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Several works on friction coefficient during abrasive wear tests are available in the literature, but only a few were
dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. This work aims to
study the influence of titanium nitride (TiN) and titanium carbide (TiC) coating hardness on the friction coefficient
andwear coefficient in ball-crateringmicro-abrasivewear tests. A ball of AISI 52100 steel and two specimens of AISI
D2 tool steel, one coated with TiN and another coated with TiC, were used in the experiments. The abrasive slurry
was preparedwith black silicon carbide (SiC) particles and distilledwater. Two normal forces and six sliding
distances were defined, and both normal and tangential forces were monitored constantly during all tests.
The movement of the specimen in the direction parallel to the applied force was also constantly monitored
with the help of an electronic linear ruler. This procedure allowed the calculation of crater geometry, and
thus the wear coefficient for the different sliding distances without the need to stop the test. The friction
coefficient was determined by the ratio between the tangential and the normal forces, and for both TiN
and TiC coatings, the values remained, approximately, in the same range (from μ=0.4 to μ=0.9). On the
other hand, the wear coefficient decreased with the increase in coating hardness.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Recently, the micro-scale abrasive wear test has gained large accep-
tance in universities and research centers, being widely used in studies
on the abrasive wear of materials. Fig. 1a [1] presents a schematic
diagram of the principle of this abrasive wear test, where a rotating ball
is forced against the tested specimen, in the presence of an abrasive
slurry. There are two main equipment configurations to conduct this
type of test: “free-ball” and “fixed-ball”. Fig. 1b [2,3] and 1c [1,3,4]
shows examples of these equipments.

The aim of themicro-abrasivewear test is to generate “wear craters”
on the specimen. Fig. 2 presents images of such craters when generated
in coated systems, together with an indication of the total wear volume
(V), the total crater depth (h), the coating thickness (hc), the internal
crater diameter (a) [5] and the external crater diameter (b) [5].

The internal andexternal diameters of thewear crater are commonly
measured by optical microscopy, but other methods are available. For
example, Computer Aided Design (CAD) software [1,3] has been used
for this purpose. The total wear volume and the total crater depth may
be determined as a function of b, using Eqs. (1) [6] and (2) [7],
rights reserved.
respectively, where R is the radius of the ball. These equations are also
valid for non-coated systems.

V≅ πb4

64R
for b≪ R ð1Þ

h≅ b2

8R
for b≪ R ð2Þ

Two abrasive wear modes are usually observed on the surface of
the worn crater: “rolling abrasion” results when the abrasive particles
roll on the specimen, while “grooving abrasion” is observed when the
abrasive particles slide [8–11] on the specimen. Depending on test
conditions, “rolling abrasion” and “grooving abrasion” can occur simulta-
neously in a given crater [1,3,4,8–10]. Fig. 3a [8], b and c [3] presents,
respectively, images of “rolling abrasion”, “grooving abrasion” and a
simultaneous action of “rolling and grooving abrasion”.

The micro-abrasive wear test has been applied in the study of the
abrasive wear of metallic [1–3,8] and non-metallic [3,4,11–15] materials
and, depending on the equipment configuration, it is possible to apply
normal loads (N) from 0.01 N [9,10] to 10 N [1,8,11,16,17] and ball rota-
tional speeds (n) up to 80 rpm [1,12].

The wear behavior of different materials is analyzed based on the
dimensions of the wear crater and/or on the wear mode. Since the
early works of Hutchings [7–10,14,18], other important contributions
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Nomenclature

a internal diameter of the wear crater (substrate) [mm]
b external diameter of the wear crater (coating) [mm]
D diameter of the ball [mm]
Ec Young's modulus of the coating [GPa]
Ei Young's modulus of the indenter [GPa]
E* reduced Young's modulus [GPa]
h total depth of the wear crater (coating+substrate) [mm]
hc coating thickness [mm]
H hardness [GPa]
k wear coefficient [mm3/N.m]
kc wear coefficient of the coating [mm3/N.m]
ks wear coefficient of the substrate [mm3/N.m]
kt total wear coefficient (substrate+coating) [mm3/N.m]
n ball rotational speed [rpm]
N normal force [N]
Q wear rate [mm3/m]
R radius of the ball [mm]
S sliding distance [m]
t test time [s]
T tangential force (friction force) [N]
v tangential sliding velocity [m/s]
V total wear volume (volume of the wear crater:

coating+substrate) [mm3]
Vc wear volume of the coating [mm3]
Vs wear volume of the substrate [mm3]

Greek letters
α significance level
μ friction coefficient
μhigher higher friction coefficient
μlower lower friction coefficient
νc coefficient of Poisson of the coating
νi coefficient of Poisson of the indenter
ξ dimensionless constant (it indicates the severity of wear)

(b) 

Shaft Specimen Ball 

(a) 

Normal force – N

Specimen 

Fig. 1. Micro-abrasive wear testing by rotating ball: (a) schematic diagram of its princ
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have been provided in terms of this type of test, such as: thewearmode
transition [8–10], the wear coefficient (k) [12,13], micro-abrasive wear
of coated systems [12–15,18–20], micro-contact modeling of abrasive
wear [21–24], ridge formation [16,17,25,26] and angularity of abrasive
particles [27].

Many works on friction coefficient (μ) during abrasive wear and
other types of tests are available in the literature [28–31], but only a
few were dedicated to the friction coefficient in micro-abrasive wear
tests with rotating ball [14,22,32,33]. In particular, Shipway [22] has
analyzed the friction coefficient in terms of the shape and movement
of the abrasive particles, Kusano and Hutchings [32] presented a theo-
retical model for friction coefficient in micro-abrasive wear tests with
free ball equipment configuration and Cozza et al. [33] measured the
tangential force developed during tests conducted in a fixed ball equip-
ment configuration, which allowed direct calculation of the friction
coefficient by the ratio between the tangential and normal forces.

With the intent to collaboratewith the understanding of the behavior
of the friction coefficient and wear coefficient of thin films in micro-scale
abrasionwear tests by rotative ball, this work has two purposes: to study
the influence of TiN and TiC coatings hardness on the i) friction coefficient
and ii) wear coefficient.
2. Experimental details

2.1. Micro-abrasive wear test equipment

Equipment with fixed-ball configuration (Fig. 4a) was used in the
micro-scale abrasive wear tests. This equipment was designed and as-
sembled with some mechanical and electrical differences from fixed-
ball equipments found in the literature [8–12,16,17,25,26,31].

In the test apparatus used in this work, the ball is fixed by two shafts,
similar to systems available commercially [10,23], and their rotation
(shafts and ball) is controlled by a couple “servo-motor/servo-controller”,
which was purchased from Rexroth Bosch Group. This system allows the
operator to select rotational speeds of the ball from 10−5 rpm up to
9000 rpm, in both directions (clockwise and counter-clockwise).
(c)

Shaft Specimen Ball 

Tangential force – T
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Abrasive slurry 

n 

iple [1];. (b) “free-ball” configuration [2,3]; (c) “fixed-ball” configuration [1,3,4].
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Fig. 2. Images of wear craters generated in coated systems: (a) total wear volume—V (schematic illustration); (b) total crater depth—h and coating thickness—hc (schematic illustration);
(c) internal diameter—a and external diameter—b [5].
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Fig. 4b shows the translation system. Part “A” is responsible for the
translation movement of the specimen, which is forced against the
ball. This translation movement is made with the help of a second
coupled “servo-controller/servo-motor” (also provided by Rexroth
Bosch Group); it rotates a screw and the normal force is applied, as
presented in Fig. 4c. The load cell that controls the normal force defined
for the test is located between parts “A” and “B”.

The tangential force (T) generated during the tests is measured by
a second load cell, where the specimen is fixed (Fig. 4c), and its value
is shown by a readout system.

“Normal” and “tangential” forces load cells have amaximum capacity
of 20 N and an accuracy of 0.004 N.

Finally, with the help of an electronic linear ruler (Fig. 4d–f) and a
readout system (Fig. 4g), it is possible to continuously measure the
displacement of the specimen (or, wear crater depth—h) during the
tests, with precision of 1 μm. These electronics instruments were
used due to its accuracy; the value of 1 μm is an excellent precision
to this type of micro-abrasive wear test.

2.2. Materials

Experimentswere conductedwith one ballmade of AISI 52100 steel,
which presented a diameter (D) of 25.4 mm (1″). Two specimens of
AISI D2 tool steel (nominal chemical composition of 1.59 wt.% C,
0.34 wt.% Mn, 0.29 wt.% Si, 0.02 wt.% P, 0.006 wt.%S, 11.20 wt.% Cr,
0.56 wt.% Mo, 0.94 wt.%V), one coated with titanium nitride (TiN)
and the other coated with titanium carbide (TiC), were used in the
tests. Before the deposition coatings, the AISI D2 tool steel was received
annealed and after it was submitted to austenitizing at 1080 °C for
30 min, quenching in oil, and tempering at 540 °C for 2 h, with subse-
quent cooling in air.

The thin films were deposited at the Instituto Tecnológico de
Aeronáutica (ITA), in a ReactiveDiodeRFMagnetron Sputtering chamber.
Table 1 shows the parameters that were kept constant during the
(a) (b)

Fig. 3. Abrasive wear modes: (a) rolling abrasion [8]; (b) grooving abrasion; (c) simultaneou
and rolling abrasion at the edges of the wear crater) [3]. (a) and (b): images obtained by Scan
(c), the techniques of optical microscopy are better than SEM to show the full image of the
depositions and Table 2 presents the individual deposition conditions
and the thickness (hc) of the thin films. Their reduced Young's modulus
(E*) values were calculated based on nanoindentation data and these
values allowed the calculation of the Young's modulus of the thin films,
through Eq. (3).

1
E�

¼ 1−ν2
i

Ei
þ 1−ν2

c

Ec
ð3Þ

Ei, νi, Ec and νc are the Young's modulus and the coefficient of
Poisson of the indenter and coating [34,35], respectively, and their
values are mentioned in Table 3.

The adhesion of the coatings was analyzed under the Rockwell C
adhesion test, defined by the standard DIN-CEN/TS 1071-8. The quality
indications were between HF1 and HF4, that specify the condition of
“sufficient adhesion”.

The abrasive used was black silicon carbide (SiC) with average
particle size of 5 μm [1,3,4,36,37]. Fig. 5 [36] presents a micrograph
of the abrasive particles (Fig. 5a) and its particle size distribution
(Fig. 5b). The abrasive slurry was prepared as a mixture of 25% of
SiC and 75% of distilled water, in volume. This mixture results in
1.045 g of SiC/cm3 of distilled water [1,3,4,33,37].

Table 4 presents the hardness (H) values of the materials used in
this work (substrate, thin films, ball [1,3,4,33,37] and abrasive particles
[1,3,4,36,37]). The values for the thin films were calculated based on
nanoindentation data, with a Berkovich indenter.

2.3. Micro-abrasive wear tests

Table 5 shows the test conditions selected for the experiments
conducted in this work.

Two values of normal force were defined for the wear experiments:
N1=1.25 N and N2=5 N.
(c)
100 m 

Grooving abrasion 

s action of rolling abrasion and grooving abrasion (with grooving abrasion at the center
ning Electron Microscope—SEM; (c): image obtained by Optical Microscope. In the case
wear crater and the actions of the abrasive wear modes.
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The ball rotational speed was n=37.6 rpm, which was previously
selected by Trezona et al. [8] and Adachi and Hutchings [9,10]. For
n=37.6 rpm and D=25.4 mm (D=1″; R=12.7 mm), the tangential
sliding velocity at the external diameter of the ball is equal to
v=0.05 m/s, which probably reduces or eliminates the occurrence of
hydrodynamic effects during the tests [10].

Tests were run for six different sliding distances (S), S1=10 m,
S2=16 m, S3=25 m, S4=40 m, S5=63 m and S6=100 m. These
valueswere based on the Renard's Series—R20/4 [38]. The correspondent
test times were, respectively, t1=200 s (3 min 20 s), t2=320 s (5 min
(a) Shafts

Sphere

Shafts

Ball

L

Specimen

Load cell for normal force 
control

(c)

(b)

Part B

Back view of the 
equipment.

Fig. 4. (a) Micro-abrasive wear test equipment with fixed-ball configuration; (b) translation sy
schematic illustration; (d) full viewof the electronic linear ruler and support built with profiles
of the electronic linear ruler with the part “B”; (g) readout system that works together with th
depth—h) during the tests, with a precision of 1 μm.
20 s), t3=500 s (8 min 20 s), t4=800 s (13 min 20 s), t5=1260 s
(21 min) and t6=2000 s (33 min 20 s), as presented in Table 5.

The electronic linear ruler presented in Fig. 4 allowed constant
monitoring of the crater depth (h), and thus the calculation of the
wear volume, for each test time, without the need to stop the test
for crater dimension measuring. Three repetitions were conducted
for each value of N, totalizing 12 experiments. Each value of normal
force, N1 and N2, is the same for each test time, from t1 to t6.

The abrasive slurry was continuously agitated andwasmanually fed
to the specimen-ball contact, with the help of a dropper, at a rate of one
Load cell for tangential force 
measurement

inear displacement of the 
specimen (“h”)

Rotation of the screw
(linear displacement of the specimen 
and application of the normal force)

Part A

stem; (c) general view of the equipment used in the experiments of this work—specimen:
“U”; (e) flattened piece of granite fabricated to support the electronic linear ruler; (f) fixing
e electronic linear ruler and indicates the displacement of the specimen (or, wear crater



(d)
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profiles “U”.
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to support the linear ruler.
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Front view of 
the 

equipment.

Fig. 4 (continued).
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drop every 20 s. This frequency is equal to that selected by Kusano and
Hutchings [32], for the same type of micro-abrasive wear test.

2.4. Data acquisition and result analysis

The calculation of individual values for the wear volumes of the
coating and the substrate was conducted based on the following
procedure.

First, for each test time presented in Table 4, the respective crater
depth (h) was measured (with the electronic linear ruler), and from
Eq. (4) [8], the total wear volume (V) (coating and substrate) could
be calculated. R is the radius of the ball and the dimension h (total
depth of the wear crater) is schematized in Fig. 2b.

V≅πRh2 for h≪ R: ð4Þ

The wear volume of the substrate (Vs) and the wear volume of the
coating (Vc) were calculated from Eqs. (5) and (6), respectively; hc is
the coating thickness (Fig. 2b).

Vs≅πR h−hcð Þ2 for h≪ R ð5Þ

Vc≅πR 2hhc−h2c
� �

for h≪ R: ð6Þ
Table 1
Constant parameters of deposition of the TiN and TiC coatings.

Parameter Condition

Temperature 350 °C
Polarization voltage 0 V
RF generator power applied about the magnetron cathode 500 W
Initial pressure of Ar 3 mTorr
Base pressure 2×10−6 Torr
The total wear coefficient (kt), the wear coefficient of the substrate
(ks) and the wear coefficient of the coating (kc) were calculated from
Eqs. (7), (8) and (9), respectively.

kt ¼
πRh2

NS
ð7Þ

ks ¼
πR h−hcð Þ2

NS
ð8Þ

kc ¼
πR 2hhc−h2c

� �

NS
ð9Þ

Values of normal load (N) and tangential force (T) were registered
during all the tests, once every t=40 s. Then, the friction coefficient
was determined using Eq. (10).

μ ¼ T
N

ð10Þ

For each specimen (“AISI D2 tool steel coated with TiN” and “AISI
D2 tool steel coated with TiC”), the three curves of friction coefficient
as a function of the test time (μ= f(t)) obtained under N1=1.25 N
were compared with the three curves of μ= f(t) obtained under
N2=5 N through ANOVA (Analysis of Variance [39]), with a signifi-
cance level (α) of 10%.
Table 2
Conditions of deposition of the TiN and TiC coatings.

Thin film Flux of N2

[sccm]
Flux of CH4

[sccm]

FN2
FN2 þFAr

FCH4
FCH4 þFAr

Pressure
[mTorr]

Time
[min]

hc
[μm]

TiN 6.0 – 0.23 – 3.5 165.0 2.0
TiC – 5.0 – 0.19 2.5 105.0 2.3



Table 3
Values of the Young's modulus and coefficient of Poisson of the indenter and coatings,
with the respective reduced Young's modulus.

Element E [GPa] ν E⁎ [GPa]

Berkovich indenter 1140 [34] 0.07 [34] –

TiN coating 341.9 0.19 [35] 270.9
TiC coating 147.0 0.20 135.1

Table 4
Hardness of the materials used in this work.

Material Hardness—H [GPa (HV)]

Substrate AISI D2 tool steel 7.3 (744)
Thin film TiN 25.6

TiC 14.3
Ball AISI 52100 steel 8.4 (856) [1,3,4,33,37]
Abrasive particles SiC 18.5–19 (1886–1937) [1,3,4,36,37]
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Later, the six μ= f(t) curves produced on the “AISI D2 tool
steel+TiN” were compared with the six μ= f(t) curves produced on
the “AISI D2 tool steel+TiC”, also through ANOVA and α=10%.

Finally, for each specimen, the kt= f(t) curves were analyzed
through ANOVAwith α=10%, too, following the samemethod adopted
for the μ= f(t) curves.

These analyses were addressed to verify if the curves of friction co-
efficient and wear coefficient as a function of the time are, statistically,
equal or different, for the different coatings and normal forces.

3. Results and discussion

3.1. Abrasive wear modes

Optical microscopy analysis of the wear craters obtained in this
work indicated that, in all cases, the abrasive wear mode was grooving
abrasion (Fig. 6a and b). In all the cases, the tests were perforating, i.e.
the final crater depth was larger than the film thickness.

Later, detailed analyses were conducted with a Scanning Electron
Microscope and the occurrence of rolling abrasion was observed
alongside the grooves (Fig. 6c–f). This phenomenon, the occurrence
of rolling abrasion at the surface of or in between the grooves, was
called “micro-rolling abrasion” by Cozza et al. [33] and Cozza [37],
in previous works.

Fig. 6c and d presents SEM images of the center of the wear craters
produced on the AISI D2 tool steel specimen coated with TiN, under
N1=1.25 N and N2=5 N, respectively. Fig. 6e and f presents images
of the center of the wear craters generated on the substrate coated
with TiC, for N1=1.25 N and N2=5 N, respectively.

3.2. Friction coefficient behavior

Fig. 7 presents the behavior of the friction coefficient (μ) as a function
of the test time, for both AISI D2 tool steel specimens coatedwith TiN and
TiC. In this figure, trend lines were drawn to approximately indicate the
borders of the region with the experimental friction coefficient values.
Then, two quantities, μhigher and μlower, were defined as the value of the
upper and lower trend lines, respectively, for t6=2000 s; this procedure
was equally conducted by Cozza et al. [33]. It is important to emphasize
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Fig. 5. SiC abrasive particles [36]: (a) scanning elec
that μhigher and μlower were not calculated; they are approximate values
defined based on the trend lines inserted in the graphs of μ= f(t), for
t6=2000 s.

For both “AISI D2 tool steel+TiN” and “AISI D2 tool steel+TiC”
and for both N1=1.25 N and N2=5 N, the friction coefficient range
remained from μ=0.4 to μ=0.9. With the AISI D2 tool steel coated
with TiN, it was observed a ratio between the higher friction coefficient
and the lower friction coefficient of μhigher/μlower≅1.8, and with the AISI
D2 coated with TiC, the value was μhigher/μlower≅2.

Through ANOVA, it was observed that:

(i) “AISI D2+TiN”: for both N1=1.25 N and N2=5 N, the friction
coefficient values obtained are statistically different. Fig. 7a in-
dicates that the friction coefficient values were slightly larger
for N2=5 N;

(ii) “AISI D2+TiC”: for both N1=1.25 N and N2=5 N, the friction
coefficient values obtained are statistically different. Fig. 7b in-
dicates that the friction coefficient values were slightly larger
for N2=5 N;

(iii) Comparison between “AISI D2+TiN” and “AISI D2+TiC”: for
both N1=1.25 N and N2=5 N, the friction coefficient values
obtained are statistically different.

The average values of friction coefficient were:

(i) “AISI D2+TiN” for N1=1.25 N: μ=0.60±0.08;
(ii) “AISI D2+TiN” for N2=5 N: μ=0.65±0.09;
(iii) “AISI D2+TiC” for N1=1.25 N: μ=0.67±0.09;
(iv) “AISI D2+TiC” for N2=5 N: μ=0.74±0.10.

3.3. Relationship between hardness and friction coefficient

The hardness of a material affects the occurrence of rolling abrasion
and/or grooving abrasion, as described in the wear map of Adachi and
Hutchings [9,10]. Besides, the abrasive wear mode might have an im-
portant role on the friction coefficient values. Kusano and Hutchings
[32], conducting ball-cratering abrasive wear tests in a test apparatus
with “free-ball” configuration, obtained values of friction coefficient of
approximately μ=0.2, under conditions of rolling abrasion. On the
other hand, Cozza et al. [33] observed higher values, from μ=0.2 to
0,01 0,1 1 10 100
Diameter [µm] 

(b) 

tron micrograph; (b) particle size distribution.



Table 5
Test conditions selected for the micro-abrasive wear experiments.

Test condition ⇒ 1 2 3 4 5 6

Normal force—N1 [N] 1.25 1.25 1.25 1.25 1.25 1.25
Normal force—N2 [N] 5 5 5 5 5 5
Sliding distance—S [m] 10 16 25 40 63 100
Ball rotational speed—n [rpm] 37.6 37.6 37.6 37.6 37.6 37.6
Tangential sliding velocity—v [m/s] 0.05 0.05 0.05 0.05 0.05 0.05
Test time—t 200 s 320 s 500 s 800 s 1260 s 2000 s

(3 min 20 s) (5 min 20 s) (8 min 20 s) (13 min 20 s) (21 min) (33 min 20 s)
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μ=1.2, in a test devicewith “fixed-ball” configuration and under condi-
tions of grooving abrasion.

The range of friction coefficient values obtained in this work (from
μ=0.4 to μ=0.9) is included in the range obtained in the previous
work of Cozza et al. [33] (from μ=0.2 to μ=1.2) and it may be related
with the dominant occurrence of grooving abrasion.

In terms of the specimens analyzed in this work, the substrate
(AISI D2 tool steel) was the same for both TiN and TiC coated speci-
mens and then it is probably correct to consider that its hardness
(c)

(e)

(a)

Fig. 6.Wear craters obtained in the experiments. (a) AISI D2 tool steel with TiN and (b) AISI
note only the occurrence of grooving abrasion. (c)–(f): Occurrence of micro-rolling abrasio
normal force of N1=1.25 N and N2=5 N, respectively; (e) and (f): AISI D2 tool steel coate
S6=100 m.
had the same influence on the occurrence of the abrasive wear
mode (grooving abrasion in all experiments) and on the friction co-
efficient behavior. In fact, although the curves μ= f(t) are statistically
different, the average values are similar (“AISI D2 tool steel+TiN”:
0.6 and 0.65, to 1.25 N and 5 N, respectively; “AISI D2 tool
steel+TiC”: 0.67 and 0.74, to 1.25 N and 5 N, respectively). Thus,
in this work, the hardness of the coatings did not have a significant
influence on the friction coefficient values as a function of the test
time.
(d)

(f)

(b)

D2 tool steel with TiC; images obtained with Optical Microscope, where it is possible to
n, as related in previous works [33,37]. (c) and (d): AISI D2 tool steel coated with TiN,
d with TiC, normal force of N1=1.25 N and N2=5 N, respectively. Sliding distance of
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Fig. 7. Friction coefficient as a function of the test time. AISI D2 tool steel coated with (a) TiN and (b) TiC, against abrasive particles of SiC (average particle size of 5 μm) and ball of
AISI 52100 steel.
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In this work, Analysis of Variance was not addressed to friction co-
efficient as a function of the hardness of the substrate because the
substrate material was the same (AISI D2 tool steel) for both TiN
and TiC coatings.

3.4. Wear coefficient behavior

Fig. 8 presents the behavior of the wear coefficient as a function of
the test time, for the “AISI D2 tool steel coated with TiN” and “AISI D2
tool steel coated with TiC”. This figure shows the total wear coefficient
(kt) (substrate+coating), the wear coefficient of the substrate (ks)
and the wear coefficient of the coating (kc).

Through ANOVA, it was observed that:

(i) For N1=1.25 N: the wear coefficient values obtained are sta-
tistically different, for TiN and TiC coatings. Fig. 8a indicates
that the wear coefficient values were larger for the TiC coatings
(lower hardness);

(ii) ForN2=5 N: thewear coefficient values obtained are statistically
different, for TiN and TiC coatings. Fig. 8b indicates that the wear
coefficient values were larger for the TiC coatings (lower hard-
ness);

(iii) Comparison between “AISI D2+TiN” and “AISI D2+TiC”: for both
N1=1.25 N andN2=5 N thewear coefficient values obtained are
statistically different.

For both “AISI D2 tool steel+TiN” and “AISI D2 tool steel+TiC”,
the application of the normal force N2=5 N resulted in higher values
of kt, ks and kc than with N1=1.25 N, which is a result in qualitative
agreement with the literature [11,40]; higher normal forces favor
higher wear coefficients and lower normal forces favor lower wear
coefficients. Besides, with the increase of the thin film hardness, the
wear coefficient decreased, which is also in qualitative agreement
with the Archard's law (Eq. (11) [41]).

Q ¼ ξ
N
H
: ð11Þ

Where Q is the rate of wear and ξ is a dimensionless constant that
indicate the severity of wear [41].

Analyzing Fig. 8a and b, it is possible to note that, for both TiN and TiC
coatings, the wear coefficients of the coatings (kc - TiC and kc - TiN) are
similar for the two values of normal force. This similarity is related to a
similarity infilm thickness (2.0 μmand2.3 μm,TiN andTiC, respectively),
which provides similarwear volumes. Nevertheless, it is important to no-
tice that, from approximately 400 s, the wear coefficient kc of the coating
with the lowest hardness (TiC)was consistently higher than thatwith the
highest hardness (TiN).

Each specimen presented a distinct behavior in terms of the wear
coefficient (kt and ks) as a function of the test time. For the “AISI D2
tool steel+TiN”, the total wear coefficient and the wear coefficient
of the substrate decreased as a function of the test time, while the kt
and ks values for the “AISI D2 tool steel+TiC” presented a maximum
point at about t4=800 s. In micro-abrasive wear tests it is usually
recommended to conduct a comparison between two tested materials
only after the steady state of wear is achieved, i.e. after the point
where no significant variation in wear coefficient is observed as a func-
tion of time. This idea opposes a direct comparison between the values
of ks and kt in Fig. 8, since the steady state of wear was not achieved in
some cases, especially with the TiC-coated specimen. On the other
hand, some work must be dedicated to the understanding of why two
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Fig. 8. Wear coefficient as a function of the test time. (a) N1=1.25 N—TiN and TiC coatings; (b) N2=5 N—TiN and TiC coatings.
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coated specimens with the same substrate material presented such
difference in behavior.

4. Conclusions

The results obtained in this work have indicated that:

(1) The hardness of the coatings did not have a significant influence
on the friction coefficient values; they remained in the same
range, from μ=0.4 to μ=0.9, and with average values between
0.6 and 0.74. Besides, for both “AISI D2 tool steel+TiN” and
“AISI D2 tool steel+TiC” the friction coefficient curves
presented, practically, the same behavior, independent of the
hardness of the coatings;

(2) The TiN-coated specimen (higher hardness) presented lowerwear
coefficient values (kt, ks and kc) than the TiC-coated specimen. In
terms of the wear coefficient of the coating kc, the difference may
be associated eitherwith thehigher thickness or to the lowerhard-
ness of the TiC coating.
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