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Let (7 be a finite dimensional algebra over a field # of characteristic not
2 or 3. We say that (7 is powerassociative if for every element y of (7 we
have that . # | v], the algebra of polynomials in y over.#, is associative. This
provides, in particular, a well-defined notion of nilpotency of elements. If
powerassociativity is preserved under scalar extensions of /7 we say that (7
is strictly powerassociative [1]. We assume ¥ is commutative.

An algebra (7 is said to be of degree 2 if the maximal set of pairwise
orthogonal, nonzero idempotents in any scalar extension of (7 is of
cardinality 2. If 7 has an identity element 1 and e is an idempotent then so
also is 1 —e If e#0,1 then {e, 1 ¢} is a maximal set of pairwise
orthogonal, nonzero idempotents in an algebra of degree 2.

Let u,...,u, be a basis of the vector space (7 over .# and &,,...5,.
& seen €, and g, ..., i1, be algebraically independent elements over . # in some

extension field of .7, Let .7 =5 (0, 400s O B1pees Eyys i seens 4,3 8N
x=0,u + - +6,u,.

The clement x lies in the scalar extension (7, of (¥. The algebra & , is
commutative, powerassociative, and finite dimensional and has thc same
basis over .4 as (7 does over .#. The element x is called a generic clement
of (7 {5,6]. As an element in the finite dimensional algebra 7 , over .7, x
satisfies a monic equation of degree n with coefficients in .#" and hence a
minimal, monic equation over .#". This equation will be called the generic
equation of (7 and written m, (1) =0. If it is also assumed that (7 is Jordan.
i.e.

wi(yw) = (why)w

for all w and y in (7, and simple then Jacobson !53] has shown thar the
generic polynomial, m,(%). is irreducible. From the literaturc on simple,
commutative, powerassociative algebras [2, 3, 7. 9, 10] Jacobson’s resuits
prove that all simple, commutative, powerassociative algebras of charac-
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teristic not 2 or 3 have irreducible generic polynomials except possibly those

of degree 2 with a non-nilstable idempotent |11]. We shall use the results of

[11] to fill in this small gap in the literature and to obtain the best possible

form (with respect to irreducibility) that the generic polynomial can take.
For every idempotent e of (¥ we have a vector space decomposition

O = 0,(1) + A (3) + 1, (0),
where

@, ()={yiye X and ey = ip}.

Various multiplicative properties have been obtained [1] for these charac-
teristic subspaces. In particular,

A1) A7) = A (3) + U 0),
A(0) Ao(3) S A (3) + A1),

We shall call the idempotent e nilstable if for every y € (7,(1) and z € (7,(3)
the (7,(0)-component of the product yz is nilpotent.
We can now formally state the result we wish to prove.

THEOREM. Let (I be a finite dimensional, commutative, strictly
powerassociative, simple algebra over a field .5 of characteristic not 2 or 3
such that in some scalar extension of (¥ there is an idempotent that Is not
nilstable. The generic polynomial of (7 is irreducible or of the form

(A% —a(x)A + B(x))",

where a(x) and B(x) are forms in d,,..., 5, of degrees 1 and 2, respectively,
0<r<p, and A* — a(x) + B(x) is irreducible.

Progf. If (7 is simple then (7 contains an identity element 1 [1]. Also the
only simple non-nilstable algebras of this type are of characteristic p# 0
[10, 11]. Hence we shall assume p# 0. It has been shown [12| that the
generic polynomial, m (1), is of the form

(A% —a(x) A7 + B(x))",

where g is a power of p, ¢ is a nonnegative integer and a(x) and fi(x) are
homogeneous forms over .# in d,, J,,..., 0, of degrees g and 2g, respectively,
and 127 —a(x) A9 + B(x) is irreducible over .#. In the subsequent work we
do not need to work with the minimal polynomial. In fact the exponent ¢ can
be replaced by any positive integer s such that ¢ < s. Hence we shall assume
t is a power of p. We then have that exponentiation by ¢ will be linear. Since
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the generic polynomial remains the same i scalar extensions we can assume
.7 is algebraically closed.
Every element
Xo=Opoliy + o0 + 8ol

can be considered as a specialization of x. If we write a(x,) and f(x,) for the
clements of .# obtained when d,y,..., J,, are substituted for d;...., §, then x,
satisfies the equation

[x% — axy) x? + B(x,)]" =0

and the polynomial on the left has the same irreducible factors as the
minimal polynomial satisfies by x, [5,6]. Since (¥ has an idempotent
e+ 0,1 we can take x,=e—f, where f=1—e. The minimal polynomial
satisfied by x, is
. AP —1
with the two distinct irreducible factors A — 1 and A + 1. Thus the generic
polynomial m,(4) must also have two distinct roots.
We let &7 be an extension of # that splits the polynomial

AP —a(x)d + B(x) = (A — b)(A — a),
where a, b € ¥ and a’ +# b". It follows easily that

x4 — gt X2 — bt
ex———‘———‘bt—a' and .fx"‘_at___bt

are a pair of nonzero orthogonal idempotents whose sum is 1. These two
elements lie in 77_.. We define
2x4 —a(x)’ .
N A

If we let L(z,) be the linear transformation induced by left multiplication by
z, then L(z,)* has two characteristic subspaces, (7, (1) + (7, (1) and (7, (1),
corresponding to the characteristic values 1 and O.

Let 7 =(b'—a')z,. We have (b'—a")? = (b'+a')* —4a'd' = a(x)* —
48(x)"; an element of .#. Also z,=2x"—a(x)' is in (7,. The linear
transformation L(Z,)> on the vector space (7, has two characteristic

subspaces G ,(1,0) and G ,{3) corresponding to the characteristic values
a(x)* — 4B(x)" and 0. It follows readily that

[G.f(l’ 0)]_/ =G, 1, 0),
[Gi(%)l_’/’ = Gy*(%)e
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where G(1,0) and G(3) are the characteristic subspaces of L(Z,)? acting
on (7,. We shall let y=¢,u, +--- +¢,u, and r=pg,u, + -« +u,u,. We
write

y* =yL(z,)%

r¥ = rL(z‘x)z.

Let e be a specialization of x that is an idempotent of ¢7 not equal to | or 0.
All of the elements of (7,(1)+ (7,(0) and (7,(}) can be obtained by a
suitable specialization of y* and r — r*, respectively. If x is specialized to e
then the corresponding specialization of z, is e —f, where f=1 —e. If the
assumption is made that e, is nilstable then there is a nonnegative integer u
such that

(175 = r)]*] =0
and therefore

(Lo —r) ¥ =0

for all specializations y, and r, of y and r, respectively. Thus all idempotents
of (7 would be nilstable, which contradicts our original assumptions.
Therefore we must have that e, is not a nilstable idempotent and the splitting
of the polynomial A2 —a(x)' A% + B(x)" gives rise to this non-nilstable
idempotent in 7.

Next we shall show that (7, is simple. Assume 7 is an ideal of (¥ , and, as
an algebra over &, has dimension m < n. Select a basis v,,...,v,, of / in (7.
Since .# is an infinite field there must be a specialization such that not all
the v/s specialize to 0. Let this specialization of the v;s generate the
subspace J of (7. This subspace will be of dimension less than or equal to m
and greater than 0. Since 7 is closed under multiplication by elements in 7 .
it is certainly closed under multiplication by elements in (¥ < (7 .. Therefore
so also is J closed under multiplication by elements of ¢#. Thus J is an ideal
of (¥ and we have a contradiction. Thus (7, is simple.

We can now use the results of [11] to determine the structure of 7 ... The
algebra (7., can be decomposed as

Ap=F+2.8 + A, (3)

The subspace .# is a commutative, associative &/-simple algebra [11] for a
nontrivial set of derivations & used in defining the multiplication of (7. Let
~#" equal the set of all nilpotent elements in .# and .#* the pth power of all
the elements in .#". Since the characteristic of F is p, .#7 forms a subalgebra
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of . #%. Let I be . Z.+#7, the set of all sums of products of an element in .%
times an element in .#. Clearly I is an ideal of .%. Also, if D € & then
D(y)=10 for any y € .#7. Therefore I is a &-admissible ideal of .# and we
must have I =0 or .%. Since the elements of I are nilpotent we must have
F=0. Therefore .#*? =0 and the nilindex of any nilpotent element of . % is
less than or equal to p.

The subspace .#” is the radical of .#. Therefore .#/ ¢ is a semisimple
algebra over .. Since .## has only one idempotent . #/.# must be a field. if
b and b’ are elements of .% such that

b=b'+n

for some n €.4 then b” = b'?. Therefore the mapping b +./ — 5" is well-
defined and a homomorphism of rings. If b +.4 -0 then 5" =0 and b €. "
Hence we have an isomorphism. Therefore #” = .%/.#" and .#* is a field.
Actually .#” is an extension of .#7. Let M =.%7(x"%). Since all nilpotent
elements of .% have nilindex less than or equal to p the same must be true of
G,(1,0). Therefore x satisfies an equation of the form

[x* — a(x) x7 + f(x)}? = 0.

Therefore M is quadratic over .#?. Now if x” — a(x)? = 0 has a solution /"~
in M then this solution must lie in .#?. Thus 7 and «(x) would be in .7
and we would have to have 7" =a(x). A similar argument can be made
relative to f(x). Thus we can adjoin a(x) and f(x) toc M without danger of
duplicating roots. If g > 1 we have the relationship

|x* — a(x) x? +B(x)} =0
in M(a(x), B(x)) and hence
x™ — a(x) x* + B(x) = 0.

If g=1 then of course we have [x* —a(x)x+ B(x)I" =0, where  <p.
Thus we have completed the proof of the theorem.

We shall now give two examples of algebras of the type under con-
sideration.

Let .# be the associative algebra with identity generated by the nilpotent
element n (#” = 0) over the algebraically closed field #. Let &7 be the vector
space with basis over .# consisting of

1 . - -1
1, Bey B2 Nz, 2y B Loz, wobow,., b tow
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and with products defined by

=1, bitV=b"t, (Boz)boz)=bToz, b(Foz)=b" 0y,
BB ow)y= (B ow)y+ibi oz, (bl oz) b ow)=—ibTI!,
(b o wY(B o w)=j(j— 1) b+ =2 4 i(i — 1) b1+ =2 — jjpi+i-2,

This multiplication satisfies the condition of |I1, Theorem 8] with D,
defined by Dy(b)=1 and by, =0.

We define the subspace N, to be generated by all #/, n/ o z, n/ o w for j > i.
If i >2 it is straightforward to show that N? € N,,,. Hence all the elements
of N, are nilpotent for i >2. Now let y=A(z+now)+dn+u(nez)+m,
where m €N, and A,d,u are in .. We have y*=4dlnoz + m', where
m' € N,. If A=0 in the expression of y then y* € N,. Since 1 is the coef-
ficient of z + n o w we see immediately that (y*)*> € N,. Thus »* is nilpotent
and so also is y.

Now let x=46;,+8,z+d;w+d,n+dsno0z+d(now)+m,, where
m, € N,. We determine the coefficients of 1, z, n c w and w in the expression
x* —a(x)x + B(x), where a(x) = 26, and f(x) = 62 — 63 + 26,6,. Again by a
straightforward computation we have that the coefficients of 1 and w are 0
and that the coefficients of z and n o w are equal in this expression. Thus, if
we let y =x* — a(x)x + f(x) we have shown that y is nilpotent. Hence the
generic polynomial for this algebra is

[x* —a(x)x +B(x)]".

For a second example we let .# be a field with an element a such that
xP — a is irreducible over .# . Let % =.# (v), where v is aroot of x» —a=0
in some extension field of .#. Let X =2 + #ow+ % o z. We define a
linear transformation D on .# by D(v')=iv'~' for all i>0. It is easily
shown that since D(v'*”) = D(av’), D is well-defined and a derivation on .Z.
We use this derivation on .# and define a multiplication on (¥ according to
Theorem 8 {11]. Now assume the generic polynomial of 7 is a divisor of

[x? — a(x)x + B(x)]°.

Since v € (7 then specializing x to v we see that [v* —a(v)v + B(r)|? = 0.
But v lies in the field .# (v). Since a(v) and f(v) are in . we see that v lies
in a quadratic extension of .#. This contradicts our choice of v as a root of
the irreducible equation x” —a = 0. Thus the generic polynomial of (7 must
be of the form x? — a(x) x? + B(x).

These two examples demonstrate that each of two types of possible
polynomials in the Theorem can occur.
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