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A new measure of the importance of the components in a coherent system and of the
basic events in a fault tree is defined and its properties derived. The importance measure
is a useful guide during the system development phase as to which components (or alter-
natively, which basic events) should receive more urgent attention in achieving system
reliability growth. The new measure of component importance has certain desirable
properties not possessed by the previous measure of component importance proposed by
Birnbaum [6]. The measure is extended to minima! cut sets and to systems of compo-
nents undergoing repair. A number of commonly occurring systems are treated in detail
for illustrative purposes.
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1. Introduction and summary

In attempting to achieve high reliability for a complex system, a basic
problem facing the systems analyst i that of evaluating the relative im-
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portance of the various components comprising the system. Measuring
the relative importance of components may permit the analyst to deter-
mine which components merit the most additional research and develop-
ment to improve overall system reliability at minimum cost or effort.
Birnbaum [6] defined measures of component importance for cohe-
rent systems. (See Birnbaum, Esary and Saunders [8], Barlow and
Proscharn: [2,4] for definitions and properties of coherent structures.)
Let p = (py, ..., p,) denote the vector of comporent reliabilities of a co-
herent system and A(p) denote the system reliability function. Then
Birnbaum defines the reliability importance B(ilp) of component i by

.\ _oh(p)
(1.1) B(iip) = .
P ap;
MNote that B(i|p) depends on p. For the case in which p is unknown,
Birnbaum defines the structural importance 3(i) of component i by

1.2y  B@)=2nl :

32i |py=..=pu=t

i.e., B(i) = B(i|p) with each p; set equal to }.

We introduce another measure of relative component importance
which is essentially the conditional probability that system failure is
caused by (i.e., coincides with) the failure of a given component. This
new measure reveals more clearly the relative extent to which each
component is contributing to system failure. These importance measures
also enjoy the property that they sum to one.

We develop the properties of these measurss of component impor-
tance, and give examples of their computation for commonly occurring
systems. We also develop a measure of the importance of minimal cut
sets, which play a fundamental role in analyzing systems and obtaining
bounds on system reliability. Finally, we extend the measure of com-
ponent importance to cover the case in which components undergo re-
pair.

2. Preliminaries concerning coherent systems and fault trees
Coherent systems

Consider a system of 7 components. Let the state x; of comvponent i
be defined by
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1 if iis functioning,

X = e ]
0 if/is failed.

Similarly, let the state ¢ of the system be a deterministic binary func-
tion of the vector x = (x,, ..., x,,) of component states:

1 if the system is functioning,

d(x) =

0 if the system is failed.

We shall need the following conventions and definitions:

(a) (li’ X) = (xl s cees Xi_ 1> ], Xigls ooos Xn);
(b) (Oir x) = (xly seey xi_.l ’ O’ xi+l, seey xn);
(c) Component i is irrelevant to ¢ if ¢(1;, x) = ¢(0;, x) for all (¢, x);

(d) ¢ is coherent if ¢ is nondecreasing in each coordinate and each
component is relevant.

(e) Let components be stocchastically independent. The reliability
function h(p) is the probability that the system operates, as a function
of component reliabilities p = (py, ..., py).

Let component i have life distribution F;(¢), and let X;(¢) = 1 if the
ith component functions until time # and 0 otherwise. Thus

EXi(t) = Fi(t) d'_Sf 1 - Fi(t),
h(F (1)) = Plo(X(2)) = 1]1= E¢(X(1)).

Fault trees

Fault trees have peen used by engineers and reliability analysts to re-
present schematically, basic events and their various logical combina-
tions which may result in a so-called “‘tov event”, generally correspond-
ing to system failure. The dependence of the *‘top event™ on the basic
events is analogous to the dependence of a coherent system state on the
states of the components. Fault trees are more general than coherent
structures in the sense that basic events in a fault tree need not neces-
sarily correspond to component failures in a coherent system. For a
discussion of fault tree analysis see Barlow and Proschan [4, Appendix],
Barlow and Chatterjee [ 1] and Fussell [ 12].

A samvle fault tree appears in Figure 1. The events labelled 1 through
7 are basic events. Qutput event G3 occurs if and only if both basic
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Fig. 1. Sample fault tree.

events 6 and 7 occur; the symbol shown signifies logical intersection,
and is called an AND gate. Outpt t event G2 occurs if and only i any
one of the input events 4, 5, or G3 occurs; the symboi shown signifies
logical union, and is called an OR gate. See Fussell [1!] and Lambert
[13] for discussions of fault tree construction.

A min cut set is a set of basic events whose occurrence causes the top
event, but which cannot be reduced and still insure the occurrence of
the top event. We consider only fault t1ees for which each basic event
is relevant to the top event; i.e., each basic event is in the union of min
cut sets.
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Fault tree analysts list min cut sets in order of size; small min cut sets
are generally considered more important than large min cut sets. How-
ever, because of replication of basic events among min cut sets, this in-
tuitive ordering can be incorrect. In terms of our definition below of
min cut set importance, we show, for exampiz, that a 4 component min
cut set can be more important than a 3 component min cut set.

Remark. In competing risk theory (cf. Berman [5]), competing causes
of failure or death can be characterized by a series system or by a fault
tree with a single OR gate below the top event. The relative importance
of these causes is of interest in this theory. Our concepts of component
importance in a coherent system (and of event importance in a fault
tree) generalize certain aspects of competing rick theory in thatr we con-
sider systems more genera' *han series systems.

In the discussion that follows we shall use e terminology of co-
herent structure theory. However all results also apply to fault trees
when the proper identifications are made.

We shall also assume throughout that components are stochastically
independent to avoid technicalities. Many results can be extended to the
more general case with obvious modificatiors.

3. Importance: Definition, properties, and computation

In this and following sections we assume that component i has conti-
nuous life distiibution F;, i = 1, 2, ..., n. Hence, we know that a system
failure will coincide with the failure of some component, say component
i. In this sense, we say that component i has caused system failure First,
consider a system without repair which has failed at some specificd time
t. Suppose we are interested in determining the most probable cause of
failure.

3.1. Proposition. If compon2nt i has distribution F; with density f;
(i=1,2,..,n), then the protability that i caused system failure, given
the system failed at time t, is given by

[h(1,, F()) ~ h(0;, F()] f(1)
= (1, F0) = WOy, FO) 1)

G.D
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Proof. (1;, F(¢)) — h(0;, F()) = P[¢(1;, X(£)) — 6(0;, X(2)) = 1] is the
probability that at time £, the system is functioning if i is functioning
but is failed otherwise. Thus the numerator (times d¢) is the probability
that i causes system failure in [¢, ¢ + d¢], while the denominator (times
dt) is the probability of system failure in [¢, ¢ +d¢]. O

The following is an obvious consequence of (3.1).

3.2. Proposition. The probability that i causes system failure in [0, t]
given system failure in [0, ¢] is

1 1h(1y, F)) — h(0;, Fu))1 dF;(u)

(3.2) - - _ .0
L, 05 (Y, F)) ~ h(O;, Fu))) dF (u)

Letting ¢ -> = in (3.2) we have the probability that i/ causes system
failure when the system eventually fails. Note that in this case the de-
nominator is one. We take this limit as our definition of component
importance.

3.3. Definition. The importance, I,,(i), of component i is the probability
that i causes system failure, where

33) LG = [ a1, F@) - k0, FE)dF®.
0

(3.3) is an immediate consequence of (3.2).

3.4. Properties of the importance measure. (P1) 0< [,(i) < 1.

(P2) If n =2 2 and the intersection of supports of Fi(j=1,2,..,n)has
positive probability with respect to the product distribution l'I]'-LlF,-(t),
then 0< I,()) < 1.

(P3) T I (D = 1.

Proof. {P1) The integrand in (3.3) is between 0 and 1, implying (P1).
(P2) 1;,(¥) = 0 implies that for ¢ in the support of F},
h(1;, F(1)) — h(0;, F(£))= 0,

since component distributions are continuous. This in turn implies that
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i is irrelevant to ¢ with positive probability, which contradicts the fact
that ¢ is coherent.

Likewise, (i) = 1 implies that £(1,, F(}) — h(0;, F(1))= 1. Hence all
other components are irrelevant with positive probability, again contra-
dicting the fact that ¢ is coherent.

The conclusion now follows. Note that (P2) is false if the supports do
not intersect with positive probability with respect to H}Llf}-( t). Con-
sider two components in parallel. If component 1 has a life distribution
with support on [0, 1] while component 2 has life distribution with sun-
port on [2,3], then [,(1)=0and [,(2) = 1.

(P3) System failure coincides with the failure of exactly one compo-
nent. Thus Zi., () = 1. O

Importance of a module

Intuitively, a module of a ccherent system is a sitbset of components
of a coherent system which behaves like a ““supercomiponent”. More
technically, let ¢ be a coherent structure of n components, M be a sub-
set of {1, ..., n} with complement M€, x be a coherent system of the
components in M, and ¢(x) = Y[x(xM), xM°]. Then (M, X) is a module
of ¢. See [7] for a discussion of modules.

Let [,(M), the importance of the module (M, X), be the probability
that the module causes system failure; i.e., that system failure coincides
with the failure of the module. Letting g denote the reliability function
of the module, we shall prove the following.

3.5. Theorem. (a) If i € M, then
B4) L= f [R(IM, F(8)) — h(OM, F()11g(1;, F(2)) —g(0;, F(#)))dF (1)
0

(b) I,(M) = Zjcpp 15, ().

Proof. (a) k(1M , F (1)) — h(OM, (1)) = P[(1¥, X (1)) — ¢(O¥, X(1)) = 1]
represents the probability that at time ¢, the systern is functioning if the
module is functioning, but is failed otherwise; similarly,

g(1; F(0) —g(0;, F(2)) = Px(1; X(1)) - x(0;, X(1)) = 1]

represents the probability that at time ¢, the rnodule is functioning if
component i is functioning, but is failed otherwise. Since components
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are independent, the integral in (3.4) is the probability that component

i fails at some time and causes the module to fail, and that module failure
causes the system to fail. Since i cannot cause system failure expect
through module failure, (a) follows.

(b)
T L) = [ (M F(©) — h(O¥, F(1)]
ieM 0

X 21 [g(l;, F(9)) - g0, F(u)) dFy(2)

= _ f [h(1M, F(t)) — h(OM, F(1))] aqt-g(f—"(t))dt = I,(M). O
0

Remark. Using the Birnbaum [6] definition of importance, the impor-
tance of a component of a module is the product of the importance

of the component to the module times the importance of the module
to the system. Note that this does not hold in general for our definition
of importance. This is a consequence of the fact that w(x) = u(x)v(x)
for each x does not imply that

b
f w(x)dx = fb u(x)dx fb v(x) dx.
a a a

A simple criterion is given next for showing one component more
important than any of the other components. We first prove two simple
lemmas of independent interest.

3.6. il.emma. Let component i be in series (parallel) with the rest of the
system. Then Iy(i) is increasing (decreasing) in F;(t) and in Fj(t), j# i

Proof. First assume i/ is in series with the rest of the system. Then

L= [ 1y, F()dF),
0
since 1(0;, F(1)) =0 by hy_pothesis. But 4(1;, p) is increasing in each p.
Thus 7 (i) is increasing in F(¢), j # i. Also h(l;, Fi1)) is decreasing in ¢.
Thus J, (i is increasing in F;(¢). A similar proof applies when i is in paral-
lel with the rest of the system. O
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3.7. Lemama. Let i be in series (parallel) with the rest o} the system. Let
all components have common distribution F. Then I;,(i) = [,,(j), ] # i.

Proof. First assume that i is in series with the rest of the system. Since
compornents are stochastically alike, we can compute /,,(k) as the pro-
portion of permutations of 1, ..., n which correspond to a system failure
due to k. By interchanging i and j in each permutation, we sce that there
are at least as many permutations in which the system fails due to i as
there are permutations in which system failure is due to ;.

A similar proof applies in the parallel case. O

3.8. Theorem. Let component i be in series (parallel) with the rest of
the system. Let F;(t) > Fi&)forj#i t> 0. Then 1,(i) = 1,(j) forj # i.

Proof. By application of Lemmas 3.6 and 3.7, the resuli follows im-
mediately. 0.

Computing importance in the proportional hazards case

It is difficult to compute [, (i) for arbitrary failure distributions.
However, if we assume proportional hazards, i.e., F (1) = exp[—N;R(t?]
fori=1, ..., n, where R(¢) is the common hazard, then the calculation
becomes more tractable. By a change of variable, it is evident that in
computing I, (i), we may as well assume F;(¢) = exp[—N;t].

Thus, for a series system,

) n
Ih(l) = 6f exp [ —( 2)\]) t]}\l exp[—7\it] dt = )\l'/lgl; )\]

For a parallel system,

L) = f[ _H_(l—exp[—-?\,-t]}]h,- expl—A;f]1de
0 J#1

- )\,-[7\;1 T A
JEL

+ ch O N e Gt LA LS rl].
J<

N+
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In ge ~eral, for proportional hazards, by a change of variable, we ob-
tain:

1
(3.5) L= [, ., PN L PN, L )
0
- h(pM9 seny p‘\i—la Oa PMH y vy pln)] }\ipki‘ldp'

Monte Carlo methods

For complex systems with large numbers of components, it may be
necessary to use Monte Carlo methods even in the case of proportional
hazards. :

Without loss of generality, assume Z';l A; = 1. To simulate the se-
quence of successive component failures that ultimately end in system
failure, draw successive independent uniform random variables U;, U,. ...
on [0,1]. If U, falls between Ay + X, + ... +; _jand M+ A, + ..+
(where A is defined to be 0), then conclude that component i} has
failed first. Repeat the process, using U, to determine which component
failed second. If U, should call for the failure of component i; again,
simply discard U,, and use Uj instead. Continue this process until the
system has failed. The component causing system failure is then recorded.
If component i causes system faiure n; times in n trials, then n;/n esti-
mates [, (7).

4. Structural importance

In the absence of information concerning component reliabilities (as
might be the case in the early stages of system development), it may be
reasonable to assume that component life distributions are the same.
The importance of component i, computed from (3.1) with Fy=F, =
.. = F,, is called the structural ir:portar ce of component i in structure
¢; we write [,(i). Making the change of variable p = Fi)fori=1,..n
yields

1 ,
1) L= [ [hli.p) — h(0, pMldp,
; .
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where (1;, p) is the vector having 1 in the i position and p in all other
positions.

Example. Let ¢4, denote the structure function of a k-out-of-n struc-
ture. Then system reliability 4 4, (p) is a symmetric function of com-
ponent reliabilities p; = p, = ... = p, = p. It follows from (4.1} that all
components have equal importance. Since /2, /,(i) = 1, we conclude
that I,(i)=1/nfori=1,2, ..., n.

More generally, let ¢ be a symmetric function of component states
X1, s Xp. Then, immediately from (4.1), we conclude that /,(i) = 1/n,
i=1, ..., n. Examples of symmetric ¢ are compositions of k-out-of-n
structures; i.e.,

¢ = Dxin° Pkin® -+ ° Prin-

Computation of structural importance

Next we show how to compute the structural importance of a com-
ponent in terms of the numbers of critical vectors for that component.
We need some definitions first.

Definition. A path set is a set of components whose functioning ensures
the functioning of the system. A path set is minimal if it cannot be re-
duced and still be a path set.

Similarly, a cut set is a set of components whose failure is sufficient
to cause system failure. A cut set is minimal if it cannot be reduced and
still be a cut set.

A critical path vector for component i is a vector (1;, x) such that
¢(1; x) = 1, while ¢(0;, x) = 0; the corresponding critical path set for i

1S
GYU {jlx; =1, ).

In this sense, the functioning or failure of component i determines
whether the system functions or fails. A critical path vector (set) jor
componert i of size r is a critical path vector (set) for which

1+_E_x,~=r, r=1,..,n.
J#i
The number, n,(i), of critical path vectors for component i of size r is
given by



164 R.E. Barlow, F. Proschan | System components and fault tree events

n(i)= 23 [o(1; x) — (0, x].
2]';&".?7]':?—1

We may now express the structural importance /(i) of component i
in terms of the number n,(7) of critical path vectors.
4.1. Theorem.

n
Py . Y P R 5 (r— 1)!(” ._r)! 7 e\
4.2) 1,(i) = fJ': ] n, ().

ot

Proof. From (4.1),

I,()= | [h(l; p) — h(0;, p)ldp

S

—

X

= [ {Z (61, x) — (0, X)1pZ#1% (1 —py= = Eixi%i Lap
0

(S

M=

I _ 1 _ 1
nr(l-)pr—l(l “P)n_rdp=?;{n,.(i) (r ]31'(” r)! O

=0f’

[}
—

Expression (4.2) may be rewritten to yield an interesting interprota-
tion of structural importance. Wz may rewrite (4.2) as

n
43)  I)= ;12-2;2,(1') n-1y-1,
The numerator n, (i) represents the number of critical path vectors of
size r, while the denominator represents the number of outcomes in
which exactly r — 1 components are functioning among the n — 1 com-
ponents excluding component i. Thus {4.3) states that the structural
importance of component i is the ‘“‘average probability” of a vector
being a critical path vector for component i. The average is taken over
the n different possible sizesr = 1, ..., n of a critical path vector, where
the probability of a vector being a critical path vector for compoaent
i of size r is computed as the ratic of the number of critical path vectors
for component i of size r to the number of possible critical path vectors
of size r.
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Another interesting interpretation of structural importance is sug-
gested by the equation

1( 7
4.4) ’¢(")=f{Zi”r(i)(fi{)ul(?ii)p’“‘(l-p)"" dp
o "7

which is immediate from the last line of the proof of Theorem 4.1. Note
that

Gopr A - p)

represents the probability that among the n — 1 components excluding
component i, » — ! are functioning, while n,(i) (?-1)~! represents the
probability that tae » — 1 functioning components together with com-
ponent i constitute a critical path set for component i. Thus the integrand
represents the probability that : causes system failure. Integrating this
probability over p is equivalent to assuming that a priori, common comn-
ponent reliability p is uniformly distributed on [0,1].

Remark. A similar analysis may be performed in terms of critical cut
vectors and critical cut sets. To each critical path vector (1;, x) for i,

there corresponds the critical cut vector (0;, x) for i, possessing, of course,
the property that ¢(1;, x) = 1 while ¢(0;, x) = 0. The corresponding cut
set

{i}U {jlx; =0,j # i}
is called a critical cut set for i. A critical cut vector (set) for component

i of size r is a critical cut vector (set) for which

1+ 25(1-x)=r.

j#i
If n,’(i) denotes the number of critical cut vectors for i of size r, then
ny (D) = n,,_ 4 ().

Comparison with Birnbaum structural importance

It is interesting to compare our definition of structural importance
given in Equation (4.1) with the corresponding Birnbaum definition [6]:

B(i) = 21P) .
31 pi=... =t
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Equivalently,
4.5) B(@i) = h(1;, 3) — 1(0;, ).

This may be compared witl expression (4.1) representing our measure
of the structural importanc: of component i. Note that Birnbaum com-
putes the difference h(1;, p) — k(0;, p) with p set equal to 3, while we
average this difference as p ranges over [0,1].

Another comparison between the two measures of structural impor-
tance is also suggestive. Frcm (4.5), we may write:

BG)=  [6(1; ) — 6(0, )] == ,
X n
so that
(4.6) Z}l n,(i) /2" 1,

Comparing (4.2) and (4.6), we see that 1,(i) attaches weight

(r — DY(n — r)!/n! to the rerm n,(i), while Birnbaum’s measure attaches
the common weight 1/2""! to each of the n,(i). Since (r —1)!(n —r)!/n!
is decreasing in » for r < n/2 and increasing in r for r > n/2, we see that
1,(i) attaches greatest weight to critical paths which are either very small
or very large.

Importance numbers are useful for ordering the components. Since
the weights in (4.2) and (4.6) differ, it is not surprising that different
component orderings may be achieved using 1, (i) and B(i), as shown by
simple examples.

A characterization of Iq,(i)

One approach to defining structural importance is to assume all com-
ponents have the samne reliability p, with p having a priori distribution
P(p), and then to incorporate Birnbaum’s measure of structural im-
portance, yiclding as a measure of “expected’ structural importance:

1
@n 1= [ 22

dP(p).
o ap; 'p,=...=pn=p P

Note that if P(p) = p, then I(i) reduces to our measure, I,(D); alter-
natively, if P(p) =0 for 0< p <4, and P(p) =1 for p = 1, then I(i)
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reduces to the Birnbaum measure, B(i). Next we show that if /(i) given
in (4.7) satisfies the desirable normalization property that component
importances in series systems sum to 1, then (i) must coincide with our
measure /, (7).

4.2. Theorem (Sethuraman). Let I(i) given in (4.7) satisfy %, 1(i) = 1
Jor a series system of sizen,n= 1,2, .... Then I(i) = 1, ().

Proof. For the series system #(p) =p, ... p,,, we have

0
—h(p)| =p"1,
api pl= "_=pn=p

It follows that
n 1
(4.8) 1 Z%I(i) =n fp"-ldp(p) forn=1,2, ...
!:
0

By the solution to the Hamburger moment problem { 14, page 19], the
distribution A(p) = p uniquely satisfies (4.8), and so /(i) coincides with
I.().0O ~

o

5. Importance of min cut sets

In the analysis of coherent systems and of fault trees, minimal cut
sets play a basic role. For example, a lower bound on the reliability of
a coherent system can be computed from a knowledge of the reliability
of the min cut structures of the coherent system (see [2,9,10]). Thus it is of
considerable value to determine the relative importance of each cut set
in a coherent structure.

5.1. Definition. The importance of min cut set K is the probability that
the failure of min cut set K coincides with the failure of the system, i.e.,
that min cut set K “‘causes’ system failure.

It is immediately clear that the sum of the importances cf the min
cut sets of a coherent system is at least one. This is a consequence of
the fact that system failure may coincide with the failure of more than
one min cut structure in the system.

The following theorem gives an explicit representation for the im-
pcrtance of a min cut set K in a coherent system.
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5.2. Theorem. Let F; be the life distribution of component i,i=1, ..., n,
in the coherent system with reliability function h(p). Then I,(K), the
importance of min cut set K, is given by

0= [ ni. ok F [1 FdFo.
s LE=Z Of n(1;, 0% Fap M Fodro

Proof. First note that

ea Ly IO AF®
represents the probability of the joint event that component i fails at
time ¢ and that the remaining components in the cut set K have failed
by time ¢. Next note that 4(1;, 0K -{i}, F@t)) represents the probability
that component i is critical at time ¢ (i.2., the system is functioning at
time ¢ if component i is functioning, bu:t is failed otherwise). Thus the
product yields the probability that component i causes system failure.
Summing over i € K (corresponding to the mui.ally exclusive ways in
which cut structure K can fail) gives the probability that cut set K
causes system failure. O

Structural importance of min cut sets

We may define the structural importance of a min cut set K by setting
Fi=F,=..=F, in (5.1); this is the procedure we followed in defining
the structural importance of a component in Section 4. Equation (5.1)
then yields, after a change of variables, the following expression for
the structural importance, /,(K), of min cut set K in coherent structure

o:

1
= . ok-1{i} Y |
(5.2) 1K) %;(()fiz(l,,o .p)(1 = p)-ldp,

where k£ denotes the number of components in min cut set K.

An alternative method for computing /,(K) is to list the n! permuta-
tions, each of which represents a sequence of the # component failures,
to find the number n(K) of sequences in which K causes system failure,
and then to compute {,(K) = n(K)/n! This method of computing min cut
set structural importance is valid since all sequences of component failures
are equally likely.
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2 3

1
Fig. 2. Coherent system with two min cut sets.

Example. For the coherent system shown in Figure 2, K; ={1,2} and
K, ={1,3} are the min cut sets. Using (5.2), we calculate /,(K;) = ¢ =
I4(K3). Note that I,,(K,) + I,(K,) > 1; this is a consequence of the fact
that K, and K, may simultaneously cause system failure (e.g., for the
sequence of component failures 2—3—1, K; and K, simultaneously fail
and cause system failure.

On the other hand, for a k-out-of-n structure we do have Z;1,(K;) =1,
even though min cut sets overlap. This is true because two or more min
cut sets cannot simultaneously cause system failure. For a k-out-of-n
structure, there are

oed

min cut sets. Since all min cut sets have equal structural importance and
importances sum to one, we conclude that

1(1{)-( " )‘l forj=1,2 "
ST k41 ot/ =12 ()

Fault tree analysts in practice compare different min cut sets to de-
termine the relative importance of basic events. It is intuitively reason-
able that small min cut sets tend to be structurally more important than
large min cut sets. The next theorem shows that such an ordering is true
under certain conditions.

5.3. Theorem. Let min cut set K; consist of k; components, i = 1, 2,
with ky < k,. Let components in K, not appear in any other min cut
sets. Then

(5.3) T (KD > I,(Ky).

Proof. Given a sequence of the n component failures for which min cut
sci K, causes system failure, we shall exhibit a corresponding sequence
of component failures for which min cut set K; causes system failure;
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moreover, these corresponding sequences will be mutually distinct. This
will prove the desired result.

Given a sequence of the n component failures for which min cut set
K, causes system failure, simply exchange the first k; failures of the
components of min cut set K, by the k; failures of the components of
min cut set K;. Since the components in min cut set K; do not occur in
any other min cut set, for the failure sequence generated, min cut set
K; will cause system failure. Moreover, it is obvious that failures se-
quences so generated are mutually dlstmct since the original failure se-
quences are mutually distinct.

By the alternative definition of min cut set importance stated follow-
ing (5.2), we conclude that (5.3) must hold. O

It is easy to show by exaniple that the condition in Theorem 5.3 that
no components in K; appear in other min cut sets is necessary for the
validity of (5.3).

We can define the importance of a min path set as the probability
that it causes system failure, i.e., that its failure coincides with that of
the system. We can then obtain results analogous to those above for
min cut se'’s.

6. Importance of components when repair is permitted

In this section we consider a coherent system of n stochastically in-
dependent components undergoing repair after failure. Let component
i repair time be distributed according to continuous distribution G;,
i=1,..,n Let A;(¢) be the avaiiability of component i at time ¢, i.e.,
the probability that component i is functioning at time ¢. (See [3] for a
discussion of availability theory.) Let N;(¢) denote the number of
failures of component i in [0, t] and M;(r) = ENy(¢).

Given system failure at time ¢, the probability that / caused system
failure is

[h(1;, A} — h(0; AEN]AM(D)

(6.1) .
> [h(1,, A(D)) - h(0;, A(1)) dM(1)

i=1

Note that the numerator represents the probability that ! is critical at
time ¢ and that i then fails at time ¢, while the denominator represents
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the probability that some component is crizical at time ¢ and that it fails
at time ¢ (i.e., the system fails at time ¢).

Letting ¢ - o, we ob:ain the stationary prcbability that the failure of
component i is the caus: of system failure, given that system failure has
occurred:

A —ho;, . ,
6.2) Ih(i)= n[h(ll /£ ‘J, A)]/(ﬂ,'l'l),) ,

2 [h(:j, A) = h(0;, )] /(s +v))

=l

where y; is the mean life, v; the mean repair time of component i, and

]

M +v

A;=1lim A;(1t)= ,
1o i

the stationary availability of component i, 1= 1|, ..., n. Renewal theory

required for the straightforward proofs of (6.1) and may be found in

[2, Chapter 3].

We note that, as in the case of no repair, Z:.'=11,,(i) =1.

Example. (1) For a series system with component repair,

n
63 L=y /21y
J#U 7 0=l j#i
Note that component importance does not depend on component mean
repair times.
(2) For a parallel system with component repair,

n
6.4  Lw=11v 211y,
j#i i=lj#i
Thus component importance does not depend on component inean times
to failure.

Remark. The formula for /(i) given by (6.2) can be interpreted in terms
of N;(t), the number of times during [0, ] that component i causes sys-
tem failure. We claim that

t
(6.5  EN(&>= [ [h(1; AC)) — h(0; A@)]dM(w).
9
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Intuitively, we see that the integrand represents the probability that
component i is critical at time u, while dM;(«) is the probability that
component i fails in the small element of time following the instant u.
Thus by integrating over [0, ¢], we are computing the expected number
~ of times during [0, t] that component i causes system failure.

More formally, w2 may prove (6.5) by forming a partition of [0, ¢1,
say

0= t0< H< ly <..< t, =t
Observe that
(h(1;, A(§)) — A(0;, AN IM;(44y) - Mi(t,')]

is approximately thc probability that component i causes system failure
in (¢, #;4+1). Summing these probabilities and then letting n - ~ yields
(6.5). |

Moreover, we have

(6.6)  lim EN,1) /jZ=)1 EN/(®) = 1,,G).

Equation (6.6) follows from an application of the elementary renewal
theorem; i.e.,

M)
lim =

i
t—oco t M; + V; ’ V

ui""Vi.

def
A; S lim Af0) =
=02
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