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1. INTRODUCTION

Let K be any field and K(x,,..., x,) the rational function field of n
variables over K. A K-automorphism o of K(x,,...,x,) is said to be
monomial if

n
o(x,) =a o) [Tx™,
j=1

where (m;), ., ;., is an invertible n X n matrix with integer entries and
where a,(c) € K\ {0}. If afco) = 1 Vi, then o is called purely monomial.
It is proved in [6; 8] that if G is any finite group of monomial K-automor-
phisms of K(x,, x,), then its fixed field K(x,, x,)¢ is rational (= purely
transcendental) over K. This does not generalize to the three-variable case
since the fixed field of the monomial K-automorphism o defined on
K(x,,x,, x;) by
1

OiX, DXy Xy —
X1 XaX3

is not rational over K when K is the field of rational numbers [6, last
paragraph]. Hence we consider the actions of purely monomial groups of
K(x,, x,, x3). According to [20; 1] there are 73 conjugacy classes of finite
subgroups in GL(3, Z) in total: 34 of them are abelian and 39 of them are
not abelian. We have established in [10] that the fixed field of K(x,, x,, x)
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806 HAJIA AND KANG

under any abelian purely monomial group action is rational. We shall
study the non-abelian case in this paper. Note that it seems difficult to
extend these results to the higher dimensional cases since the fixed ficld of
K{(x|, x5, x5, x,) acted upon by the purely monomial K-automorphism o
defined by

1

TIX| =X, XX, —
‘ X

1

is not rational over K when K is the field of rational numbers [9, Lemma
3]. What we shall prove in this paper is the following.

MaIN THEOREM.  For any field K, the fixed field of K(x,, x,, x3) under
any purely monomial group action is rational over K except for those which
are conjugate in GL(3, Z) to the subgroup generated by

1 | 0 -1 -1 -1
-2 -1 -1 and 0 0 1
0 0 1 0 1 0

This “exceptional” conjugacy class is designated as W, in [20, p. 198].
We still do not know whether the fixed subfield under the action of this
group is rational or not.

It might be interesting to compare our result with the birational classi-
fication of algebraic tori. Let L be a finite Galois extension of K with
Galois group G. An algebraic K-torus T which is split by L is a linear
algebraic group 7T defined over K such that T ®; L is isomorphic over L
to the direct product of the one-dimensional multiplicative group G,,,.
Therefore, the function field of an n-dimensional K-torus split by L is
simply the fixed field of L(x,, x,,..., x,)", where some group homomor-
phism p:G — GL(n, Z) is determined by the splitting of this torus. It is
known that the function field of any two-dimensional algebraic torus is
rational over its field of definition [21; 22], and there are exactly 15
conjugacy classes of subgroups in GL(3,Z) giving rise to non-rational
function fields of three-dimensional algebraic tori [14]. Note that the
subgroup U, creating a non-rational algebraic torus in [14, Theorem 1] is
conjugate to our “exceptional” case W,,. We might mention also that out
of the above 15 conjugacy classes of subgroups in GL(3, Z), four of them
are abelian and the remaining 11 ones non-abelian.

Besides the applications we have in mind [17; 18, 19; 15; 5], purely mono-
mial group actions are considered in other directions. See, for example,
[16; 3; 2] and the references therein.
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The proof of the main theorem is contained in Section 2. Please note
that results in (2.2), (2.4), (2.7), and (2.14) are of independent interest.

Parts of this work were done while the second named author was
visiting Purdue University. We thank our colleagues there, especially
Professor T. T. Moh whose encouragement contributed so much to the
completion of this paper.

2. PROOF OF THE MAIN THEOREM

Throughout this section, we shall denote by K(x,y, z) the rational
function field of three variables over K, where K is any field. Let G be
any finite group of purely monomial K-automorphisms acting on
K(x,y, z). We may simply regard G as a subgroup of GL(3, Z). Because
the case when G is abelian has been completed in [10], it suffices to
consider the non-abelian case. Note that conjugation within GL(3, Z)
corresponds to a change of the base {x, v, z) of K(x, y, z), G is significant
only up to the conjugacy class to which it belongs. Tahara has listed 40
conjugacy classes of non-abelian subgroups in GL(3, Z) [20] while the
subgroup W; in [20, p. 198] should be deleted according to Ascher and
Grimmer [1]. Hence, there are exactly 39 non-abelian conjugacy classes.
We shall denote by W) the subgroup W, which appears on page j of
Tahara’s paper [20]. We shall describe the subgroup W.(j) by exhibiting its
generators o, T (and A). The rationality of K(x, y, z)“ will be established
in a case-by-case manner.

(2.1) The case when G = W (184) with 5 <i <8, or W(187) with
7 <i=<10, or W{191) with 2 <i <7, or W,(194), W,(198), W,(193).

Specifically these W) are given by

1 0 0 -1 0 0
w,(184) =(e=(0 0 —-1|,r={0 0 -1
01 -1 0 -1 0
1 0 0 1 0 0
Wy (184 ={e=10 0 —1],7r=[0 0 1
0 1 -1 01 0
1 0 0 -1 0 0
w188y ={o={0 0 —1|,7=|0 0 1
0 1 -1 0 1 0
10 0 1 0 0
Wo(184) = (o =0 0 —1f.r=|0 o0 -1
0 1 -1 0 -1 0
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1 0 0 -1 0 0
w,(198) = (oc=10 0 —1|.7r=[ 0 o 1},
0 1 1 0 1 0
-1 0 0
A=1o -1 0
0 0 -1
1 0 0 -1 0 0
W,(198) =(e=]0 0 —1|.r=l0 0 -1},
0 1 -1 0 -1 0

In the above groups, the first vector of the base is always an eigenvector
and the subspace generated by the remaining two vectors forms an
invariant subspace under the group action. As an illustration, we shall give
a proof for W,(198). All the other cases can be treated similarly.

In W,(198), the group G is generated by o, 7, and A with

o(x) =1x, o(y) =z, o{z)=2z/y,
(x)=1/x, 7(y)=z, 7(z)=y,

1 1 1
A(x)=_x_’ /\(.V):;, /\(Z)'—';.

Set

Then
K(x,y,z) = K(y,z,u),
o(u) =u, (u)=—u+1, Aluy = —u + 1.

By the following Theorem 2.2, we have

K(x,y,2)° =K(y,z,u)’ = K(y,2)"(w),

where w is some element of K(x, y, z) and o(w) = 7(w) = A(w) = w. By
the results of the two-dimensional monomial group actions [8], K(y, 2) is
rational over K. Hence, K(x, y, z)” is also rational over K.
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(2.2) TueorREM. Let F be any field, let F(x,,...,x,) be the rational
function field of n variables over F, and let G be a finite group of
automorphisms of F(x,,...,x,) for each o € G: (i) o(F) = F; (ii) a{x,)
=alo)x;, + blo) for 1 <i <n, where alo) € F(x,,x5,...,x,_)\ 10}
and blo) € F(x,, x5,...,) x;_ ). Then there exist y,,..., ¥, € F(x,...,x,)
such that a(y) =y, for | <i<n for all ¢ € G and F(x,...,x,)" =
Fy oy ‘

Remark. In the above theorem, it is not necessary that the automor-
phisms be F-automorphisms.

Proof. The proof is essentially the same as that given in [10, Theorem
1]. Thus we omit the details.

(2.3) The case when G = W,(184) with i = 9, 10:

0 1 0 0 0 -1
Wo(189) =(a=10 0 1|,r=[0 -1 0

I 0 0 -1 0 0

0 1 0 0 0 1
W(188) = (o=(0 0 1|.r=]0 1 0

100 1 0 0

We shall establish the rationality of W,(184). The case of W,,(184) is
the same. In W, (184), recall that the group G is generated by ¢ and 7
with

o(x) =1z, o(y) =x, o(z) =y,

1 1 1
7(x) = 7, )= 7(z) = .

(i) Suppose that char K # 2. Let u, v,w be defined by

1 —x 11—y 1 -z
U = N U= s w = i
1 +x I +y 1+z
Then we have
o(u) =w, o(v) =u, o(w) =r,

T(u) = —w, T(v) = —u, T(w) = ~u.
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Let r, s, t be defined by
r=u-+ut+w, s = — t = —.

Then the actions on r, s, ¢t are given by

1
o(r)=r, (r(s)=s—t, o(t) =y,

| 1
7(r)=—r, T(S)z't*, T([)=;.

Now
(¢ &)
K(x,y,z) = K(u,v,w)
= K(r,s, t)(;
= K(s5,1)°(p)

is rational over K, again by Theorem 2.2 and [8], where p is some element
in K(r,s,t)with o(p) = 7(p) = p.

(ii) Suppose that char K = 2. Let u, v, w be defined by

1 1 1
u= , U= w =

1 +x 1 +y 142z
Then we have
o(u) =w, o(r) =u, o(w) =r,
T(u)y =w+1, T(v) =0+ 1, r(w)=u+ 1.
Let r, s, t be defined by
r=u-+u, s=0+w, t=r.
Then we have
o(r)y=r+s, o(s)=r, o(t)y =t +r,
T(r) =s, T(s) =r, T(t) =t + 1.

Hence, again by Theorem 2.2 we can find p € K(r, s, t) such that a(p) =
r(p) = p and

K(r,s,t)(; = K(r,s)(;(p).

481/170,3-8
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Note that G is the symmetric group, S,, permuting among r, s, and
r + s. Hence, K(r, s) is generated by the elementary symmetric functions
r+s+(r+sy=0,rs +(r+3), and rs(r + s). Thus it is rational over
K.

Before the proof of W, (187), we state the following theorem whose
proof can be found in [11, 4.6 Remark and 6.7 Theorem].

(2.4) Tueorem. Let F be any field, E = F(a) a separable extension field
of degree 2 over F, and o the non-trivial F-automorphism on E. Let E(x, y)
be the rational function field of two variables over E and extend the
automorphism o into E(x,y) by defining

o(x) =x, a(y)=f(x)/y,

where f(x) is some non-zero polynomial in F[x]:

(a) When deg f(x) = 1, then E(x, y)°’ is always rational over F.

(b) When charF # 2,a’ =a € F\ {0}, f(x) = b{x? — ¢) for some
b,c € F with b+ 0, then E(x,y)°? is rational over F if and only if
(a,b), r € B(F(Yac)/F) where (a,b), r is a norm residue symbol of
degree two and Br(N/F) is the subgroup of Brauer group consisting of
similarity classes of central simple F-algebras split by N.

(c) When charF =2, a°+a=a €F, f(x) =bx?+x +¢) for
some b, c € F with b # 0, then E(x, y)°’ is rational over F if and only if
la,b), r € BUF(B)/F), where B>+ B =a+c€F and [a,b),, is a
2-symbol [-,- )2, ¢ With the first variable being additive and the second
variable multiplicative.

(d) When charF =2, a’° +a=a €F, f(x) =b(x> +c) for some
b,c € F\ {0}, then E(x, y)‘°’ is rational over F if and only if [a,b), €
Br(F(Vc )/F).

(2.5) The case when G = W, (187):
1 0 1 -1 0 0
W18y =({oc=[0 0 —-1|,7r=1 0 0 -1
0 1 0 0 -1 0
The actions of o and 7 on K(x, y, z) are given by
o(x) =x, o(y) =1z, o(z) =x/y,

1 1. 1
-r(x)=;, T(Y)=;, 7(z)=;.
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Define u,r,w as

X X y yz
u=y+z+—+ —, v = , w = .
y z y+z X +yz
Note that
(y +2)(x +yz) yz
y+z= . =uw € K(u,v,w),
yz X +yz
T (y+1) € K(u,o.w)
= . z) € u,uv,w).
y vtz y
Hence

K(x,y,z) = K(u,v,w).

Recall that the actions of o, 7, 0% on u,v,w are given by

o(u) = u, o(v) =w, o(w)=1-u,
7(u) =a/u, r(v) =v, r(w)=1-w,
ac?(u)y =u, oX}v)y=1-v, o*(w)=1-w,

where a is defined as
1
Coow(l =) (1 = w)

(i) Suppose that char K # 2. Note that

Pe=1)= (1. v = (w1
Hence, we find that
K(u,ew)” = K(u, (v =3 (e = H)(w = 1))-
Now the action of o is given by
of(e=1))=(w=4"  o((v-Hw-3)=~(- w1
Define p and g as

v — w =

p= -
w —

=] 09—
~
|
1| rofe
£
Il
———
|
N —
S ——
()
+
——
=
|
b —
~—
~
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Since

ta—

2 <'7>
K(u,p,a) € K(u, (v = 5), (0 = H)(w = 1))
[K(w (= 200 = 9w = ) K(wpo0)] <2,
we find that
(o)
K(u,p,q) = K(ll,(l' - %){(v - 3)(w - %)) = K(u,l',w)<">.
The action of 7 on u, p, g is given by
a
)y =—. 1(p)=-r. () =q

where

1 16(p* + 4)
Coow(l —e)(1 —w)  p?—4plg + 16g° — 16g + 4~

Now apply Theorem 2.4 (b) with F=K(p?),a=p,x=qg —(p* +
4)/8,and y = u(p® — 4p*q + 16q* — 16q + 4), f(x) = 16(p* + 4) p> —
4p’q + 16q° — 16q + 4). Write

16( p* + 4)(p* — 4pq + 16q* — 16q + 4)

‘1924-42 p4+4p2}

:162(p2+4){(q— g

64

It suffices to show that the symbol
(pz’ 162(p2 + 4))2 K(p?)

is split by K(p*y/p? + 4 /2).
Remember that p? is transcendental over K. For psychological reasons,
we write X = p’. We want to show that the symbol

(X, 16%(X + 4))y xex)

is split by K(X, XYX + 4 /2) = K(YX + 4). But this is trivial!
(ii) Suppose that char K = 2. Note that

ci(v)y=v+1, o} r+w)=0r+w
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Hence, we find that
K(u,z',w')<"2> =K(u,v{r + 1),0 +w).
Arguing as in the case of char K # 2, we find that
K(u,l',w)<"> =K(u,p,q),
where p and g are defined by

v{e+ 1)

= +toe+w,g=(0+w)r+w+1).
(e +w)(r+w+1) cAweg=(rtw)(edw )

p
The action r on u, p, q is given by
a
) =—. wp)=p+l 7(q) =gq,

where
1 1
ew(l+ o) (1 +w) g (p>+p+aq)

Apply Theorem 2.4 (a) with F=K(p’+pla=p,x=gq, and y =
ug(p*>+p + q), f(x) =p* + p + g. We are done.
(2.6) The case when G = W,,(187),

1 0 1 1 0 0
w,(187y={e=[0 0 —1].7r=[0 0 1

0O 1 0 0 1 0

Apply the same change of variables as in (2.9), i.e.,

x X y yz
Uu=y+z+—+ —, r= > w = .
y z y+z X +yz

The actions of ¢ and 7 are given by

o(u) =u, o(r) =w, o(w)=1-r¢,

T(u) =u, T(r)y=1-u, T(w) =w.

(1) Suppose that char K # 2. Define p and ¢ by

ra|—

q=w-

-
-

p=ru-
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Then we have

o(p)=a, o(q)=-p,
(p)=-p,. 7(q9)=4q.
Hence,
K(x,y,2)" =K(u,p,q)°
= K(p.9)%(w)
is rational over K by the two-dimensional results [8].

(ii) Suppose that char K = 2. Again it suffices to show that K(u, w)¢
is rational over K. Since

oi(v)y =v+1, g v +w)=t+w,
we find that
K(L',w)<”2> =K(v(e+ 1,0 +w).
Define p and g by

v(v + 1)
=v+w,q= +u+w.
P g (v +w)(e+w+1)

Then the actions on p and g are given by
ao(p)=p+1, o(q)=gq,
(py=p+1, 7(g) =g+ 1.
Hence,

K(U’w)(i _ {K(l" w)((r2>}<(r.-r>

= K(v(v + 1),0 +w)'"7
—K(p.a)"”

- K(p(p+1),9)
=K(p(p+1),q(q +1)).

Before proving W (187) and W (187), we give another useful lemma.
Please compare our proof with that given in the last paragraph of [4].

(2.7) Lemma. Let F be any field, a,b € F\ (0}, and F(x, y) the ratio-
nal function field of two variables over F. Define an F-automorphism o on
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F(x,y) by
a b
o(x)=—, = —,
(=2, o=

Let u and v be defined by

x—a/x y—>b/y
= —, l‘ =
xy —ab/xy xy — ab/xy
Then
F(x,y)"’ = F(u,v),
a —bu’ +av? + 1 b but—ar’+1
X+ — = . oyt — = ———
X v y u
ab —bu? —ar?+ 1
W+ — =
Xy ur

Proof. Since [F(x,y): F(x,y)] = 2 and xy & F(x, y)”’, we have

F(x,y) = F(x,9) + F(x,y)' "0y,
Thus we may write x as
X =av + uxy n
for some u,v € F(x, y)<“>.
Apply o to (1). We obtain

a ab
—=av +u—. (2)
x xy

Solve the simultaneous equations (1) and (2), and express v and v in
terms of x and xy. Namely, subtracting (2) from (1) we have

a ab
x——=u(xy——)
X Xy

3 x—a/x 3
“T y —aby )

Then multiplying (1) by ab/xy and subtracting (2) multiplied by xy gives
ab ab
— —ay =av|\— —xy
y Xy

y—b/y

e 4
l xy — ab/xy )
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And multiplying (1) by (2) we have

2 2 ab 2
a=a v+ aur|xy + —| + abu-.
x)’
Hence, we obtain the expression
ab —bu? —av’ + 1
xy + — = . (5)
xy ue

Note that (5) tells us that
[F(xy,u,v): F(u,r)] < 2.
By (1), we find that
x € F(xy,u,v).
Hence,
F(xy,u,v) =F(x,y).
Therefore, we have that
[F(x,y):F(u,0)] <2,
F(u,v)y c F(x,y)".
Hence
F(x, ) = F(u,v)

and u, v, xy + ab/xy are given by formulae (3), (4), and (5), respectively.
The formulae for x + a/x and y + b/y can be derived similarly or simply
by brute force.

(2.8) CoroLLARY. Let F be any field, a, a,,...,a, € F\{0}, and

F(x,,...,x,) the rational function field of n variables over F. Define an
F-automorphism a on F(x,...,x,) by

o(x;) =a;/x,, 1 <i<n.
If the subgroup generated by a,, ..., a, in F*/F*" is of order < 4, where
F*:= F\ 0}, then F(x,,...,x, ) is rational over F.

Proof. By assumption, we may assume that a, and a, generate this
subgroup. Now suppose that

a,=aa,b’
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for some b € F*. Define y; by

X3
Y3~ bx,x,
Then we have
o(y3) = 1/y;.

The other situations can be completed similarly. Thus, without loss of
generality, we may assume that a,=a,= --- =4, = 1. Now define
23, 24,...,2, by

1
z; = s 3<i<n
1+ x,
It is clear that
o(z;,) = -z, + 1, 3I<i<n.
Now
K(xy,.o0x6,) = K(x,, x:)(25,...,2,)""

is rational over K by Theorem 2.2 and Lemma 2.7.

(2.9) The case when G = W,,(187) or W, ,(187),

-1 0 -1 -1 0 0

Wi(187)=({o=1 0 0 1 j,==| 0 0 -1
0 -1 0 0 -1 0
-1 0 -1 1 0 0

w187y ={oc=|0 0 1 |,r=(0 0 1
0 -1 0 0 1 0

We shall establish the rationality of these two groups simultaneously.
Recall the actions of o and 7 on K(x,y, z):

For W ;(187),

s o(y) =—, QANVNW,

I
s (z) = —.
y
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For W, (187),

1 1 y
r(x) = —, T = —, o(z) =—,
o(x)=—, ey =2, o(z)=7
T(x) =x, 7(y) =z, T(z) =y.
The action of ¢? for both groups is the same,
X x
2(x) =x, 2 =2, 2 = -
o?(x) )= o) =3
Apply Lemma 2.7. Let
y—x/y z~x/z
U=——->55—, v=———.
yz —x°/yz yz = x*/yz

Thus we have
K(x,y, z)<”2> =K(x,u,v).

Now we compute o(u):

o (i) — 1/z —z/x
y/xz = z/xy
z-x/z
T y/z-zy
z—x/z yz—x%/yz
T ye—xfyzy/z-z)y
(vz —x?pyz)’
T O 2 - <)
(yz + xz/yz)2 — 4x?
= '(yz Fxly?) = (2% 122720
(yz +x2/yz)’ — 4x2
T ) = (a2
Apply Lemma 2.7 again for the expression y + x/y,.... We find that

U

u? —p?

o(u) = —
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Similarly, we can find o(¢), (1), and 7(¢). In summary, we have
(a) for W ;(187),

1 !
o-(x)=;, ‘T(“):_uz_L,z* U("')zuz_t,z’

1
7(x) = e (u) = x, () = xu;

(b) for W, (187),
p— l p— p—

o(x)=~-. olw)= -5 o(v) = 33
7(x) = x, T(u) = v, (V) = u.

(i) Suppose that char K # 2. Define p and g as

p=u-+tuv, q=u—uv.
For W,,(187),
: ( : (a)
o(x)=—, o(p) =—, o(g) = ——,
(x) = - )= -
1
T(x) = e 7(p) = xp, (g) = —xq.

For W, ,(187),

1
, o(p)=—, U(Q)Z_;

| —
|-

o(x) =
{(x) = x, (p) =p, 7(q) = —q.
Now we shall solve W;(187). Define r, s, t by

1 —x

1 +x

s=(l+x)p, t=(1—-x)q.

Then we find that

a'(r)=—r, U(S)zl_rgss U(’)—I—I‘z[

T(r) = —r, T(s) = s, T(t) =t.

821
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It follows that

{o.7)

K(x,y, z)(; = {K(x, v, z)<"A>}
= K(x,u,0)""
= K(x.p.a)"7

- {K(r, s, t)(”}w>

= K(rz,s,t)m>

is rational over K{(r?) by (8].
The rationality of W, (187) is easier, because

K(x,y,z)(; - K(x’p’q)ﬂr,T)

= {1’<(x,p,q)<">)<">

(o)
= K(x,p,q°)

is rational over K by Corollary 2.8.

(ii) Suppose that char K = 2. First, we consider the case W,;(187).
Define r, s, t as

1 1 U
, =(1+ +o), t= + :
s = ¥)(u o) 1 +x u+u

The actions of ¢ and 7 on r, s, t are given by

1 1
r2+r;’ 0-(’):!’

a(ry=r+1, o(s) =
(ry=r+1, 1(s)=s, 1(1)=t.
Therefore,
K(x,y,2)" = K(x,u,0) 7
~{K(r, 5,07}
=K(r(r+ 1),s,t)<">

is rational over K(r(r + 1),¢) by Liiroth’s theorem.
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Now we turn to the case W,,(187). Define p and g by

p=utuv, q=u/uv.

Then the actions of o and = on x, p, g are given by

1 1
o(x)= L. ep) =, olq) =

1
7’
(x)=x, 7(p)=p, 7(q)=1/q.

Now we have

K(x,y,2)¢ = K(x.u,0)"7

) o
- {K(x.p.q)")
=K(x,p.q+ 1/9)"”

is rational over K(g + 1/gq) by Lemma 2.7.
(2.10) The case G = W,(195),

1 0 1 -1 0 0
Wy(195) ={e=1]0 0 —1|,r=|0 0 -1},
01 0

Clearly W,(195) is generated also by oA, 7A, and A. Note also that oA and
TA are the generators of W, ,(187) of (2.9). Define u and ¢ as in (2.9),

y—x/y z-x/z
U= "3, U= —""5-".
yz—x°/yz yz —x°/yz

Then we have that

K(x,y, z)«"“2> =K(x,u,v).
(i) Suppose that char K # 2. Define p, g, r as

p=u-+uv, qg=u-—1r, r=ur/u.

823
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The actions of oA, 7A, and A are given by

1 1 1
A(x) = —, A = —, oA = ——, A(r) = ——,
oMx) =~ AP = oM@ = -, o) =
TA(X) = x, TA(P) =P, TA(g) = —q, TA(r) = 1/r,
A(x) = 1/x, A(p) = xp, A(g) = xq, A(r) =r.
Now
K(x,y,2)°¢ = K(x,u,0)\ "™
(oA, N>

_ {K(x,p, r)(T/\)}

=K(x,p,r+ 1/r)or

is rational over K by Theorem 2.2 and [8].
(ii) Suppose that char K = 2. Define p and g by

p=u+tuv, q=u/uv.

The actions of oA, TA, and A are given by

1 1
(TA(X)=;, O'A(p)‘—‘;, UA(q)=;,

A(x) = x, rA(p) = p, 7A(q) = 1/q,
Alx)y =1/x, A(p) =xp, Alq) =gq.

We have now that

K(x,y,2)" = K(x,u,0)"™"

(oA AY

- {K(x’p’q)<f)«>}

(A, AD)

=K(x,p,q+1/q)

is rational over K by Theorem 2.2 and [8].
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(2.11) The case when char K # 2 and G = W (191), W,(191), W (198),
W, (198), W.(198), or W,(202) (the case when char K = 2 will be treated in

(2.12)):;
0 -1 0 0 0 -1
Wy(19y={e=]0 0 ~-1],r=|0 =1 o0
-1 0 0 -1 0 0
0 1 0 -1 0 0
Wy(191) =(e=1]0 0 1],7=[ 0 1 0
1 0 0O 0 0 -1
0 1 0 -1 0 0
w(198) =(oc=10 0 1|,r=| 0 1 o0 |
1 0 O 0 0 -1
-1 0 0
A= 0 -1 0
0 0 -1

0 0 1 -1 0 0
W, (198)={oc=|0 1 0]l,7r={ 0 0 -1

-1 0 0 0 -1 0

0o 0 -1 1 0 0
W,(198) = {oc=10 -1 0 |,7={0 0 1

1 0 0 01 0

0 0 1 -1 0 0
w(22)={(c=|0 1 0|,7=| 0 0 -1],

-1 0 0 0 -1 0

-1 0 0
0 -1 0
0 0 -1

We can treat all these six groups by applying exactly the same procedure
of changing the variables. We illustrate it by W ,(198).
For W,(198), the group actions are given by

o(x) =2z, o(y) =x, o(z) =y,
1 1
T(x) = - () =y, t(z)=7,
1 1 1
)\(x)=;, )\(y)=;, A(Z)=;.
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Define u, ,w by

l —x 1 —y 1 -z
= , ' , w = .
1 +x 1 +y 1 +z

Then the actions on u, ¢, w are given by

o(u) =w, o(v)=u, o(w) =v,
T(u) = —u, (v) = v, T(w) = —w,

AMlu) = —u, A(r) = —u, AMw) = —w.

Now define p, g, r by

u g
p=u+uv+w, q=—, r=—.
w w
Then we have
pPaq pr p
U= ——, = ——, W =
qg+r+1 qg+r+1 qg+r+1
Now it is routine to check that
1 q
o(p)=p, o(q)=-, o(r)=-—,
r r
-q+r—-1
T = ——p, T =gq, T(r)= —r,
(p) Tiri1” (a) =q (r)

A(p)=-p, AMag)=4q. AMr)=r.

By Theorem 2.2 and [8], we find that K(p, q, r)¥ is rational over K.
(2.12) The case when char K = 2 and G = W (191), W,(191), W, (198),
W, (198), W.(198), or W,(202). At the first stage, we can apply exactly the

same procedure of changing the variables for all these six groups. We
define v,v,w, p,q,r as

=
Il
=
+
+
E
BN
I
<
+
z
~
I
“+
N
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It is routine to check that the group actions on p, g, r are given as

(a) For W, (191),

o(p)y=p+1, o(q) =r, o(r)y=q+r,
(p)=p+1, 7(q) = q, (r)=q+r.

(b) For W,(191),

sy =, ola)=r. ol =q+r.
(p) =p. 7(q) = q, (r)y=r+ 1.

(c) For W (198),

o(p) =p, o(g) =r, o(r)y=q+r,

(p) =p, 7(q) =4q, (r)y=r+1,

A(p)=p+1, AMg)=gq, Ar)=r.
(d) For W, (198),

o(p)=p+1, o(q) =q + 1, o(r)=q +r,
(p)y=p+1, 71(q)=q+r, (r)=r.

(e) For W,(198),

o(p) =p, o{q) =q + 1, o(r)=r,
p)y=p, T(q)=q+r, 1(r)=r.

(f) For W(202),

o(p)=p+1, o(g)=q+1, o(ry=q +r,
(p)=p+1, {(q) =g +r, (r) =r,
A(p)=p + 1, A(q) = ¢, A(r) =r.
By Theorem 2.2 it suffices to establish the rationality of K(g, r)¢. When
G is restricted to K(q, r), W,(191), and W (198) are the same; also W,(198)
and W,(202) are the same. Moreover, since r is kept fixed in

W,(198), K(q, r)¢ is rational over K by Theorem 2.2.
Now consider the case W, (191). It is easy to see that

K(q, r)G =K(q>+qr + rigr(q +r)),

481/170/3-9
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where these two generators are the elementary symmetric functions of g,
r,and g + r.

Now consider the case W,y(191). Let H be the subgroup of Gl
generated by 7 and ¢~ 'ro. H is isomorphic to the Klein four group. Note
that

o lro(q)=q+1, o 'ra(r)y=r+1
Hence,
K(a.r)" = K(A,B),
where A4 and B are defined by

A=q2+q, B=r’+r.

Note that
o(A)=B,0(B)=A4 +B.
Write
C:=8B/A.
Then we have
a(C)=C2:1, o(A) = CA.

By Theorem 2.2 K(C, 4)°” is rational over K. (We can apply Corollary
2.15 also.)

It remains to consider W,(198). As pointed out in [20, p. 198], G =
W, (198) is isomorphic to §,, the symmetric group of degree four. It is easy
to check that G|k, is isomorphic to §,. Hence,

[K(q.r): K(q.r)] = 24.
On the other hand, consider elements 0 and R defined by
Q=gqg(q +1), R=r(r+1).
Then we find that

or(Q) =R, or(R) =Q +R,
a(Q)=0. o(R)=Q+R
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Thus
K(Q, R)<"'T> = K(Q, R)<(rr_u->
— K(Q*+ OR + R, QR(Q + R)).
Note that
[K(q»r):K(Q,R)<”‘T>]

= [K(a,r): K(Q,R)][K(Q,R) : K(Q,R)("'”]

=4-6=24.
Hence,

K(q.r)" = K(Q* + OR + R*, QR(Q + R)).

(2.13) The case G = W,,(191),

0 1 0 -1 -1 -1
w191y ={o={0 0 1],7=|0 o 1)
1 0 0 0 1 0
The actions of ¢ and 7 on K(x, y, z) are given by

o(x) =z, o(y) =x, o(z) =y,

1 z y
T(X)=;, ’r(y)=;, T(Z)=;.

(i) Suppose that char K # 2. Define u, v, w as

y+z X +z x+y
u = , v = , w= .
1+x 1+y 1+z
Then we find that
1 1+x 1 1+y
U+l l14+x+y+z’ v+l l4+x+y+z’
1 1+:z
w+1 l+x+y+2z
1 1 1 2

+ + =
u+1 v+ 1 w+ 1 l+x+y+z
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Hence,
l+x+y+zeK(u,v,w).
It follows that
K(x,y,z) = K(u,v,w).
Note that the actions of ¢ and r are given by

o(u) =w, o(v) =u, o(w) =,
T(u) =u, T(l‘)=?, 'r(w)=;.

Since G = {o,7) = {0, 0 'ro) and the action of ¢~ '7¢ is given by

k]

1
o 'ro(u) = —, o 'ro(r) = v, o 'ro(w) = —
u w

we find that the actions of ¢ and U“ﬂr on K(u,uv,w) are the same as
those of o and 7 on K(x,y, z) in Wy(191) of (2.11). Hence we are done.

(ii) Suppose that char K = 2. Define u, v, w as

1+y 14z I1+y+z

= ——————————— = —— =

Y l b w .
l+x+y+z l+x+y+z l+x+y+z
The actions of ¢ and 7 are given by

o(u) =u+v+1, o(r) =u, o(w)y=u+w+1,
T(u)y=u+1, T(v)y =0+ 1, r(wy=u+uv+w+1,

By Theorem 2.2 it suffices to establish the rationality of K(u, v)“. Note
that

o 'ra(u)y =u, o l'ra(v)=v+1.
Moreover, {7, ¢ 'ro) is isomorphic to the Klein four group. Hence,
K(u,v)7 ™ = K(A, B),
where 4 and B are defined by
A=u(u + 1), B=uv(v+1).
Note that the action of o on A4 and B is given by

o(A)=A+B, o(B)=A.
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Hence,

K(A, B)<">
is rational by Corollary 2.15 given below.

(2.14) LemmA. Let F be any field and let F(x,y,z) be the rational
function field of three variables over F. Define an F-automorphism o on
F(x,y, z) by

o(x) =y, ag(y) =z, a(z) =x.

(i) Suppose that char F # 3. Let { be a primitive third root of 1. (We
do not assume that { € F.) Define u, v, w as

u=x+y+z, v=x+{y+{2, w=x+{y+/{z.
Then

2>
r? w? vl 2

(o) W
F(x,y,z2) =F u,~;+7,§—;+{“7 .

(i) Suppose that char F = 3. Define u, s, t as
u=x+y+z, s=xy +yz + zx, t=(x—y)y—z)(z—x).
Then
yz = - ———F ",
F(x,v,2) = F(u,s,1).
Proof. (i) The case when char K = 3. If { € F, then

o(u) =u, o(v) =, o(w) ={w.

2 wZ )
Y
lY
2 w2

w? o .
=Flu,—+ —,{— +{"—].
w v v

Hence, we have

~

F(x,y, z)<"> = F(u,

GRS

w

481/170/3-10
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On the other hand, suppose that { & F. Define F-automorphisms ¢ and
Aon F({Xx,y,z)by

c(f)=¢  o(x)=y. o(y)=z  o(z)=x,
MO =0 Mx)=x.  A(y) =y Az) ==z

Note that oA = Aco. Moreover, we have
a <">
F(x,y,2)7 = {F(O)(x.y,2)™)
= F({)(x,y,2)""

= {F({)(x,y,z)<">]“>
e w2\
=F(§)(","“,“_—)
w'
\2 2 2 2

(2 w U 144
:F u’_....._+__.’§__+§2._ .
w & !

w {

(ii) The case when char K = 3. In addition to u,s,t defined above,
define ¢ and w as

2
y+z (y —2) y—z
v = — 5 W= ——
x+y+z (x—+—y+z) x+y+z
We have
o(u) =u, o(v) =v, o(w)=w— 1.

Hence, it follows that
F(x,y, z)<'r> = F(u,u,w)<‘r>
=F(u,v,w(w + 1)(w + 2)).
It is routine to verify that
s=u*v, t=ww(w+ 1)(w+2),
yt+z=u(v+w?), y-—z=uw.
Therefore,
xyz = {u —u(v +wh)Hu(v + w?) + uw}{u(l* + w?) — uw}
= —w(e? -+ wh w4+ w?)

3 —uls? 4+ 12

u3



PURELY MONOMIAL GROUP ACTIONS 833

(2.15) CoroLLARY. Let F be any field and let F(y, z) be the rational
function field of two variables over F. Define an F-automorphism o on
F(y,z) by

o(y) =z, o(z) =~y —z.
If char F # 3, then

vz(y +z) —y*+3yz?+2°

F(y,2)"’ =F :
(y ) y2+yz+22 y2+y2+22

If char F = 3, then

F(y,z)<"> =F(y—2z,yz(y +2)).

Proof. M charF # 3,set x = —y — z in the proof of Lemma 2.14. The
case when char F = 3 is easy to verify.

(2.16) Remarks. From the proof of the case char K # 2 of (2.13), we
find that the groups in W(191) and W, ,(191) are conjugate as subgroups of
the group of K-automorphisms on K(x,y, z), although they are not
conjugate as subgroups in GL(3, Z).

Kuniyoshi proves a general theorem for the case char F = 3 of Lemma
2.14. He shows that if char F = p > 0 and o is defined by o(x)) = x,,,
for 1 <i <p” - 1and o(x,.) = x,, then F(x,, x,,...,x,.)' is rational
over F [12; 13; 7).

(2.17) The case when charK + 2 and G
when char K = 2 will be treated in (2.18).

W,o(191), W,(198); the case

0 1 0 0o -1 1

W (9l)=(ec=10 0 1}, =[]0 -1 0
1 0 O 1 -1 0

g 1 0 0 -1 1
W,(198) = {e=|0 0 1}|,r=]0 -1 0],
1 ¢ 0 1 -1 0

-1 0 0

A=| 0 -1 0

0 0 -1

Define w by
w=1/xyz. (6)
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The actions o, 7, A on K(x, y, z) are given by
a(x) =z, a(y) =x, o(z) =y, og(w)=w,
T(x) =2z, (y)=w, T(z) = x, T(w) =y,

1 3 1 N 1 3 1
Pl /\(Y)—;~ A(z) = 2. AMw) = —.

A(x) =

Note that the action of o~ '7a is given by
g ra(x) =y, o 'ro(y) = x, o 'ro(z) = w, o 'ra(w) = 2.

Both 7 and o~ 'ro generate a subgroup, the Klein four group, in W ,(191)
and W,(198).
Define X,Y,Z, W as

1 —x 1 —y 1 -z 1 —-w
, Y = , Z w .
1 +x 1+y 1 +z 1+w

Then the relation (6) becomes

(1-X)0-Y)YA-Z)(1-W)=(1+X)Q1+Y)1+Z)(1+W),
X+Y+Z+W+XYZ+YZW + ZWX + WXY = 0. (7

The actions on X,Y, Z, W are given by

o(X) =2, o(Y) =X, o(Z) =Y, a(W) =W,
(X) =2, (Y)y=W, (Z) =X, (W)=Y,
o 'ro(X) =Y, o lra(Y) = X, o 'ra(Z)=W,o 'ra(W) =2,
MX) = -X, AY)=-Y,
MZ)=—Z, AW)=—W.

Define u, v, s, t as

au=X+Y+Z+W,
do=X+Y-Z~-W,
4s=X-Y+Z-W,
d=X-Y-Z+W.

We find that K(x,y, z) = K(X,Y, Z) = K(u, v, 5,t) and the relation (7)
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becomes
—4du

= (X+Y+Z+W)

=XY(Z+W)+ZW(X+Y)

=2u+v+s+t)utrv—s—1)u-r)
+2u—-—v+s—tYWu—v—-—s+1){u+r)

= Hu(u? — %) —u(s? +1%) + 2str,
—1=u?— (v +s?+1%) + 2stv/u. (8)

The actions on u, ', s, ¢t are given by

o)y =u, o()y=s, o(s)=-1, ot)=-r,
T(u) = u, () — v, T(s) =5, r(t) = —t,

o lrow) =u, oTlro(e) =, eTlro(s) = =5, oTlra(t) = —t,
Muy=—u,  Ar)=-r, M) =-s, A1) = -t

Define 4, B,C, D by

vs te st 1
A= ——, B=-—, C=——, D=—.
tu su uv u

It is easy to see that
K(u,v,s,0)7 " =K(A,B,C,D).
The relation on A4, B, C, D follows from (8), i.e.,
1+ D?=A4B + BC + CA + 2ABC. &)
Recall the actions of o and A on A4, B,C, D. We have

o(A)=C, o(B)=A4, o(C) =8, o(D) =D,
A(A) =A, A(B) =B, AC) =C, AM(D) = -D.

Now consider the case G = W,(198) first,

. (o)
K(A,B,C,D)* = [K(A,B,C,D)*"}

— K(A,B,C,D)""’

=K(A4,B,C)",
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where the last equality follows from formula (9). The rationality of
K(A, B,C)Y"? follows from Lemma 2.14.

It remains to establish the rationality of G = W,,(191), namely, the
rationality of K(A, B,C, D).

(i) Suppose that char K = 3. Define L, M, N by
L=A+B+C, M =AB + BC + CA,
N=(A4A-B)}B-C)C-4).

By Lemma 2.14

K(A,B,C,D)’ = K(L,M,N, D)
and the relations on L, M, N, D follows from (9), i.e.,
M? — L*M? + N?
13
L*(1+D*) =L'M—-2M>+2L*°M? — 2N?

1 ,. M 2M31 2M2 2N2

1+DY=M-2

Hence,
K(A,B,C,D)"’ = K(L,M,N,D)
M N
Ry
L L*
is rational over K because of formula (10).
(ii) Suppose that char K # 2,3. Define P, Q, R as
P=A+1, Q=B+1, R=C+1.
The relation (9) becomes now
1+ D?*=2PQR—~ (PQ + QR+ RP) + 1. (1)
The action of o is given by
o(P) =R, a(Q) =P, o(R) =0, o(D) =D.
Apply Lemma 2.14 on P, Q, R. We find that
K(A,B,C,D)"’ = K(P.Q,R, D)’
=K(L,M,N, D),
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where L., M, N, S8, T are defined by

L=P+Q+RS=P+{Q+{'R,T=P+ {0+ (R,

§s? T s T
M= "+ —, N={—+7"—
T S T s

with ¢ being a primitive third root of 1.
Note that the relation (11) becomes

L+ D= 2(L'+ 8+ T3 = 3LST) - |

3

(L2 = ST) + 1

e (5 (5] (55 05
e (7))
o+ 5]

1

(M2 + MN + N3)(9 + 2M — 6L) — 9L? + 213,

where the last equality follows from

ST =3(M?+ MN + N?).

Thus the relationon L, M, N, D is
81D* = (M?+ MN + N*)(9 + 2M — 6L) — 271 + 6L°.
D\ 1 M2 M N N2
Bl —){+|=4|=—) + — — +{-
) -{z) 2 2 (E)
i 2M 6 27(1) 6 12
X{—+2[—] -6} - — ] +6.
\zAz) o -l 2

The above formula (12) tells us that

1 M N D
— €K » Ty v, |-
L (L L L)
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Hence,

K(A,B,C,D)"’ =K(L,M,N,D)
I M N D
=L T S
(L LL L)

M N D

D

L L L

is rational over K.

(2.18) The case when char K = 2 and G = W (191) or W,(198). As in
(2.17), introduce w by

w= 1 /xyz.
Define X,Y, Z W as

The relation of X, Y, Z, W is given by

(+X)(1+Y)YQ1+2Z)+W)=XYZW,
1+ (X+Y+Z+ W)+ (XY +XZ+XW+YZ+ YW+ ZW)
+(XYZ + XYW + XZW + YZW ) = (. (13)

The actions on X,Y, Z, W are given by

o(X) =2, o(Y) =X, a(Z)=Y, o(W) =W,
(X)) =2, (YY) =W, (Z) =X, (W)=Y,
0'7]7'0'(X) =Y, O'MITO'(Y) =X,
o 'ra(Z) =W, o 'rto(W) =2,
AX)=X+1, AY)=Y+ 1, MZ)=2Z+1,
AWY=W+ 1.

Define u,v,s,t,d as

u=2X, v=X+2Z, s=X+Y,
t=X+Y+Z+ W, d=XW+ YZ.
Note that

K(X,Y,Z) =K(u,v,s,1) = K(d,v,s,t)
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because
d = ut + us.

Now the actions on u, ¢, s, t, d are given by

o(u) =u+uv, o(r)=1uv+s, o(s) =1,
o(t) =1, o(d)=d+v(v+1),
(u)=u+v, 7(v)y=rv, 1(s)=s5+t¢,
T(t) =t, 7(d) =d,
o lro(u) =u+s, o 'roe(v)=v+t, o 'ra(s)=s,

o lra(t) =1, r 'ro(d) =d,
AMu)y=u+1, Alv)y =v, A(s) = s,
A(t) =1t, AMd)=d +1.
First, consider the case G = W,(198). We have

K(d,v,s, 1) "N = K(D,V,S,1),
where D, V, S are defined by
D=d(d+1), V=v(v+1t), S=s(s+1).
We now compute the relation of D, V, S, t. Since
X=u, Y=u+s, Z=u+rv, W=u+uv+s+1,

we have

X+Y+Z+W-=1,
XY+ XZ+XW+YZ+YW+ZW = (v +s)(v+s+1¢)+ut+us,

XYZ + XYW + XZW + YZW = vs(v +5s + 1) + u’t.
Substitute these identities into formula (13). We obtain
l+t+(v+s)(v+s+t)y+u+uvs+uos(v+s+1)+u’t=0

W +u+ 1)+ 1+ (i 4oty +(sP+st)+es(l+v+s+¢)=0
(14)

P ru)+ P+ l+V+S+es(l+o+s+60)} =0

(d+us)’ +t(d+ues) + 2+ {1+V+S+us(l+v+s+1)} =0
did+t)+e3*+t{l+V+S+ues(v+s+8)) +12=0

D+t +(V+)(S+1)=0. (15)

481/170/3-11
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Therefore, we find that

K(d.v,s,0)"" Y = K(D,V,S$,t) = K(V,S$,1).
The action of o on V, §, ¢ is given by
og(V)y=V+S5, a(S) =V, o(t) =1t.
By Corollary 2.15
K(V,$,0) = K(V,8)" (1)

is rational over K.
It remains to establish the rationality of the case G = W ,(191). Define
A, B,C as

A=v(v+1)+1t, B=s(s+1)+1¢, C=A+B+1t.

It is easy to see that

K(d,v,s,.0)" " = K(A,B,C,d).

Now we compute the relation of A, B,C,d. Note that formula (14) is
still valid. So we start with it:

P tu+ D+ 1+ @+ +(sP+st)+es(l+e+s5+18)=0

Pl )y (et ot D) (P st D)+t s(l e +s+1)=0

(d+uosY +1(d+es) + 12+ {1l +A+B+us(l+r+s+16)}=0

dd+1t)+ 13>+ t{A+B+us(+s+D)+ 2 +1=0

dd+ 1)+ (A+1B+1)+1(A+BY+1t2+:1=0

dd+A+B+CY+AB+A+B+C=10

(d+A+B*+A*+B>+(d+A+B)A+B+C)+ A+ B2

+AC+BC+AB+A+B+C=0
(16)

Define P, Q, R as
P=d+ A+ B, Q=A+B+C, R=AB + BC + CA.

Then formula (14) becomes

P2+PQ+Q+R=0. (17)
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Now the action of o is given by
o(A) =C, o(B) =4, a(C) = B, o(P)=P
Let { be a primitive third root of 1. As in Lemma 2.14 let M, N, I,J be

defined by
M=A+ !B+ {%C, N=A+ B+ (C,
MZ NZ 2 2
I=—+ —, J={—+¢"
N v; { ¢

Then we have
K(A,B,C.d) = K(A,B,C,P)"’
= K(A4,B,C)Y(P)
=K(Q.1,J,P).

Since
AB + BC + CA = Q? + MN,

it follows that
R =AB + BC + CA

= Q%+ MN
M2 NZ
2
= + — —
© N M

= Q%+ (LT + )T +T)
=Q*+ 17+l +J%
Hence, formula (17) becomes
P+PQ+Q+Q*+1°+1J+J*=0 (18)

b

P2 P 1 I\ 1J J\?
(-)+—+-+1+(——)+——+(—)=0. (19)
Q Q

Therefore,
K(A,B,C,d)"’ =K(Q,1,],P)

:K(iiiﬁ)

0'Q'Q’'Q
ﬂ(IJP)
~leooo

is rational over K.
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(2.19) Presentations of W5(198) and W,(203):

1 1 0 -1 -1 -1
Wiy203y =({o,=1-2 -1 —=1|,7y=}| 0 0 1 ],
0 0 1 0 1 0
-1 0 G
AA=10 -1 0
0 0 -1
Let u be the matrix defined by
0o -1 0
p=11 1 0} € GL(3,2).
0 1 1

The (u 'oyu, ™ 'rype, w™'A 1) is a group conjugate to {(o,,7,,A,) in
GL@3, Z). Define o, 1, A as

o=u lou, quth_q_l_t: A=p A

From now on, we shall use {o, 7, A} as the generating set of W,(203). Note
that

0 0 -1 -1 -1 =1
o=1-1 0 0 |, or=10 0 1 |,
11 1 0 1 0
0 1 0 -1 0 0
=10 0 1|, aA=l0 -1 0

1 0 0 0 0 -1

Thus, {r, o*, A} is the generating set of W,(198) given in [20, p. 198]. In
conclusion, from now on we shall write

0 1 0 -1 -1 -1
W, (198) = (r=10 0 1}.0°=] 0 0 1,
1 0 0 0 1 0
-1 0 0
A=10 -1 0
0 0 -1
0 0 -1 0 1 0
W, 203y =(o=|~-1 0 0 |,7=1{0 0 1],
11 1 1 0 0
-1 0 0
A={0 -1 0]).
0 0 -1
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(2.20) The case when chark # 2 and G = W,(198), W,(203); the case

when char K = 2 will be treated in (2.21).
By (2.19), the actions of o, 7, A on x, y, z are given by

z z
o(x) = —, o(y) =2z, o(z) =—,
y X
7(x) =2z, (y) =x, (z) =y,
1 1 i
A(x) = —, Aly) = —, A(z) = —.
x y z
Let X,Y, Z be defined by
1 —x 1—y 1 -z
X = , Y= , Z = .
1 +x 1 +y 1+z

The actions of o, 7,A on X,Y, Z are given by

(X)) =1z Y)=2Z U(Z)=m,
(X) =2, Y) =X, (Z)=Y,

AMX)=-X, MNY)=-Y, AZ)=-Z

It is easy to see that
K(X,Y,Z)Y =KU,V,W),
where U, V, W are defined by
U=XZ, V =XY, W=YZ.

The actions of o, 2, 7 are given by

(U -V W-V) WV - U)
“Ovohw-y T
UV -w)
=P
Lo V(W -U) s UMW V)
o (U)—m, o (V —m,
sy - W v

WU - 1)(vV-1)°
r(U)y=W, «(V)=U, =(W)=V.
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Define u, ', w as
u=U-1, r=V -1, w=W-—1.

Then the actions on u, ', w are given by

o(u) = av, o(t) = au, o(w) = aw, (20)
oi(u) =cu, o (r)y=cv, o} (w)=cw, (21)
T(u) =w, () = u, T(w) =1,

where a, b, ¢ are defined by

—u+ U —w—uw p MW
‘7 uw(e + 1) ’ o oow(u+ 1)
~u—-v+w—u
c =
ur{w + 1)
Note that
b =r1(a) and ¢ =r(a). (22)

Now we shall find the invariants of K(U,V, W) = K(u, v, w) under the
action of (o2, '¢27), which is isomorphic to a Klein four group con-
tained in W,(198) and W,(203). Recall that

r loir(u) = bu, 7410'27(1') = b, TAIO'ZT(W) = bw
because of formulae (21) and (22). Define p, q,r, s by
u

p:——, q:

v
-, r=s-+as+ bs + cs, s=u+v+w.
U w

Then we have
K(u,v,w) =K(p,q,s).
Note that

Thus we have

)
~
—
o>~
=
p—
|
)
"~
—
~
|
)
[ ]
\‘
—
<
N’
S
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Similarly, we find that

a’(bu) = au, a?(bv) = av, oi(bw) = aw, (23)
r'o?r(bu) = u, T lolr(br) =v, 1 loir(bw) = w.

2

Hence, r is fixed by both ¢? and 7~ 'a27. It follows that

Col.r Yoind

K(p,q,r) CK(p,q,s)
We claim that

ot ety
K(p.a.r)=K(p.q.s)" : (24)
Assume this. It is easy to deduce the rationality for G = W,(198) and
W(203). First, we compute o(au), o(bu), o(cu),.... We apply o to for-

mula (20) and substitute ¢ 2(«) by formula (21). We obtain
o(au) = cu, o(av) = cu, g(aw) = cw. (25)

We apply o~ ! to formula (23) and substitut ¢~ '(au) by formula (20). We
obtain

o(bu) = v, o(br) =u, o(bw) = w.

We apply o to formula (25) and substitute o *(au) by formula (23) noting
that the order of o is 4. We obtain

o(cu) = bu, o(cv) = bu, o(cw) = bw.

Now it is easy to verify the actions of ¢ and 7 on p, q, r are given by
o(p)=1/p, a(q) =pq, a(r)=r,
(p)=1/pa, 1(q)=p, 1(r)=r.

For G = W,(198),

K(x,y,2)° =K(p,q,r)"”
=K(p.a)(r)

is rational over K by [8].
FOr G = W3(203)9

K(x,y,2)° =K(p,q,r)"
= K(p,q) 7 (r)

is rational over K again by [8].
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Hence, it remains to establish formula (24). It suffices to show that

[K(p,a.s):K(p.a,r)] <4

Since K(p, q,s) = K(p, q,w), we shall show that w satisfies an equation
of degree < 4 with coeflicients over K(p, g, r). We first simplify the form
of 1 +a+ b +c. Lets,s,,s; ¢ be defined by

S, =utr+w, S, = ur +ow + wu, Sy = urw,
r=(l+u)y(I1+o)(1+w)=1+s,+s5,+s;.
Now, we have
si#(l+a+b+c)
=syt+e(u+t D(w+ D(—u+v—-—w—uw)+u(v+1)
X(w+ 1) (u—v—w—1w)
+w(u+ 1) (o+ D{(~u—-v+w-—ur)

s3t + st —u(v + l)z(w + 1)2 —v(u + 1)2(w + 1)2
- w(u + 1)2(1‘+ 1)2
=syt+st—t{(v+D(w+ D+ (u+1)(w+1)
+(u+ )¢+ 1)}
o+ DX w1+ (w4 D(w+ 1)+ (u+ Do+ 1)

t(sy— 5, — 35, — 9) + (s, + 25, + 3)°

=(sy+s;+5, + D(s3—5,~35, =9 + (5, + 25, + 3)2.
Therefore,

rsst

sl +a+b+c)syt

= s,[(s3 +s5,+85; + 1)(s3—5,— 35, —9) + (s, + 25, + 3)2}.

We write
r=sE/E,,

where E| and E, are defined by

2
.

E,=(s;+s,+s; +1)(s3—5,— 35, —9) + (s,+ 25, +3)
E,

53t =53(8; + 5, + 5, + 1),
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Note that all of s, s,, 55, E,, E, are polynomials in u, v, w. We shall count
the degrees, i.e., the total degrees in u, v, w, of terms in £, and E,.

The constant term and the linear term of E, vanish. Hence the degrees
of non-vanishing monomials in s, E, can only be 3,4,5,6,7. On the other
hand, the degrees of monomials in £, can only be 3,4,5,6. We now write
$1, 55, 55 in terms of p, g, w, i.e.,

s;=utv+w=w(l+q+pq),
s, =ur +ow +wu =wiq(l +p+pq),

= ww = wingl
Sy =urw = wpq-.

We may regard p,q as homogeneous forms in u, o, w of degree zero.
Hence, after clearing the factor w*, the denominator of

r=skE/E,

is a polynomial in w of degree 3 with coeflicients in K[ p, g], while its
numerator is a polynomial in w of degree 4 with coefficients in K[p, gl.
Hence, we have found the polynomial @(7°), of degree 4 with coefficients
in Kl p, g, r]such that d(w) = 0.

(2.21) The case when char K = 2 and G = W,(198), W,(203). Let X,Y, Z
be defined by

By (2.19), the actions of o, 7, A on X,Y, Z are given by

Z(Y + 1) Z(X+1)
viz o s s HnT

(X)=2, (Y)=X, (Z)=Y,
MX)=X+1, ANY)=Y+1, MNZ)=Z+1.

o(X) =

>

Define U, V, W as
U=X+2Z, V=X+Y, W=X(X+1).
Then it is easy to see that

K(X,Y,Z)" = KU, V,W).
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The actions of o, o?, T are given by

_V{U(U+l)+W} _U(U+1)+W
o(U) = U V) , U(V)———UTV*“—,
Uuv+1nH)+WHVVr+ D) +w
sy - WD e e e )
(U+ V)
) 174 w
U‘(U)=?, UZ(V)=—0-, a'z(W)=W,

(U)y=U+V, (V) = U, (W)=UUH+1) + W
Define u, ¢, w as

u=w+ UV, v=W+UV+V, w=W+ UV + U.

Then the actions on u, v, w are given by

o(u) = au, o(v) = aw, o(w) =av,
ai(u) = cu, ai(v) = cv, ai(w) = cw,
(u) =w, T(v) = u, T{w) =v,

where a, b, ¢ are defined by

w v

" (u +w)(e+w)’

=1+ ,
(u +o)(r +w)

a=1

u
+ .
(u+20v)(u+w)

c=1

Note that
b=r(a), c¢=1%a), c¢=W/UV.

In the same way as was used in (2.20), we can deduce the effect of o on
au, bu, cu. We summarize the results as

7 'o?r(u) = bu, ol (v) = bu, 7 lotr(w) = bw,
i (bu) =au, o (bv) =ar, o’(bw) =aw,
o(au) = cu, o(ar) = cw, o(aw) = cr,

a(bu) = u, a(br) =w, o(bw) =,

o(cu) = bu, o(cr) = bw, o(cw) = br.
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Now we shall compute the invariants of K(u, v, w) under the actions of
{a? 77 'o%r). Define p,q,r,s by

v w
p= """, q=—————"", r = abcs*, S=u+Uv+w.
ut+uv+w u+uv+w

Be careful that 1 +a + b + ¢ = 0 in this case. Therefore we cannot

imitate the char K # 2 case.
Now it is easy to find that

ri s o)
K(p,q,r)CK(p,q,.s)<‘ ’ .
Suppose that
o r ey
K(p.g.r) = K(p,4,5)' : (26)
The actions of ¢ and 7 are given by
o(p)=q, o(q)=p. o(r)=r,

(p)=p+ag+1, 1(q) =p, (r) =r.

For G = W,(198),
K(x,y,z)(; —_ K(p,q,r)<7>
= K(p.q)"(r)

is rational over K by setting x=p+g+1,y=q+1,z=p+1 in
Corollary 2.15.
For G = W;(203),
K(x,y, z)G =K(p,q, r)<'”>
= K(p,a)" " (r)
=K(pg(p+q+1),p’+pg+q*+p+aq,r)

because p+ g+ (p+qg+ 1D=1,p*+pg+q*>+p+q,pg(p+qg+1
are the elementary symmetric functions of p,q, p + g + 1 and, therefore,

[K(p,a):K(pa(p+q+1),p+pg+q*+p+q)] <6.



850 HAIJA AND KANG

Therefore, it remains to establish formula (26). Since

w _ w(s + 1) + ur
N (u+w)(v+w)  (u+w)(e+w)’

a=1

it follows that

{u(s + 1) + owl{e(s + 1) +uw}{w(s + 1) + ur}

abc = 2 2 7
(u+0) (v +w)y(w+uy

Plugging in
u=1s,0=ps,w=gs,
where t = 1 + p + q, we find that
r = abcs*
s{t(s + 1) + pgs}{p(s + 1) +1gs}{q(s + 1) + tps}
(t+p)(p+a)(qa+1) '

Hence, s satisfies an equation of degree 4 with coefficients in K(t, p,q, r)
= K(p, g, r), hence, the result.
(2.22) The case when G = W, (198), W,(203),

0 -1 0 -1 -1 0

w198y = (o, ={ 1 1 1|,7,={0 1 0)
-1 0 0 0 -1
0 -1 0 -1 -1 0

W,(203) = a,=( 11 1),rl=( 0 1 0 )
-1 0 0 0o 0 -1

-1 0 0
A=10 -1 0
0 0 -1

We may use the techniques in (2.17) and (2.18) to solve the rationality of
these two groups. Before we start the proof, we transform the generating
sets of these groups into convenient ones. Let u be the matrix defined by

0 -1 1
0 1 0
1 0 =1

u o= € GL(3,Z).
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Then (u 'oyp, " '7 ) and {u loypu, w7y, A 1) are conjugate
to (o, 7,y and (o, 7|, A,), respectively. Define p, o, 7, A as

_ - 2 _
p=p 'ru, o=u o711, T =o0(op) o, A=pu A,

From now on, we shall use {p, o} and {p, o, A} as the generating sects of
W, (198) and W,(203), respectively. Note that

-1 1 0 0 1 0
p=120 1 01, =0 0 1],
0 I -1 I 0 0

0 -1 1 -1 0 0
T=4{0 -1 0}, A=10 —1 0 .
I -1 0 0 0 -1

Thus, {o,7} and {o, 7, A} are the generating sets of W,,(191) and
W,(198) in (2.17) and (2.18), respectively. Hence, it is easy to adapt the
techniques in (2.17) and (2.18) to this situation. Define w by

w=1/xyz. (27)
The actions on K(x, y, z) are given by
o(x) =z, o(y) =x, o(z) =y, o(w) =w,

T(x) =2z, (y) =w, (z) = x, T(w) =y,

o lra(x) =y, o 'ra(y)=x, o 'r0(z)=w, o 'ra(w) = z,
1 1 1 1
plx) =2 )= p(z) =20 pw) =2,
1 1 1 1
AMx)y=—, My)=-—, Mz)=-, Aw)=—.
x y z w

(i) Suppose that char K # 2, We shall imitate the process of (2.17)
and leave the details to the readers. Define XY, Z, W,u,v,s,t, A, B,C, D
as

1 —x 1 -y 1-z l —w
X = , Y = , Z = , W= ,

1 +x 1 +y 142 I +w
du=X+Y+Z+ W,
dv=X+Y—-Z-W,
4s =X -Y+Z - W,
4t=X-Y-Z+ W,

LS n st

A=-—, B=-—, C=-—, D-=
t su ur
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Then we have

K(x,y,2)" oy _ K(A,B.,C,D)
with the relation
1 +D?*=AB + BC + CA + 2ABC (28)
and the group actions
o(A)=C, o(B)=A4, o(C)=B, o(D)=D,

p(A)=C. p(BY=B, p(C)=A, p(D)=-D
AMAY=A, ANB)=B, MC)=C, AD)=-D.

For G = W2(203),

{a,p)
K(A.B,C,D)"*" = {K(A,B,C,D)V}""
= K(A,B,C,D)""

— K(A,B,C)<U'p>

=K(A+ B+ C,AB + BC + CA, ABC),

where the third equality holds because of formula (28).
[t remains to consider the case of G = W (198). If char K = 3, define
LM, N by

L=A+B+C, M=AB+BC +CA,
N =(A-B)(B—-C)C —A).

By Lemma 2.14
K(A,B,C,D)” =K(L,M,N,D)
with the relation
L*(1 + D*) = L'M ~ 2M* + 21°M?* — 2N? (29)
and the action of p on L, M, N, D:
p(LYy=L, p(M)=M, p(N)=~-N, p(D)=-D.
Define S and T by
S=N/D, T =D
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Then the relation (29) becomes
L(1+T)y=0L*M-2M*+21°M* — 2§°T. (30)
Hence, T is linear in formula (30). Therefore,
K(L,M,N,D)” = K(L,M,S,D)"

= K(L,M,S.T)
= K(L,M,S).

It remains to consider the case char K # 2,3 and G = W,(198). Define
P,Q,R, UV by

P=B+A+C, Q=B+{A4+{C, R=B+ {4+ (C,
QZ RZ QZ R2

= — _— = { —— 2——-
U R+Q’ V§R+{Q,

where { is a primitive third root of 1.
Then we have, by Lemma 2.14

K(A,B,C,D)’ = K(P,U,V, D)
and the relation (28) becomes
1+ D?=3(P? - QR) + #(P*+ Q%+ R* - 3PQR).
The action of p is given by
p(Py=P, pU)=U  p(V)=-U-V, p(D)=-D.

Define E by

E=V+1U.
Note that

p(E) = -E.
Substitute the identities

OR = (U + UV +V?) = U+ E?
Q'+ R =3(UP+ UMW+ UV?) = ;U + JUE?
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into formula (31). We find that
D? e K(P,U,E/D).
Now it is clear that

K(P,U,V,D)*’ = K(P,U,E,D)"*’
E
= K(P,U,-—, DZ)
D
E
= K(P, U,——).
D
(i) Suppose that char K = 2. We shall imitate the process of (2.18).
As in the above (i), introduce w by

wi=1/xyz.

For the case G = W,(203), define X,Y,Z,W,u,v,s,t,d, D,V, S just the
same as the proof of G = W,(198) in (2.18). We find that

K(d,v,s, )7 "0 = K(V, 8, 1)
and the actions of o and p are given by
o(V)y=V+S5, o(S) =V, o(t) =1,
p(V)=V, p(S)=8+V, p(1)=1
Therefore,
K(V,$,0) % = K(V, $) (1)
= K(VS + (V+ S VS(V + S).1).

Now we turn to the case G = W, (198). Define X.,Y,Z, W, u,v,s,t,d
the same as those at the beginning of (2.18). Define V and S by

V=uv(v+1), S =s(s+1).
We find that
K(d,v,s,.t)"" ™ = K(V,S.d,1)
and the relation xyzw = 1 becomes

d2+dt+12+ 1t +(V+85)+VS=0. (32)
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Recall that the actions of ¢ and p are given by

o(V)=V+S§, o(S) =V, o(d)=d+V, o(t) =1,
p(V) =1V, p(S)y=V+3S§, p(dy =d+1t+V, p(t) =¢.
Define P, Q, R by
P=d, Q=d+V, R=d+S§.

Then we find that

o(P)=0, o(Q)=R, a(R)=P, o(1)=1t
Define A, B,C, M, N by
A=R+P+Q, B=R+{P+ {0, C=R+{P+{0,

B* C? B? 2C2

M= — 4 —.  N={— 42,
c B Ce g

where { is a primitive third root of 1.
By Lemma 2.14

K(V,S,d, 1) =K(A,M,N,1).
Now formula (32) becomes
t2+1+tA+ A+ M+ MN + N?=0. (33)
However, p actson A, M, N,t by
p(A)=A+1t, p(M)y=M, p(N)=M+N, p(t)=t.
Let L be defined by
L=A+IN/M.
Then
p(L) =L.
Hence,

K(A,M,N, 1) = K(L,M,N(M + N),1)
= K(L,M,1),

since N(M + N) can be expressed by L, M, t because of formula (33).

4817170/3-12
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(2.23) The case when G = w,(198),

0 1 0 1 1 0
-1 -1 ~-1],m={0 -1 0
1 0 0 0o 0 i
Let p be the matrix defined by
0 0 -1
u=10 -1 1 1.
1 0 0

Then (u 'oyp, w” "7 ) is conjugate to (o, 7)) in GL(3, Z). Define o
and 7 by

Wo(198) = ( o, =

(T=/.L710'|/.,L., T=EM O OTM.

From now on, we shall use {o, 7} as a generating set of W,(198). Note

that
0o 0 -1 1 0 0
=11 0 -1}, =10 0 1].
0o 1 -1 0o 1 0

w = 1/xyz.

Define w by

The actions of ¢ and 7 on x, y, z,w are given by

o(x) =y, o(y) =1z, o(z) =w, o(w) =x,
T(x) =x, T(y) =2z, T(z) =y, T(w) = w.

Hence, the fixed field of G is generated by the elementary symmetric
polynomials in x, y, z,w, i.€.,

Xty +tz+w,
Xy +xz 4+ xw +yz +yw+zw,
Xyz + xyw + xzw + yzw,

xyzw = 1.

Thus K(x, y, z)” is rational over K.
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(2.24) The case when G = W, (198). Note that there is a misprint on
page 198 of Tahara’s paper [20]. The correct formulation can be found in

the proof of Proposition 9 in the same paper. In fact, from page 201 of [20]
we find the correct generators for G = W, (198) as

-1 -1 0 1o 1
W(198) ={oy={ 2 1 1 |,r,=(0 0 —1
1

0 0 =

Let p be the matrix defined by

0 1 0
p=11-1 -1 0].

1 0 1

Then (g 'oyu, .~ '7,u) is conjugate to {a,,7,). Define p, o, 7 by

-1 2 =1 2 — 2
p=4g TOH, T=MH O OTO0N, T=p

Since o, and 7, are of orders 4 and 2, respectively, we may as well take
{p.o} as a generating set of W, ,(198). Note that

o 0 1 0 1 0
p=11 0 0|, eo=1(0 0 1],

-1 -1 =1 1 0 0

Moreover, {o. 7} is the generating set of W ,(191) in (2.13).
(i) Suppose that char K # 2. As in (2.13), define u, ', w by

y+z X +z x+ty
u = , U= , w = .
l +x 1 +y 1 +z2
Define U, V, W by
1 —u 1 —r 1 —w
U= , V= , W= .
1 +u 1+ 1 +w
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The actions on U, V, W are given by
p(U)y=-U,  p(V)y=W, pW)=-V,
o(U)=W, o(V) =U, a(W) =1,
(U) = U, (V)= -V, (W)= -W,
o 'roe(U) = -U, o 'ra (V) =V, o lra(W) = —W.

Define A, B,C by

Since
[K(U,V.W):K(A,B,C)] =4,
it follows that
K(x.y,z)"" ™ = K(A,B,C).
Now p and o act on A4, B,C by
p(A) =4, p(B)=C, p(C) =B,
o(A) =C, o(B) =4, a(C) = B.

Hence, K(A, B, C){*“ is rational over K.

(ii) Suppose that char K = 2. Again imitate the process of (2.13).
Define u, v, w by

1+y I +z l+y+z

— e —

S l4xty+z l+x+y+z’ l+x+y+z

The action on u, v, w are given by

P =t Py —ut L pn) = w o,

o(u)=u+uv+1, o(r) =u, o(w)=w+u+1,

T(u) =u + 1, T(v)y=v+1, T(w)y=w+u+ov+1,
o 'ro(u) = u, o 'ro(v) =0+ 1, o lra(w) =w+u+ 1.

By Theorem 2.2 it suffices to establish the rationality of K(u, )”. Now
define A and B by

A=u(u+1), B=rv(v+1).
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The same as in (2.13), we find that

K(Ll,l')<7'"7]7"> — K(A,B)

The actions of p and o on A, B are given by

H

p(A) =B, p(B)=4,
o(A)=A+B, o(B) = A.
ence, we have
K(A,B)"" =K(AB + (A + B)’, AB(A + B)).
(2.25) There remains only one case, G = W,(198),
1 1 0 -1 -1 -1

Wo(198) = (oc=|-2 -1 —1].+={0 0o 1
o o0 1 0 1 0

We do not know whether K(x, v, z)“ is rational over K.

1

[S9]
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