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A new measure of the importance of the components in a coherent system and of the 
basic events in a fault tree is defined and its proper ties derived. The importance measure 
is a useful guide during the system development phase as to which components (or alter- 
natively, which basic events) should receive more urgent attention in achieving system 
reliability growth. The new measure of component importance has certain desirable 
properties not possessed by the previous measure of component imljortance proposed by 
Birnbaum [ 61. The measure is extended to minima! gut sets and to systems of compo- 
nents undergoing repair. A number of common y occurring systems are treated in detail 
for illustrative purposes. 
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structural importance 
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In attempting to achieve high reliability for a complex system, a basic 
problem facing the systems analyst is that of‘ evaluating the relative im- 
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portance of the various components comprising the system. Measuring 
the relative importance of components may permit the analyst to deter- 
mine which components merit the most additional research and develop- 
ment to improve overall system reliability at miniYnnum cost or effort. 

Birnbaum [ 61 defined measures of component, importance for cohe- 
rent systems. (See Birnbaum, sary and Saunders [ 81, Barlow’ and 

roschan [ 2,4] for definitions and properties of coherent structures.) 
Let p = ( pl, . . . . pn) denote the vector of component reliabilities of a co- 
herent system and I&D) denote the system reliability function. Then 
Birnbaum defines the reliability importance B(i lp) of component i by 

Note that B(ilp) depends on p. For the case in which p i.s unknown, 
Birnbaum defines the structural importance 3(i) oj’componerzt i by 

(1.2) B(i) = ;;ip ; 
i 1=. . .“Pn+ 

i.e., B(i) = B(ilp) with each pi set equal to i. 
We introduce another measure of relative component importance 

which is essentially the conditional probabi y that system failure is 
caused by (i.e., coincides with) the failure given component, ‘IThi; 
new measure reveals more clearly the relative extent to which each 
component is contributing to system failure. Thes importance measurres 
also enjoy the property that they sum to one. 

We develop the properties of these measures of component impor- 
tance, and give examples of their computation for commonly occurring 
systems. We also develop a m minimal cut 
sets, which play a fundament and obtaining 
bounds on system reliability. inally, we extend the measure of com- 
ponent importance to cover the case in which components undergo re- 
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-l 1 if i is functio 
Xi - 

0 if i is failed. 

Similarly, let the state @ of the system be a deterministic binary func- 
tion of the vector x = (x1, . . . . Xn) of component states: 

1 
d)(x) = 

if the system is functioning, 

the system is failed. 

We shall need the following conventions and definitions: 

(a) (lit X) = (X1 9 .-*9 Xi- 19 19 Xi+1 9 •-a~ Xn 1; 
Ib) (Oi, X) = (Xl 9 l **Y Xi-1 9 09 Xi+1 9 l **9 X,1 1; 

(C) Component i is irrekvarzt to (b if @(Ii, X) = #(Oi* X) for all (ai, x); 

(d) @ is coherent if 4 is nondecreasing in each coordinate and each 
component is relevant. 

(e) Let components be stochastically independent. The rehbility 
function h(p) is the probability that the system operates, as a function 
of component reliabilities i? = ( ya, . .., Pn ). 

Let component i have life disd:ribution F,(t), and let Xi(t) = 1 if the 
ith component functions until time t and 0 otherwise. Thus 

EXi( t) = F’i( t) d’f 1 - F,(t)9 

h(F( t)) = [MXtN = 1 I = EgUXt)). 

ault <trees 

F&&t trees have been used by engineers and reliability analysts to re- 
present schematically, basic events and their various logical combina- 
tions which may result in a sgcalled “too event”, generally correspond- * 

ing to system failure. he depenllence of the “top event” on the basic 
events is analogous to the dependence of a coherent system state on the 
states of the components. Fault trees re mo:re general than coherent 
structures in the sense that basic even in a fault tree need not neces- 
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Fig. 1. Sample fault tree. 
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ault tree analysts list min cut sets in order of size; small min 
are generally considere more important than large min cut sets. 
ever, because of replic ion of basic events among min cut sets, tllis in- 
tuitive ordering can be incorrect. n terms of our definition belo\>] of 
min cut set importance, we show, for exampi:, that a 4 component min 
cut set can be more important than a 3 component min cut set. 

ark. In competirzg risk theory (cf. erman [ 5 ] ), competing causes 
of failure or death can be characterized by a series system or by a fault 
tree with a single OR gate below the top event. The relative importance 
of these causes is of interest in this theory. Our concepts of component 
importance in a coherent system (and of event importance in a fault 
tree) generalize certain aspects of competing risk theory in that we con- 
sider systems more general “ban series systems. 

In the discussion that follows we shall use rile terminology of co- 
herent structure theory. However all results also apply to fault trees 
when the proper identifications are made. 

We shall also assume throughout that components are stochastically 
independent to avoid technicalities. Many results can be extended to the 
more general case with 0 ious modifications. 

mportance: properties, and camp 

In this and following sections we assume that compone 
nuous life distribution &, i = 1, 2, . . . . n. Hence, we know 
failure will coincide with thqfailure of some component, say component 
i. In this sense, we say that component a’ has caused system failure First, 
consider a system without repair which has failed at some specifit:d time 
t. Suppose we are interested in de ermining the most probable cause of 
failure. 

. If cornpon 92 t i has distribu tiorz Wit/z density fi 
IE~PE the prohbility that i caused system failwe, git,e,z 

the system failed at time t, is given by 
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oof. h( li, F(t)) - rzcO~, - t)) -- #(Oi, X(t)) = 1 ] is the 
probability that at tim ctioning if i is functioning 
but is failed otherwise. us the numerator (times d t) is the probability 
that i causes system failu e in [t, t + dt], while the deno inator (times 
dt) is the probability of system failure in [t, t + dt 1. 0 

The following is an o vious consequence of (3.1). 

3.2. osition. 7’he probability that i causes system failure in [ 0, t 11 
given system jizilure in [ 0, t] is 

(3.2) 
J: [h( lip F(U)) - )1(0i, F(U))] dFi(u) 

X~=l$~ [ h( 1 j, F(U)) --h(Oj, u))] dF,G l 

0 

Lettirg t -+ = in (3.2) we have the probability that i causes system 
failure when the s em eventually fails. Note that in this case the de- 
nominator is one. e take this limit as our definition of component 
importance. 

3.3. . The importance, I&), of component i is the probability 
that i causes system failure, where 

(3: 3) I&) = J’ [i( lip i, F(t))] dAFi( t). 

0 

(3.3) is an immediate consequence of’ (3.2). 

G I/#) G 1. 
2 arzd the intersection of supports Df lQ( j = 1, 2, +.., n) h 

positive probability w3’t?j respect to the product 
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i is irrelevant 
@ is coherent. 

ive probability, which contradicts the fact 

ikewise, Ih (i) = 1 implies that h( lip 
r components are irrelevant with p ity, again contra- 

dicting the fact that $ is coherent. 
The conclusion now follows. Note that (P2) is false if’ the supports do 

not intersect with positive probability with respect to 
sider two components in parallel. f component 1 has a life distribution 
with support on [0, I] while component 2 has life distr,ibution with sup- 
port on [2,3], then Ih(l) = 0 and Ih(2) = 1. 

(P3) System failure coincides with the failure of exactly one ~ompo- 
nent. Thus Z~&(i) = 1. 0 

Intuitively, a module of a ccherent system is a subset of components 
of a coherent system which behaves like a “supercomponent”. More 
technically, let @ be a coherent structure of n components, M be a sub- 
set of (1, . . . . n) with complement M ‘, x be a cohe ent system of’ the 

components in N, and Q(X) = $[x(A?), xMCla Then CM XI is a m&k 
of #. See [ 71 for a discussion of modules. 

Let I&M), the importarm of the module (M, x), be the probability 
that the module causes system failure; i.e., that system failure coincides 
with the failure of the module. Lettingg dencte the reliability function 
of the module, we shall prove the following. 

. (a) If i E M, then 

(3.4) Ih(i) = f [h( p(t))3 [g(li, F(t)) -g(oi, 
0 



160 R.E. Barlow, F, boschan /System components and fat& tree events 

are independent, the integral in (3.4) is the probabili at componen 
i fails at some time and le to fail, an t module failure 
causes the system to fai failure expect 
through module failure, (a) follows. 

(b) 

00 

=_ s [h( 9 Rt)) - h( ON = Ih(M). a 
0 

irnbaum [6] definition of importance, the impor- 
a clomponent of a module is the product of the importance 

lonent to the module times the importance of the module 
to the system. Note that this does not hold in genera.1 for our definition 
of importance. This is a consequence of the fact that W(X) = U(X)U(X) 
for each x does not imply that 

b b b 

j- Mx) dx = $ u(x) dx j-u(x) dx. 
a a u 

simple criterion is given next for showing one component more 
important than any of the other components. We first prove two simple 
lemmas of independent interest. 

et comporzent i be in series (parallel) with the rest oj’tk 
(i) is increasing (decreasirlg) in F&t) and in F’(t), j 7Lt i. 

ass series with the rtist of the system. 
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et i be in series (parallel) with the rest qj the system 
all components have commor~ distribution F. Then I&) >, jh( j), j # i. 

irst assume that i is in series with the rest of the system. 
components are stochastically alike, we can compute I#) as the pro* 

rmutations of 1 9 . . . . n which correspond to a system failure 
interchanging i and j in each permutation, we see that there 

are at least as many permutations in which the system fails due to i as 
there are permutations in which systelm failure is due to j. 

A similar proof applies in the parallel case. q 

3 . Let component i be in series (parallel) with the rest of 
the system. Let Pi(t) > Fj(t) for j # i, t > 0. Then I&) > Ih(j)jbr j # i. 

oof. By application of Lemmas 3.6 and 3.7, the result follows im- 
mediately. D. 

Computing importance in 
It is difficult to compute Ih or arbitrary failure distributions. 

However, if we assume propor nal hazards, i.e., F,c[t) = exp[ --AiR(t’r] 
for i = 1, . . . . n, where R(t) is the common hazard, then the calculation 
becomes more tractable. y a change of variable, it is evident that in 
computing r,(i), we may as well assume Pi(t) = exp[ -Kit]. 

Thus, for a series system, 

I&) = J eXp [ - 

n 

hi exp[ -hit] dt = Xi / 
0 

For a parallel system, 

II,(i) = ) 1 Aj eXp[--Xit 

- = h 1 i - hi + Aj)-l 

-1 - 
-I- - - * 

0c. 
. . . d b 

P 
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for proportional hazards, by a change of variable, we ob- 

(.3.5) 

te.rns with large numbers of components, it may be 
necessary to use on I:e Carlo methods even in the case of proportional 

ithout loss of generality, assume Ci”;l Aj = 1. To simulate the se- 
quence of successive component failures that ultimately end in system 
fai?ure, draw successive independent uniform random variables U,. U2. . . . 
011 [O,l]. If U, falls bl:tweenhl+X2+... +hi,_landAl+h2+... +Xil 

efined to be 0), then conclude that component i, has 
peat the process, using U2 to determine which component 

failed second. If U2 slould call for the failure of component d, again, 
simply discard U2, and use US instead. Continue this process until the 
system has failed. he component causing system failure is then recorded. 
f component i causes system faalure tzi times in IZ trials, then ni/jl esti- 

mates I&). 
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where ( li, p) is the vestor having 1 in the i’” position and y in all other 
positions. 

et #k/n denote the structure function of a k-out-of-n struc- 
en system reliability hkJn (p) is a symmetric function of com- 

ponent reliabilities p 1 = p2 = . . . = pn = p. It follows from (4.1) that all 
components have equal importance. Since ,k 1 I@(i) = 1, we conclude 

I,(i) = l/n for i = 1, 2, . . . . ~2. 
ore generally, let # be a symmetric function of component states 

q, ‘.‘9 x,. Then, immediately from (4.1), we conclude that I,(i) = k /II, 
i = 1, . . . . n. Examples of symmetric @ are compositions of k-out-of-n 
structures; i.e., 

putation of structura 

Next we show how to compute the structural importance of a com- 
ponent in terms of the numbers of critical vectors for that (:omponent. 
We need some definitions first. 

ion. A path set is a set of components whose functioning ensures 
the functioning of the system. path set is mirzimal if it cannot be re- 
duced and still be a path set. 

Similarly, a cut set is a set of components whose failure is sufficient 
to cause system failure. A cut set is minimal if it cannot be reduced and 
still be a cut set. 

critical path vector for comporlerzt i is a vector ( li, x) such that 
$( li. X) = 1, while $(Oi, x) = 0; the corresponding critical path set jbr i 

is 

0 U {jlXj z 

his sense, the function 

9 vectors for co e2t i of size f is 
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in 

n,(i) = 1 IIHli9 Xl - @(Oi, Xl l 

e may now express the struct ral importance I,(i) of component i 
terms of the number n,(i) of critical path vectors. 

n 

(4.2) I@(i) = ( r - W(n - f9! 
r=l n! 

M (i) 
r l 

. From (4. ‘9 ), 

1 

1$(i) = j [h( lip Ep) - h(Qi9 P)l dP 
0 

1 

=s 
0 

1 n n 

=J n,(i)p’-1 ( 1 _ p)n-‘dp = 

0 
r=l l-1 

Expression (4.2) may be rewritten to yiel an interesting inter 
tion of stsuctural importance. We may rewr 

n 

(4.3) I@(i) = 1 
t2 r=l 

n,(i) (:rf >-’ - 

ponents excluding component i. Thus { 
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nother interesting interpretation of structural importance is sug- 
gested by the equation 

n,(i)(;--~)--l (‘tr:)p’-‘( 1 - p)“--’ dp , 

which is immediate from the last line of the proo of Theorem 4.1. Note 
that 

r- 9 r-l 
r-l (1 ps p)n-r 

represents the probability that among the n - 1 components excluding 
ncnt i, r -- !! are functioning, while 12,(i) (~_$-r represents the 

bility that tile Y - 1 functioning components together with com- 
ponent i constitute a critical path set for component i. Thus the integrand 
represents the pro ability that I causes system failure. Integrating this 
probability over p is equivalent to assuming that a priori, common COIII- 
ponent reliability p is uniformly distributed on [O., I]. 

. A similar analysis may be performed in terms of critical cut 
vectors and critical cut sets. To each critical path vector (1 i, x) for i, 
there corresponds the criti I cut vector (Oi, x) for i, possessing, of course, 
the property that (9( Ii, X) = 1 while @(Oi, X) = 0. The corresponding cut 
set 

Ii} U {jlxj = OJ # i} 

is called a critical cut set for i. A critical cut vector (setlfor corzzgonent 
i of size r is a critical cut vector (set) for which 

j+i 
(I -Xj)==X 

f ~?~(~) denotes the nu 
(i) = fr,__ r+l (0. 

cut vectors for i of size Y, then 

iS 

iverl i 
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quivalently, 

(i) = h( li, $) -- t@&, 4 

is may be compare our measure 
the structural imp irnbaum com- 

putes the difference h( Ii, p,) - h(Oi, p) with p set equal to 3, while we 
average this difference as ,o ranges over [ 0,l 1. 

Another comparison bkkveen the two measures of structural impor- 
tance is also suggestive. rem (4.3, we may write: 

B(i) = 
x 

Il@( 1. if 3) - Qi(O ip 
1 

2n- 1 

so that 
n 

(4.6) 
r=l 

n,(i) /2”-I, 

Comparing (4.2) and (4.6]1, we see that I@(i) attaches weight 
( Y - l)! (n - r)!/rz! to the 1:erm n,(i), while irnbaum’s measure attaches 
the common weight 1 /2n-1 to each of the n,(i). ince(r-l)!(n-r)!/n! 
is decreasing in r for r < n/2 and increasing in r for r 2 n/2, we see that 
I@(i) attaches greatest weight to critical paths which are either very small 

mportance numbers are usefu for ordering the components. Since 
the weights in (4.2) and (4.6) differ, it is not surprising that different 
component orderings may be achieved using I@(i) and B(i), as shown by 
simple examples. 
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ext we show that if I(i) given 
n property that component 

reduces 

importances in series systems sum to 1, then I’(i) must coincide with our 
measure I@(i). 

ethuraman). Let I(i)gi in ( 
for a series syste of size 0, YE = 1, 2, . . 

or the series system h(p) = p1 

= #-1 3; h(p)1 
i pr= . . . ‘Pn”P 

It follows that 

L- . 

. . pn, we have 

(4.8) 

n 1 

1 *- 
i=l 

I(i) = n lp”-‘dP(p) for n = 1, 2, wg.e 
0 

lution to the Hamburger moment problem [ 14, page 191, the 
n p(p) = p uniquely satisfies (4.8), and so I(i) coincides with 

I@(i). Cl 

n the analysis of coherent systems and of fault trees, minimal cut 
sets play a basic role. For example, a lower boun on the reliability of 
a coherent system can be computed from a kno edge of the reliability 
of the min cut structures of the coherent syste-m (see [2,9,10]). 
considerable value to determine the relative importance of each cut set 
in a coherent structure. 

min cut set is the probabilit 
the failure of min cut s e failure of the syste 

in cut set failure. 
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. Let Fi be the life distribution cr,f mrnponent 
t system wit liability function h( 

importance of nzin cut set 

. First n0te that 

jE,K --(i} 
Fi(t) df$(t) 

represents the probability of the joint event that component i fails at 
time t alzd that the remaining components in the cut set K have failed 
by time t. Next note that 12( l,:, OK-{‘), F(t)) represents the probability 
that component i is critical at time t (i.c:., the system is functioning at 
time t if component i is functioning, but is faileti otherwise). Thus the 
product yj.elds the probability that component i causes system failure. 
Summing b)Ver* i E: K (corresponding to the mukally exclusive ways in 
which cut structure K can fail) give; the probabilitv that cut set K . 

causes system failure. Cl 

rrra 

We may define the structural importance of a min cut set K by setting 
F,= F2= . . . 5 Fn in (5.1); this is the procedure we followed in defining 
the structural importance of a component in Section 
then yields, after a change of variables, the following 
the structura importance, J,(K), of min cut set 
# . . 

(5.2) K-{i}, p) (1 - p)“-’ dp, 
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l 
Ip___l 

Fig. 2. Coherent system with two min cut sets. 

e. For the coherent system shown in igure 2, K, = (1,2} and 
3) are the min cut sets. Using (5.2), calculate I& K1 ) = t = 

I@( K2 ). Note that $( K1) + I@( K2) > 1; this is a consequence of the fact 
that K1 and K2 may simultaneously cause system fai!ure (e.g., for the 
sequence of component failures 2-3- 1, K,’ and K2 simultaneously fail 
and cause system failure. 

On the other hand, for a k-out-of-n structure we do have 
even though min cut sets overlap. This is true because two or more min 
cut sets cannot simultaneously cause system failure. For a k-out-of-n 
structure, there are 

min cut sets. Since all min cut sets have equal structural importance and 
importances sum to one, we conclude that 

for j = 1, 2, . . . . 

Fault 
termine 

tree analysts in practice compare different min cut sets to de- 
the relative importance of basic events. It is intuitively reason- 

able that small min cut sets tend to be structurally more important than 
large min cut sets. The next theorem shows that such an ordering 
under certain conditions. 

et components 
of ki components, i 
appear in any other 
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moreover, these corresponding sequences will be mutu 
will prove the desired result. 

Gven a sequence 0 he y2 component failures for hich min cut set 
K2 causes system fail , simply exchange the first k, failures of the 
components of min c 2 by the kl failures of the components o 
min cut set Kr. Since the components in min cut set 1 do not occur 
any other min cut set, f’or the failure sequence gen rated, min cut set 
Kr will cause syst m failure. Moreover, it is obvio that failures se- 
quences so genera d are mutually distinct since the original failure se- 
quences are mutually distinct. 

y the alternative definition of min cut set importance stated follow- 
ing (5.2), we conclude that (5.3) must hold. 0 

It is easy to show by exan$e that the condition in Theorem 5.3 that 
no components in K, a pear in other min cut sets is necessary for the 
validity of (5.3). 

We can define the importance of a min path set as the probability 
that it causes system failure, i.e., that its failure coincides with. that of 
the system. We can then obtain results analogous to those above for 
min cut se fs. 

In this section we consider a coherent system of ~1 stochastieally in- 
dependent components undergoing repair after failure. t component 
i repair time be distributed according to continuous distribution Ci, 
i = 1, . . . . M. Let A&t) be the availability of component i at tim 
the probability that component 
discussion of availability theory. 
failures of component i in [ 

failure at time t 

. 
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the probability 

occurred: 

onent is critical at time t and that it fails 

y that the failure of 
failure, given that system failure has 

where C(i is the mean life, yi the mean repair time of component i, and 

the stationary availability of component i, 2 = enewal theory 
required for the straightforward proofs of (6.1) and may be found in 
[ 2, Chapter 31. 

We note that, as in the case of no repair, Z&I&) = 1. 

e. (1) For a series system with component repair, 

ote that component importance does not depend on component mean 

parallel system with component repair, 

n 

Vj s 

t 

p.E - . 

9 
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Intuitively, we see that the integrand represents the probability that 
component i is critical at time U, while dI&(u) is the probability that 
component i fails in the small element of time following the instant U. 
Thus by integrating over [ 0, t]) we are computing the expected number 
of times during [O, tf that component i causes system failure. 

More formally, w-2 may prove (6.5) by forming a partition of [ 0, t] , 

say 

O= to < tl< t2 < l ** < tn = t. 

Observe that 

is approximately the probability that component i causes system failure 
in (tj, Q+~). Summing these probabilities and then letting n + * yields 
(6.5). 

Moreover, we have 

(6.6) lim Efil(t) / 5 &!j(t) = a,(i). 
t+- j=l 

Equation (6.6) follows from an application of the elementary renewal 
theorem; i.e., 
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