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Let fl be a finite dimensional algebra over a field .F of characteristic not 
2 or 3. We say that 67 is powerassociative if for every element JI of C! we 
have that. F[ yl: the algebra of polynomials in y over ..F: is associative. This 
provides, in particular, a well-defined notion of nilpotency of elements. If 
powerassociativity is preserved under scalar extensions of CI wc say that C’i 
is strictly powerassociative [ 11. We assume C’I is commutative. 

An algebra Cl is said to be of degree 2 if the maximal set of pairwise 
orthogonal, nonzero idempotents in any scalar extension of L7 is of 
cardinality 2. If M has an identity element 1 and e is an idempotent then so 
also is i - e. If e # 0, 1 then (e, 1 --. e} is a maxima! set of pairwise 
orthogonal, nonzero idempotents in an algebra of degree 2. 

Let U, ,.“., II,, be a basis of the vector space CZ over .Y and di ~ “.., 6,:. 
E [ )...) E, and ,u. i )...) ,uu, be algebraically independent elements over ~ 7. in some 
extension field of.9. Let .F’=.F(6 ,,..., d,;cr ,..., ~,~,,u~:...,~ti,~) and 

x= d,u, + .‘. + 6,u,:. 

The clement x lies in the scalar extension c‘;/,, of 0. The algebra CZ,,? Is 
commutative, powerassociative, and finite dimensional and has the same 
basis over ..Z’ as 6’ does over ..Y. The element x is called a generic elcmenr 
of U (5, 4j. As an element in the finite dimensional algebra fii’,, over .X’, x 
satisfies a manic equation of degree n with coefficients in .F and hence a 
minimal. manic equation over .r. This equation will he called the generic 
equation of I? and written m,(j”) = 0. If it is alko assumed that IY is iordan. 
i.e., 

for all 1%: and 4’ in G?? and simple then Jacobson 151 has shown that the 
generic polynomial. m,(;.), is irreducible. From the iiteraturc on simpie, 
commutative, powerassociative aigebras 12, 3, 7. 9. 101 Jacobson’s resuits 
prove that all simple, commutative. powerassociative aigebras of charsc- 
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teristic not 2 or 3 have irreducible generic polynomials except possibly those 
of degree 2 with a non-nilstable idempotent ] 1 I]. We shall use the results of 
[ ll] to fill in this small gap in the literature and to obtain the best possible 
form (with respect to irreducibility) that the generic polynomial can take. 

For every idempotent e of fZ? we have a vector space decomposition 

GT = Me( 1) + c’I,()) + 6?/,(O), 

where 

Various multiplicative properties have been obtained [I] for these charac- 
teristic subspaces. In particular, 

We shall call the idempotent e nilstable if for every y E a,( 1) and z E MC(f) 
the M,(O)-component of the product yz is nilpotent. 

We can now formally state the result we wish to prove. 

THEOREM. Let 0? be a finite dimensional, commutative, strictly 
powerassociative, simple algebra over a field .F of characteristic not 2 or 3 
such that in some scalar extension of 67 there is an idempotent that is not 
nilstable. The generic polynomial of 62 is irreducible or of the form 

(A’ - a(x)/l + /3(x))l, 

where u(x) and /3(x) are forms in 6, ,..., 6, of degrees 1 and 2. respectice&, 
0 < r <p, and A* - a(x)?. +/I(x) is irreducible. 

Proqf: If 67 is simple then @ contains an identity element 1 [ 11. Also the 
only simple non-nilstable algebras of this type are of characteristic p # 0 
[ 10, II]. Hence we shall assume p# 0. It has been shown [ 121 that the 
generic.polynomial, m,(A), is of the form 

(lze - a(x) iy +/l(x))‘, 

where q is a power of p, t is a nonnegative integer and U(X) and /l(x) are 
homogeneous forms over .B in 6,) 6, )...) S, of degrees 9 and 2q, respectively. 
and J24 - a(x) 1* + p(x) is irreducible over ,T. In the subsequent work we 
do not need to work with the minimal polynomial. In fact the exponent t can 
be replaced by any positive integer s such that t < s. Hence we shall assume 
t is a power of p. We then have that exponentiation by t will be linear. Since 
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the generic polynomial remains the same in scalar extensions we can assume 
.7 is algebraically closed. 

Every element 
xg = d,“U, + -** + &(,U:: 

can be considered as a specialization of x. If we write a(xOj and ,3(x,,) for the 
elements of .B obtained when Jr,, ,..., 6,,) are substituted for 8: “..., 6, then x’,) 
satisfies the equation 

[x2” - cz(X”) xq + /qx,,)l’ = 0 

and the polynomial on the left has the same irreducible factors as the 
minimal polynomial satisfies by x0 (5,6]. Since R has an idempotent 
e # 0: 1 we can take x,, = e-f, where f = 1 -. e. The minimal polynomial 
satisfied by xg is 

?L2- 1 

with the two distinct irreducible factors i, - 1 and A $ 1. Thus the generic 
polynomial m,(d) must also have two distinct roots. 

We let .Y be an extension of ..R‘ that splits the polynomia! 

A2 - u(x)A + P(x) = (A- b)(l - a). 

where u, h E .Y and a’ # b’. It follows easily that 

X C/l -a’ 
ex= bfbU’ and 

are a pair of nonzero orthogonal idempotents whose sum is 1. These two 
elements lie in ~71~. We define 

z, = e, -fv = 
2xY’ - a(x)! . 

b’.-u’ - 

If we let L(z,) be the linear transformation induced by left multiplication by 
z, then L(z,)’ has two characteristic subspaces, CY,r(l) $ Uf.J1 j and C?!‘,+(i), 
corresponding to the characteristic values 1 and 0. 

Let Y,r=(bf-at)z,. We have (6’ - a’>2 = (h’ + a’)’ -. 4af/9 = a(x)” -.. 
4/3(x-jf; an element of .X. Also Z; = 2x9’ -- a(x)! is in 0,. The linear 
transformation JC(L,)~ on the vector space ~‘7, has two characteristic 
subspaces G,(l, 0) and G,,(f) corresponding to the characteristic values 
u(x)2’ -4/3(x)’ and 0. It follows readily that 

IGAL O>ly = GAL 01, 

[GA(;)jy = G,(f): 
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where G,(l, 0) and G,(i) are the characteristic subspaces of t(F.K)2 acting 
on ~7,. We shall let y= E,U, + a.. + E,~u, and P-=,u~,u, + ..a +,u,,y,. We 
write 

y* =yL(27,)2: 
r* = rL(ZJ2. 

Let e be a specialization of x that is an idempotent of 67 not equal to 1 or 0. 
All of the elements of n,(l) -t Qr,(0) and @,,($) can be obtained by a 
suitable specialization of y* and Y - r*, respectively. If x is specialized to e 
then the corresponding specialization of Z, is e -J where f = 1 - e. If the 
assumption is made that e, is nilstable then there is a nonnegative integer u 
such that 

and therefore 

for all specializations y0 and r. of ~7 and r, respectively. Thus all idempotents 
of 67 would be nilstable, which contradicts our original assumptions. 
Therefore we must have that e, is not a nilstable idempotent and the splitting 
of the polynomial 3,“” - a(~)’ ;LRf + p(x)’ gives rise to this non-nilstable 
idempotent in fly. 

Next we shall show that 6YY is simple. Assume Z is an ideal of MY and, as 
an algebra over 2?? has dimension m < II. Select a basis G, ,..., V, of Z in M,. 
Since ..F is an infinite field there must be a specialization such that not all 
the t’i)s specialize to 0. Let this specialization of the vi’s generate the 
subspace J of fl. This subspace will be of dimension less than or equal to m 
and greater than 0. Since Z is closed under multiplication by elements in fiTY 
it is certainly closed under multiplication by elements in ~2 c 6YY. Therefore 
so also is .Z closed under multiplication by elements of a. Thus J is an ideal 
of 6Y and we have a contradiction. Thus M, is simple. 

We can now use the results of [ 111 to determine the structure of MY. The 
algebra M, can be decomposed as 

The subspace .B is a commutative, associative 5?-simple algebra [ 111 for a 
nontrivial set of derivations C2 used in defining the multiplication of (2,. Let 
.Y” equal the set of all nilpotent elements in 29 and ./I’” the pth power of all 
the elements in M.. Since the characteristic of F is p, .k” forms a subalgebra 
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of .??. Let I be ..9.j%/P’, the set of all sums of products of an element in .5? 
times an element in ../I”“‘. Clearly I is an ideal of .2?” Also, if D E 22’ then 
D( 4’) = 0 for any 4’ E ..P. Therefore I is a g-admissible ideal of .2 and we 
rnust have I = 0 or .8. Since the elements of 7 are nilpotent we must have 
I == 0. Therefore .F’ = 0 and the nilindex of any nilpotent elemer,t of .3 is 
less than or equal to p. 

The subspace ..,fi is the radical of .3?. Therefore ,2?/. ,t is a setnisimpie 
algebra over 3. Since .2 has only one idempotent .3/..&. must be a !leld. E:’ 
h and b’ are elements of .2? such that 

b=b’+n 

for some n E..A“ then bP = 6’p. Therefore the mapping h +.,f ‘--+ 5” is %ell- 
defined and a homomorphism of rings. If h -t i .:f’--+ 0 then b” = 0 and b f . Y ‘. 
Hence we have an isomorphism. Therefore 2?‘” r %z?$ k“ and F’ is a geld. 
Actually .Vp is an extension of Xp. Let M =.Zg(xpc?). Since all nilpotent 
elements of .% have nilindex less than or equal top the same must be true of 
G,( 1,O). Therefore x satisfies an equation of the form 

[x2” .- a(x) x” + /l(x)JP == 0. 

Therefore M is quadratic over .3 p. Now if x” - cl(sjP = 0 has a solution i” 
in M then this solution must lie in .Z “. Thus Y and U(X) would be in .Z 
and we would have to have 7“ = a(x). A similar argument can be made 
relative to ,8(x). Thus we can adjoin a(x) and ,6’(x) to M wit.hout. danger of 
duplicating roots. If q > 1 we have the relationship 

Ix’” - a(x) xq -I- p(x)]” = 0 

in n4(a(x), p(xjj and hence 

x24 - U(X) X* + /?(x j = 0. 

If y = 1 then of course we have [x2 - CI(X)X $ e(Xj!’ = 0: where f <p. 
Thus we have completed the proof of the theorem. 

We shall now give two examples of algebras of the type under con- 
sideration. 

Let .% be the associative algebra with identity 7 generated by the nilpotent 
element n (FP = 0) over the algebraically closed iield .;i”, Let 6?’ be the vector 

space with basis over .F consisting of 

1 ) h, . ..) bP.” i- hcz , , _ . ...) b”- 1 ” 2: w, h 0 M’: . . . . !Y - ! i’ :v 
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and with products defined by 

b”= 1, bib’ = bitj 7 (b’ o z)()+ o z) = b’+j o z, b’(d o z) = b’.‘.j o z. 

bi(b.i 3 w) = (b”.i o w) + ibf+.i.-l o z, (bi o z)(bj o wy) = -ibi*.j-1, 

(bi o H,>(bj o w> =j(j- 1) bi+.i-2 + i(i _ 1) bitj-2 _ ijbii-j-2. 

This multiplication satisfies the condition of l-11, Theorem 81 with Do 
defined by D,(b) = I and boo = 0. 

We define the subspace Ni to be generated by all ,j, ni o z, mi o w forj> i. 
If i > 2 it is straightforward to show that Nf G Ni.,. i, Hence all the elements 
of Ni are nilpotent for i > 2. Now let y = n(z + n 3 w) + 6n + ,~(n o z) + m, 
where nz E N2 and 1,6,,u are in Xi”. We have y2 = 4&n o z + m’, where 
m’ E N,. If d = 0 in the expression of J then y2 E N,. Since 1 is the coef- 
ficient of z + n 0 w we see immediately that ( y2)’ E N,. Thus y” is nilpotent 
and so also is y. 

Now let x=6,+6,~+6,w+6,n+6,noz+6,(no~!)+rn~, where 
m, E N,. We determine the coefficients of 1, z, n G IV and M? in the expression 
x2 - a(x)x +/3(x), where o(x) = 26, and /J(x) = & - 6: + 26, S, , Again by a 
straightforward computation we have that the coefficients of 1 and M? are 0 
and that the coefficients of z and n o M: are equal in this expression. Thus, if 
we let y =x2 - a(x)x + ,Qx) we have shown that y is nilpotent. Hence the 
generic polynomial for this algebra is 

[x’ - a(x)x + P(x) I”. 

For a second example we let .,Sr be a field with an element a such that 
xp - a is irreducible over Z F. Let ..9 = .:F(v), where D is a root of xp - a = 0 
in some extension field of .7. Let fil= .D + ..B o w + ,5? o z. We define a 
linear transformation D on .53’ by D(v’) = iv’-’ for all i > 0. It is easily 
shown that since D(u i tp - D ) - ( au’), D is well-defined and a derivation on 3. 
We use this derivation on .D and define a multiplication on 67 according to 
Theorem 8 ] I1 J. Now assume the generic polynomial of M is a divisor of 

Ix” - a(x)x + P(x) I”. 

Since 1: E (3 then specializing x to t’ we see that [t” - (T(L’)u +P(u)]” = 0. 
But u lies in the field .9(v). Since a(u) and /3(v) are in ..F we see that c lies 
in a quadratic extension of .K This contradicts our choice of v as a root of 
the irreducible equation xy - a = 0. Thus the generic polynomial of fl must 
be of the form xz9 - a(x) x4 + p(x). 

These two examples demonstrate that each of two types of possible 
polynomials in the Theorem can occur. 
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