whose only zeros are 1/a and 0. ∞ and 0 are of
multiplicity 2, while a and 1/a are simple. Hence for some complex number β,

hϕ(w) =
β(1 − aw)w2

w − a
, w ∈ C.

By symmetry, ψ(w) = ψ(w), which in view of the normalization ψ ′(∞) > 0 implies that
ψ maps (−∞,−1) onto (−∞,

√
1 − R). Hence −1 < a < 0. Also, given that |hϕ(w)| = 1 for

|w| = 1 and that by (46)

lim
w→∞

hϕ(w)/w
2 > 0,

we then must have β = 1, and so (19) is proven.
Equality (20) follows directly from (19) and (46). To find the value of a, first observe that 0

lies outside the curve L1. Let b be the point in |w| > 1 such thatψ(b) = 0 (then, 1/a < b < −1).
By (46), b is a double zero of 1 + Rhϕ(w), so that (21) holds for some c, and the relations

a Rb3
− Rb2

− b + a = 0

3a Rb2
− 2Rb − 1 = 0

2ab2
−


3a2

+ 1


b + 2a = 0 (47)

are satisfied. From these we get

27a4
− 18a2

− 4


R + R−1


a − 1 = 0,

and it is easy to see that this equation (in the unknown a) has only two real solutions, one positive,
the other contained in (−1/3, 0). This completes the proof of Proposition 7.

The equalities in (22) follow from (21) and (47). Also from (21) and Vieta’s formulas we
obtain the relations

1/a = 1/c + 2/b, 2b − 2/b = 1/c − c,

which, given that b < −1, forces the inequalities in (23) to hold true. �

Proof of Theorem 8. We first observe that if |ξ | < 1, then the equation

ξ =
(1 − aw)w2

w − a
(48)
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has exactly two roots (counting multiplicities) in |w| < 1. To see this, suppose w1, w2 and
w3 are the roots of (48). Then, not all can be contained in |w| < 1, for in such a case
|(1 − aw j )/(w j − a)| > 1, 1 ≤ j ≤ 3, which together with (48) yields

|ξ |1/2 > |w j |, 1 ≤ j ≤ 3.

Since w1w2w3 = ξ , we would have |ξ | < |ξ |3/2, contradicting the assumption that |ξ | < 1.
Assume now that |w1| > 1, |w2| > 1. Denoting by ϕ−1

: D1 → G1 the inverse of
ϕ(z) = (z2

− 1)/R, we get from (46) that

ψ(w1) = ψ(w2) = −ϕ−1(ξ),

so that w1 = w2. Since h′
ϕ(w) only vanishes at b, 1/b and 0, we must have w1 = w2 = b, so

that by (46), ξ = −1/R, contradicting that |ξ | < 1.
Thus, being ϕ a bijection from G1 to D1, we conclude that G1 = Σ1∪Σ2. For |ξ | < 1, letwξ,1

and wξ,2 denote the two solutions of (48) lying in |w| < 1. To prove that Σ2 = [
√

1 − R2, 1],
we prove the equivalent statement that

S :=

|ξ | < 1 : |wξ,1| = |wξ,2|


= [−R, 0]. (49)

Suppose ξ ∈ S. From (48) we obtain that for j = 1, 2,

ℜ(wξ, j ) =
|wξ, j |

4
+ a2

|wξ, j |
6
− a2

|ξ |2 − |wξ, j |
2
|ξ |2

2a

|wξ, j |

4 − |ξ |2
 .

Hencewξ,1 = wξ,2, and since hϕ(w) = hϕ(w), we deduce that ξ must be real, and consequently,
the point ξ ∈ (−1, 1) belongs to S if and only if Eq. (48) has either a double real root in (−1, 1),
or no real roots in (−1, 1).

Since h′
ϕ(w) only vanishes at b, 1/b and 0, it follows that Eq. (48) has a double root in (−1, 1)

only for ξ = −R = hϕ(1/b), ξ = 0 = hϕ(0). On the other hand, considering hϕ(x) as a function
of the real variable x , and analyzing the sign changes of h′

ϕ(x) in (−1, 1), it is easy to see that
Eq. (48) has no real roots in (−1, 1) if and only if ξ ∈ (−R, 0). Thus, (49) is proven.

Since Σ0 = ∅, Theorem 3 guarantees the convergence of {νn}
∞

n=1 in the weak*-topology to a
measure λ supported on [

√
1 − R2, 1] and having logarithmic potential

Uλ(z) = ℜ

log


φ′(∞)/Φ(z)


, z ∈ G1 \


1 − R2,∞


, (50)

with the convention 0 < arg (φ′(∞)/Φ(z)) < 2π .
We proceed to prove that λ = σ + δ1/2, with σ as in (25), for which we use a well-known

formula [14, Theorem II.1.4] that allows a measure to be recovered from its logarithmic potential.
By the continuity of the pair of complex conjugate solutions that Eq. (48) has as the parameter

ξ varies in the closed interval [−R, 0], it is clear that

ΓR :=

w ∈ D1 : −R ≤ hϕ(w) ≤ 0


is a Jordan curve symmetric with respect to the real axis, intersecting it at 1/b and 0. It is easy to
see that ΓR is in fact an analytic curve.

The function Φ(z) maps G1 \ [
√

1 − R2, 1] conformally onto the portion of the unit disk that
lies exterior to ΓR . Moreover, if for x ∈ (

√
1 − R2, 1), ωx,1, ωx,2 ∈ ΓR are the two complex

conjugate solutions that the equation hϕ(w) = ϕ(x) has in D1 (say, with ℑωx,1 > 0), then

lim
t→0+

Φ(x + it) = ωx,1, lim
t→0−

Φ(x + it) = ωx,2,
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and we obtain from these two equalities, (50) and Theorem II.1.4 of [14] that for all
√

1 − R2 <

x < 1,

λ


1 − R2, x


=
θx

2π
,

where 0 < θx < π is the angle formed by the two rays emanating from 0 and passing through
ωx,1, ωx,2. Given that limx→1− θx = π , we must have λ({1}) = 1/2, completing the proof of
Theorem 8. �

Proof of Theorem 9. Because G1 is symmetric about the real axis, each pn has real coefficients.
Let n ≥ 0 be an integer. Combining the orthogonality property of pn with Green’s formula
(see, e.g., [13, p. 241]) and using that (z2

− 1)(z2
− 1) = R2 for z ∈ L1, we obtain that for

1 ≤ m ≤ ⌊n/2⌋,

0 =

∫
G1

pn(z)z2m−1dxdy =
1

4im

∫
L1

pn(z)z2mdz

=
1

2i(m + 1)

∫
L1

pn(z)
(R2

+ z2
− 1)m

(z − 1)m(z + 1)m
dz.

Hence by the Cauchy integral formula, p( j)
n (1) = 0, 0 ≤ j ≤ ⌊n/2⌋ − 1. Therefore,

pn(z) = (z − 1)⌊n/2⌋qn(z), where qn(z) is a polynomial of degree n − ⌊n/2⌋.
Similarly, we obtain that for 0 ≤ m ≤ n − ⌊n/2⌋ − 1,

0 =

∫
G1

pn(z)z2mdxdy =
1

2i(2m + 1)

∫
L1

pn(z)z2m+1dz

=
1

2i(m + 1)

∫
L1

pn(z)

[
R2

z2 − 1
+ 1

]m


z +
√

1 − R2

1 + z


z −

√
1 − R2

1 − z
dz.

If we now deform the contour of integration L1 onto the two-sided segment [
√

1 − R2, 1] we
obtain∫ 1

√
1−R2

qn(x)[ f (x)]mdλn(x) = 0, 0 ≤ m ≤ n − ⌊n/2⌋ − 1, (51)

where

f (x) =
R2

x2 − 1
+ 1, dλn = (1 − x)[n/2]


x2 − (1 − R2)

1 − x2 dx .

Let α1, . . . , αN be the roots that the polynomial of real coefficients qn has in (
√

1 − R2, 1).
Since f (x) is decreasing in (

√
1 − R2, 1), we have∫ 1

√
1−R2

qn(x)
N∏

k=1

[ f (x)− f (αk)]dλn(x) ≠ 0,

which in view of (51) forces N = n − ⌊n/2⌋. �

Proof of Theorem 10. The proof is based on applying Proposition 6 to the number µ̄ :=

(R −
√

R2 − 4)/2. For this µ̄, we have that Lr ⊂ G1/r for all µ̄ < r < 1. For otherwise, there
must exist r0 ∈ (µ̄, 1) for which Lr0 ∩ L1/r0 ≠ ∅. Hence we can find two numbers w and v such
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that |w| = |v| = r0 and ψ(w) = ψ(1/v). By (27), this implies that 1 ≥ (|Rw| − 1) (|R/v| − 1),
or equivalently, r2

0 − Rr0 + 1 ≥ 0. This last inequality holds if and only if either r0 ≤ µ̄ or
r0 ≥ 1/µ̄ (>1), contradicting that r0 ∈ (µ̄, 1).

Consider now the sequence of real numbers {wn}
∞

n=1 defined recursively as follows: w1 is any
number satisfying µ̄ < w1 < 1, and

wn+1 =
1

R − wn
, n ≥ 1.

It is easy to prove by induction that wn > µ̄ for all n ≥ 1, while straightforward computations
yield that ψ(wn+1) = ψ (1/wn), n ≥ 1.

We can then invoke Proposition 6 to conclude that µ = µ̄ and that for each p ≥ 1, Σp
consists of those points z ∈ G1 for which the equation z = Rw − 1 + (Rw − 1)−1 has exactly
p solutions of largest modulus in µ < |w| < 1 (counting multiplicities), thereby establishing
Theorem 10. �
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