

Review Article

Mitosis, microtubule dynamics and the evolution of kinesins

Juan Jesus Vicente, Linda Wordeman*
Department of Physiology and Biophysics, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, United States

ARTICLEINFORMATION

Article Chronology:

Received 29 January 2015
Accepted 10 February 2015
Available online 20 February 2015

Keywords:

Kinesin
Mitosis
Microtubule dynamics
Evolution
Protist
LECA
Evolutionary cell biology

Contents

Mitosis, microtubule dynamics and the evolution of kinesins 62
Kinesins in mitosis. 62
Prophase: centrosome separation 62
Prometaphase and metaphase: organization of a bipolar spindle and chromosome congression 62
Anaphase, telophase and cytokinesis. 63
Kinesins and the control of microtubule dynamics 63
Polymerizing kinesins 64
Depolymerizing kinesins 64
Kinesin-13 family. 64
Kinesin-8 family. 66
Evolution of kinesins 66
Acknowledgments 67
References 67

[^0]
Mitosis, microtubule dynamics and the evolution of kinesins

All living organisms must transmit genetic information through successive generations, and all six eukaryotic supergroups utilize a mitotic spindle to accomplish this task. The mitotic spindle is the cellular machinery responsible for chromosome segregation during mitosis, and it is comprised of hundreds of proteins. During evolution, eukaryotic cells have developed different mechanisms and different kinds of mitotic spindles to segregate the chromosomes [22]. Regardless of the differences, the common characteristic of all these different mitotic spindles is the utilization of microtubules and kinesins, as all known eukaryotes studied to this date possess kinesins [94].

The mitotic spindle is a bipolar array of microtubules of varied lengths that continuously grow and shrink. These highly dynamic microtubules are nucleated by centrosomes and contact the chromosomes in the centromeric region to facilitate chromosome attachment and segregation. Although chromosome movement is powered in part by changes in microtubule assembly [66], kinesins associated with microtubules and other spindle structures refine the movement of chromosomes in the spindle. Kinesins participate in chromosome attachment, influence microtubule dynamics and contribute to anaphase spindle elongation (reviewed in [16]). Thus, kinesins, in conjunction with dynamic microtubules, ensure the proper distribution of genetic material between the two daughter cells to avoid aneuploidy.

Kinesins are a class of molecular motors that use the energy from hydrolysis of ATP to translocate along the microtubule or control microtubule end dynamics [81,80,20]. They have been identified in members of all six eukaryotic supergroups including extremely deep-rooted members (Fig. 1). Processive kinesins are able to perform successive work-producing cycles of ATP hydrolysis without detaching from the substrate microtubule whereas non-processive kinesins readily detach from microtubules but can be quite effective working in ensembles. There are 14 families of kinesins, and most members possess two distinct functional domains: an ATP-hydrolyzing motor domain and a tail domain that can associate with cellular structures or cargo [42,47]. The motor domain is very well conserved among the different kinesins families while the tail domains are more divergent. Most kinesins translocate to the plus ends of the microtubule and possess an N -terminal motor domain. There are kinesins with the motor at the C-terminus that translocate
to the minus end of the microtubule. Besides this hand over hand "walking" activity [99], there are some kinesins that are able to control microtubule dynamics through promoting polymerization, promoting depolymerization or pausing polymerization activity [20,9,17].
In Opisthokont metazoans there appear to be kinesins involved in every step of mitosis, belonging to the families $4,5,6,7,8,10$, 12, 13, 14 (reviewed in [16]). Here we are going to review the kinesins involved in each phase of mitosis with an emphasis on the stages of mammalian cell division. Additionally, we will consider the role of kinesins in deep-rooted eukaryotes.

Kinesins in mitosis

Prophase: centrosome separation

During prophase, the two centrosomes close to the nuclear envelope separate and travel to opposites sides of the cell to form a bipolar spindle. At the same time the chromatin begins to condense to form chromosomes. The most important kinesin family involved in the formation of the bipolar spindle is the Kinesin-5 family [38]. Kif11 (also known as Eg5) is the Kinesin-5 family member involved in the bipolar spindle formation in humans [67]. Kif11 acts as a tetramer with two kinesin heads contacting one microtubule and the other pair of heads contacting a parallel or antiparallel microtubule. Thus, Kif11 acts as a microtubule crosslinker that is able to force two microtubules to glide with respect to each other, and uses this activity to separate the centrosomes during the beginning of mitosis [36]. A representative Kif11 member is present in many deep-rooted eukaryotes and lacking in others, even across those (such as T. brucei vs. S. cerevisiae) with closed mitosis (Fig. 2).

Prometaphase and metaphase: organization of a bipolar spindle and chromosome congression

During prometaphase the centrosomes localize to opposites sides of the cell to form a bipolar spindle. There is evidence that Kif15 (a Kinesin-12 family member) functionally overlaps Kif11 in the separation of the centrosomes and in the formation of a bipolar spindle [77,73]. KifC1 (a Kinesin-14 motor) is a minus-end directed motor that generates an inward force during the formation of the spindle. The outward force created by Kif11 and Kif15 compensates

Fig. 1 - Six eukaryotic supergroups including, in each case, a few members in which kinesins have been unambiguously identified. Organisms thought to be more deeply rooted are indicated (${ }^{*}$).
this inward force to help maintain the spindle length [49]. Interestingly, some organisms that lack Kif11, such as P. tetraurelia and T. brucei, do possess Kif15 [94].

During this phase, microtubules contact the chromosomes in the kinetochores and move them to the middle of the spindle forming the metaphase plate. Several kinesin families are involved in the capture and congression of the chromosomes: Kinesin-4 (Kif4), Kinesin-7 (Kif10), Kinesin-8 (Kif18A), Kinesin-10 (Kif22), Kinesin-13 (Kif2B, Kif2C) and Kinesin-14 (KifC1).
The first contact is usually a "lateral connection", where the kinetochores contact the microtubule via the lattice rather than the microtubule tip. In these cases, the molecular motors dynein and Kif10 (also known as CenpE, a Kinesin-7 member) are the players involved in the transport of the chromosomes to the plus-end tip of the microtubule to establish a stronger kinetochore-microtubule connection [64,96,37,11]. Kinesin-7 is widely represented in deep-rooted organisms.

Members of the Kinesin-8 family are important for the correct chromosome alignment in metaphase. For example, the deletion of Kinesin-8 members Klp5 and Klp6 in S. pombe and Kip3 in S. cerevisiae, alters the alignment of chromosomes in metaphase [26,90,88]. In human cells the depletion of Kif18A generates a congression defect with chromosomes dispersed through all the spindle $[45,70,72$]. Kinesin- 13 member's role in chromosome alignment at the metaphase plate is not as well understood as Kinesin-8, but it is known that the lack of Kif2C (МСАК) affects attachment [21] and congression in human cells [102] possibly by limiting microtubule length within the spindle.
Another activity influenced by kinesins is chromosome oscillation around the metaphase plate. Once two sister chromatids are attached to microtubule tips emerging from respective opposite poles, the chromosome is bi-oriented. Stable, bi-oriented attachment of the chromosomes to the mitotic spindle is a requirement to turn off the mitotic checkpoint. The checkpoint assures that both daughter cells receive the same amount of genetic material by inhibiting the initiation of anaphase chromosome segregation in the presence of improperly attached chromosomes. Bi-oriented chromosomes establish a meta-stable position at the metaphase plate by oscillating back and forth across the spindle midpoint. It is hypothesized that in addition to properly positioning chromosomes for anaphase, oscillations may facilitate the shedding of improper microtubule attachments during prometaphase and metaphase [32,98]. These oscillations are possible thanks to forces derived from changes in microtubule polymerization rates that are controlled in part by kinesins. There are several kinesins implicated as participating in the oscillation movements: Kif2B, Kif2C, Kif4, Kif10, Kif18A and Kif22.
Polar ejection forces help to push chromosomes away from the spindle poles and relocate them to the metaphase plate if they have moved far away from it [57]. This is achieved thanks to a group of kinesins that interact with chromosomes called chromokinesins. Kif22 (also known as Kid, member of the Kinesin-10 family) is a chromokinesin that uses solely plus-end directed motility to facilitate chromosome congression [72]. Kif4 (Kinesin-4 family) is a plus-end directed chromokinesin that can also regulate microtubule dynamics and microtubule length to influence congression [52,60,72,86]. This unusual kinesin family member can be detected in a number of deep-rooted eukaryotes (Fig. 2).
The Kinesin-8 family member, Kif18A, is able to control microtubule dynamics [59,74] and chromosome oscillations probably by pausing or reducing the polymerization rates of microtubules ends close to the kinetochores [23,72]. Studies in human cells have shown that Kif18A
localizes in the spindle with a higher concentration at the tip of the plus-end microtubule close to kinetochores [45,70]. Kinetochores closer to the metaphase plate have longer k-fibers, and therefore accumulate more Kif18A molecules. Growth suppression of these longer k-fibers would expected to be enhanced, preventing the chromosomes from moving farther from the metaphase plate. In contrast, the loss of Kif18A allows chromosomes to stray farther from the metaphase plate during each oscillation. This would explain why there are chromosomes dispersed through all the spindle in the Kif18A knockdown [45,70-72]. There are very few eukaryotes that do not possess either a Kinesin-13 member, a Kinesin-8 member or both, which suggests microtubule length modulation by kinesins is an essential activity. Curiously, one primitive eukaryote, Cyanidioschyzon merolae, that lacks Kinesin-8 and -13 family members accomplishes much of its G1 activities without utilizing assembled microtubules [35]. In this organism MTs are only present in the mitotic spindle, and the authors suggest the idea that MTs first evolved associated to mitosis, and that the cytoskeleton and transport functions evolved later.

Besides chromosome congression and positioning, another process regulated by kinesins is the turnover of the kinetochore microtubules. The Kinesin-13 family members (Kif2A, Kif2B and Kif2C) are involved in this process likely because they are capable of using the energy of ATP to directly disassemble microtubules [20,34,15]. During the first contacts of the microtubule with the kinetochores, erroneous connections are common [14]. Kinetochore-associated Kif2C is implicated in the correction of MT-KT attachments $[40,98]$. Kif2C is found both on kinetochores and also as a complex with EB1 on microtubule plusends. It facilitates end-on attachment of kinetochores to microtubule tips by suppressing plus-end microtubule length within the spindle [21]. Kif2A also controls spindle microtubule length but its centrosomal position suggests control of microtubule minus ends so its overarching role may be to set overall spindle length [95].

Anaphase, telophase and cytokinesis

During anaphase the separated sister chromosomes move from the center of the spindle in the metaphase plate toward opposite poles of the cell (anaphase A) and the mitotic spindle is elongated (anaphase B). Microtubule depolymerization is the principle driving force for anaphase chromosome segregation [28,66]. In Drosophila the Kinesin-13 members KLP59C and KLP10A may influence microtubule depolymerization to facilitate chromosome segregation as well [58]. Spindle elongation is controlled by Kinesin-5 members in flies and yeast [69,10]. Interestingly, it is not well-understood what controls anaphase B spindle elongation in mammals.

The central spindle is a structure of antiparallel microtubules formed between the two sets of segregating chromosomes important for the regulation cytokinesis. Kif2A and Kif4 control the size of the central spindle through the control of microtubule dynamics [6,33,78]. There are other kinesins important for cytokinesis like Kif10, Kif14, Kif20A, Kif20B and Kif23 (reviewed in [43] and chapter xxx in this same number).

Kinesins and the control of microtubule dynamics

The classical or conventional role of kinesins is the transport of cargo from one place in the cell to another, e.g. the transport of cargo down the axon of a neuron. But as described above, some kinesins are able to influence MT dynamics. Microtubules are dynamic biological polymers
that constantly grow and shrink in an assembly/disassembly cycle known as dynamic instability [48].

Microtubule dynamics varies depending on the cell cycle, cell events and cellular structures encountered by the microtubule end. During interphase the half-life of MT is around 5 min , and in the mitotic spindle it is of around 5 s [63]. But even inside of the spindle there are differences between microtubule subpopulations. The connection of MT with the KT (K-fibers) is very stable, resulting in higher half-life than in the rest of the mitotic spindle (around 5 min) [27,101]. The turnover of microtubules in the kinetochore fiber is an important contributor to error correction during cell division $[4,25]$.

Microtubule dynamics is highly regulated by a complex of proteins like MAPs (microtubule associated proteins) and kinesins [79]. Based on existing studies, we can differentiate three classes of kinesins regulating MT dynamics:

1. Kinesins that promote or enhance the addition of subunit to the MT: Kinesin-7 (CenpE), Kinesin-10 (Nod).
2. Kinesins that enhance or promotes tubulin subunit loss: Kinesin-8 (Kip3, Klp5/6, Kif19), Kinesin-13 (Kif2A, 2B and 2C/MCAK), Kinesin-14 (Kar3).
3. Kinesins that suppress the dynamics at the MT ends: Kinesin-4 (Kif4/Xklp-1), Kinesin-8 (Kif18A).

Kinesins proteins are the only cytoskeletal motors (kinesins, dyneins and myosins) that have been found in all eukaryotes studied to date $[56,91,92,94]$. This would put the apparition of the first kinesins between 1.6 and 2.2 billion years ago, with the apparition of the first eukaryotic cells. But, when did kinesins acquire the ability to modulate microtubule dynamics? Is that function previous or subsequent to translocation along the microtubule lattice? It is possible that regulation of microtubule assembly is an ancient and perhaps the original function of the earliest kinesins, with the transport function evolving later. With this in mind, what would be the set of kinesins possessed by the FECA (First Eukaryotic Common Ancestor) and the LECA (Last Eukaryotic Common Ancestor)? In a 2010 paper Wickstead et al. studied kinesin diversity through a wide range of eukaryotic organisms concluding that probably the LECA had a whole set of kinesins comprising members of families $1,2,3,4,5,8,9,10,13,14$, and 17 (the Kinesin- 17 family is a new family only found in bikonts [91]). In addition, it appears that most eukaryotic organisms have kinesins controlling MT dynamics and most of them have some kind of MT-depolymerizing kinesin from families Kinesin-8, Kinesin-13 or

Kinesin-14 [91,94]. Even the primitive red alga C. merolae, which lacks Kinesin-8 and -13 family members, possesses a Kinesin-14. We have performed a simple manual BLAST analysis of kinesins in eukaryote protists from the groups Excavata, Alveolates, Opisthokonts and Amoebozoa (Fig. 1). Some of these organisms are pathogens, and some of them are known as deep-rooted eukaryotes because they are usually positioned close to the root of the eukaryotic tree of life. We have not found kinesins from families 6 and 11, and our results fit with the results from previous papers.

Polymerizing kinesins

There are several kinesins in different systems that promote MT polymerization or MT nucleation. Kif10 (also known as Cenp-E) is a plus-end directed kinesin from the Kinesin-7 family [96]. It localizes to MT ends, is able to stabilize GTP-microtubules and promote the elongation of the stabilized MTs [61]. The Drosophila Nod (Kinesin-10 family) is a non-motile kinesin that plays an important role in chromosome segregation during meiosis. It localizes to MT ends and promotes MT polymerization [17]. Additionally, there is the special case of the S. pombe KLP5/6 (Kinesin-8) motors that promote both MT nucleation and catastrophe [17]. In our analysis we have found proteins similar to Kif10 (CenpE, Kinesin-7) in most of the eukaryotes analyzed (Fig. 2).

Depolymerizing kinesins

The most studied group of kinesins controlling MT dynamics is the depolymerases, especially the Kinesin-8 and Kinesin-13 families.

Kinesin-13 family

Kinesins- 13 members have the catalytic domain in the center of the protein, and do not walk over the MT, but use their ATPase activity to remove tubulin subunits from both ends of the MT [20,84], arriving to the ends mainly by diffusion [31]. The first kinesins with depolymerization activity identified in mammals were Kif2A and Kif2C (MCAK) from the Kinesin-13 family [50,97]. Kif2A and 2C have been studied a lot in detail, but the first studies showing the depolymerization activity of MCAK came from studying the orthologous in Xenopus: XKCM1. The depletion of XKCM1 in Xenopus egg extracts causes an excessive growth of the MT (spindle and astral MT) and the prevention of mitotic spindle formation [85,41]. Cells overexpressing XKCM1 do not form a bipolar spindle because the MTs are too small and not able to grow [51]. In human cells overexpression of MCAK

Fig. 2 - Distribution of kinesins in deep-rooted eukaryotes. We manually analyzed the genome of several protists from the groups Excavata, Alveolates, Opisthokonts and Amoebozoa searching for kinesins. Presence of a kinesin member in the genome is indicated with a green filled circle. The number in parenthesis after the name indicates the number of kinesin families for each organism. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) We have checked the genomes of the next eukaryotes: Acanthamoeba (A. castellanii), Angomonas (A. deanei), Anncaliia (A. algerae), Babesia (B. bovis, B. microti), Blastocystis (B. hominis), Crithidia (C. fasciculate), Cryptosporidium (C. hominis, C. muris, C. parvum), Edhazardia (E. aedis), Eimeria (E. acervulina, E. brunetti, E. falciformis, E. maxima, E. mitis, E. necatrix, E. praecox, E. tenella), Encephalitozoon (E. cuniculi, E. hellem, E. intestinalis, E. romaleae), Entamoeba (E. dispar, E. histolytica, E. invadens, E. moshkovskii, E. nuttalli), Enterocytozoon (E. bieneusi), Giardia (G. intestinalis), Gregarina (G. niphandrodes), Hammondia (H. hammondi), Leishmania (L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. tarentolae), Naegleria (N. gruberi), Nannochloropsis (N. gaditana), Nematocida (N. parisii), Neospora (N. caninum), Nosema (N. bombycis, N. ceranae), Phytomonas spp (different isolates), Plasmodium (P. berghei, P. chabaudi, P. cynomolgi, P. falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. vivax, P. yoelii), Spironucleus (S. salmonicida), Spraguea (S. lophii), Strigomonas (S. culicis), Tetrahymena (T. thermophila), Theileria (T. annulata, T. equi, T. orientalis, T. parva), Toxoplasma (T. gondii), Trachipleistophora (T. hominis), Trichomonas (T. vaginalis), Trypanosoma (T. brucei, T. congolense, T. cruzi, T. evansi, T. grayi, T. rangeli, T. vivax), Vavraia (V. culicis), and Vittaforma (V. corneae).

cause similar defects, which MCAK loss promoted kinetochore attachment errors and spindle positioning defects [44,41,98,55,21]. S. cerevisiae does not possess members of the Kinesin-13 family [94]. However, both Kar3 (a Kinesin-14) and Kip3 (a Kinesin-8) have the ability to destabilize MT ends [68], so it is possible that they may have acquired the depolymerization activity to compensate for the lack of Kinesin-13. Alternatively, the Kinesin-14, Kar3, may supply depolymerizing activity to functionally subsidize activities controlled by Kinesin-13 in other organisms [62].

Kinesin-13 members are present in many deep-rooted eukaryotes. In Giardia intestinalis Kinesin-13 localizes to the median body and flagellum, affecting flagellum length, median body behavior and mitotic MT dynamics [19]. Kinesin-13 in Leishmania major is involved in flagellar length control [7]. Trypanosoma brucei Kinesin-13 localizes to the flagellar tip but it seems that its role in regulating flagellar length is very modest [13]. And in the single cell green alga Chlamydomonas reinhardtii Kinesin-13 is involved in flagellum assembly/disassembly cycle [53,87].

Kinesin-8 family

Kinesin-8 proteins possess an N-terminal motor domain and use highly processive motility to reach the plus-end of the MT where they can influence MT dynamics [30,82,75]. Kinesin-8 has two MT interacting sites, one of them in the C-terminal of the protein, that allows the kinesin to keep attached to the MT and exhibit high processivity $[46,71,76,89]$. Thanks to this high processivity Kinesin-8 motors can accumulate at the end of the plus-side of the long MT creating a gradient of kinesin motors along the length of the MT that is more pronounced in longer MT fibers. In other words, greater numbers of motors can accumulate at the ends of longer MTs imparting more Kinesin- 8 activity at the ends of longer microtubules [82,83].

Members of this family can regulate MT dynamics by removing tubulin subunits or by blocking the addition of new tubulin. The mammalian Kinesin-8 Kif18A appears to suppress microtubule assembly at microtubule plus ends [23,71,72]. A pause in tubulin addition could allow GTP hydrolysis to reach the microtubule plus-end and increase catastrophes, but this mechanism has yet to be proven. Thus, these motors could induce MT depolymerization without actually removing tubulin subunits. S. cerevisiae Kip3p, in contrast, promotes the loss of tubulin subunits from the microtubule plus end [82,76]. To remove tubulin subunits, Kip3p accumulates on the plus-side of the MT and when new Kip3p arrives to the plus-end it pushes the previous molecules removing the motor and tubulin from the MT fiber [83]. In keeping with the controversial nature of Kinesin-8 activity, it is not clear if Klp5/6 from S. pombe has depolymerizing activity or not, as there are studies showing depolymerizing activity [24], and others showing the opposite [29]. While yeast do not have a Kinesin-13 member, Giardia and some other deep eukaryotes have Kinesin-13, so it is possible that yeast has lost Kinesin-13 during evolution. However they have members of the Kinesin-8 family, so they still have kinesins with depolymerizing function. It is possible that organisms with simpler genomes and fewer kinesins have combined the depolymerizing functions in just one family.

Evolution of kinesins

From our analysis we have reached similar conclusions to those in Wickstead. et al. There are organisms like Crithidia, Eimeria, Leishmania, Neospora, Trypanosoma or Naegleria that possess
kinesins from 10 different families (Fig. 2). This would support the idea that the LECA was fully equipped with a complete set of kinesins for different cellular functions. However there are some other organisms like Babesia (Kinesin-8 and 13), Enterocytozoon (Kinesin-8 and 14) and Theileria (Kinesin-8 and 13) that have just two kinesins in their genomes (also previously reported by [91]). Plasmodium has just three kinesins (Kinesin-5, 8 and 13). And there are several other organisms with just three or four kinesins (Fig. 2). Importantly, in all the cases of organisms with just two, three or four kinesins, all of them possess representatives from kinesin families implicated in controlling MT dynamics, i.e. Kinesin-4, 7, 8, 13 and 14. So it is possible that the earliest eukaryotic cells (not the LECA) were equipped principally with a set of kinesins in charge of controlling MT dynamics and that kinesins specific for transport functions did not appear until later in evolution through gene duplication and specialization. It is possible that the organisms with only 2-3 kinesins have lost some kinesins members during evolution and would, therefore, not exemplify the most ancient eukaryotes. However, it is also possible that organisms with more than four kinesins have gained kinesins during evolution. Most of these deep-rooted eukaryotes possessing a broad range of kinesins are pathogens, so it is possible that horizontal gene transfer occurred between the host and the pathogen, or even between different pathogens. There are some reported cases of gene transfer between eukaryotic pathogens, and between the pathogen and a host [2,3,39,1,5,65]. For these reasons, the protist that epitomizes this putative ancient eukaryote remains to be unambiguously identified.

One characteristic common to most of these deep-rooted eukaryotes is the existence of flagella, and also a cytoskeleton composed of unusually complex MT structures (e.g. Giardia, Trypanosoma, Plasmodium, etc) [93,18]. In some cases their life cycle depends strongly on the proper assembly and function of these flagella, for which they need to tightly control MT length and dynamics. It is difficult to separate the existence of a flagellum from transport. The IFT (IntraFlagellar Transport) is a system to build and maintain the eukaryotic flagellum that relies on the kinesins' transport activity. As the LECA is likely to have possessed a full $9+2$ flagellar apparatus, which would presumably require transport activity, it is probable that it had several kinesins in charge of the transport of cargo from the cytoplasm to the end of the flagellum [100]. The origin of the flagellum is not yet clear [12,100], but one hypothesis proposes an autogenous origin of the flagellum from an MTOC organizing the mitotic spindle [54]. C. merolae presents assembled MTs only during the formation of a mitotic spindle, suggesting that MTs first evolved to facilitate mitosis [35]. If the first eukaryotic cells with a flagellum did organize this structure from a mitotic spindle, it is possible that they were able to do it without the transport-kinesins required for IFT. For example, the pathogen Plasmodium does not have an IFT system and it is able to build a flagellum [8]. Moreover, the flagellar machinery is often co-opted to build the mitotic spindle during cell division in some of these deep-rooted eukaryotes.

It is possible that the very earliest eukaryotic cells, not the LECA, had just a minimum number of two or three kinesins in charge of MT dynamics to control mitotic spindle, cytoskeleton and an ancient flagellum. Other kinesins dedicated to transport may have appeared later in evolution as cells became larger and more specialized. More evolutionary cell biology research and more studies centering on these deep-rooted eukaryotes will be necessary to understand the nature and evolution of the kinesins controlling MT dynamics.

Acknowledgments

This work was supported by National Institutes of Health grant to L. Wordeman (GM69429).

REFERENCES

[1] U.C. Alsmark, T. Sicheritz-Ponten, P.G. Foster, R.P. Hirt, T.M. Embley, Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis, Methods Mol. Biol. 532 (2009) 489-500.
[2] J.O. Andersson, Lateral gene transfer in eukaryotes, Cell. Mol. Life Sci. 62 (2005) 1182-1197.
[3] J.O. Andersson, Horizontal gene transfer between microbial eukaryotes, Methods Mol. Biol. 532 (2009) 473-487.
[4] S.F. Bakhoum, S.L. Thompson, A.L. Manning, D.A. Compton, Genome stability is ensured by temporal control of kinetochoremicrotubule dynamics, Nat. Cell Biol. 11 (2009) 27-35.
[5] S.P. Kishore, J.W. Stiller, K.W. Deitsc, Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans, BMC Evol. Biol. 13 (2013) 37-48.
[6] P. Bieling, I.A. Telley, T. Surrey, A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps, Cell 142 (2010) 420-432.
[7] C. Blaineau, M. Tessier, P. Dubessay, L. Tasse, L. Crobu, M. Pagès, P. Bastien, A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum, Curr. Biol. 17 (2007) 778-782.
[8] L.J. Briggs, J.A. Davidge, B. Wickstead, M.L. Ginger, K. Gull, More than one way to build a flagellum: comparative genomics of parasitic protozoa, Curr. Biol. 14 (2004) R611-R612.
[9] H. Bringmann, G. Skiniotis, A. Spilker, S. Kandels-Lewis, I. Vernos, T. Surrey, A kinesin-like motor inhibits microtubule dynamic instability, Science 303 (2004) 1519-1522.
[10] I. Brust-Mascher, P. Sommi, D.K. Cheerambathur, J.M. Scholey, Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis, Mol. Biol. Cell 20 (2009) 1749-1762.
[11] S. Cai, C.B. O'Connell, A. Khodjakov, C.E. Walczak, Chromosome congression in the absence of kinetochore fibres, Nat. Cell Biol. 11 (2009) 832-838.
[12] Z. Carvalho-Santos, J. Azimzadeh, J.B. Pereira-Leal, M. Bettencourt-Dias, Tracing the origins of centrioles, cilia, and flagella, J. Cell Biol. 194 (2011) 165-175.
[13] K.Y. Chan, K. Ersfeld, The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei, Mol. Biochem. Parasitol. 174 (2010) 137-140.
[14] D. Cimini, B. Moree, J.C. Canman, E.D. Salmon, Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms, J. Cell Sci. 116 (2003) 4213-4225.
[15] J.R. Cooper, M. Wagenbach, C.L. Asbury, L. Wordeman, Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK, Nat. Struct. Mol. Biol. 17 (2010) 77-82.
[16] R.A. Cross, A. McAinsh, Prime movers: the mechanochemistry of mitotic kinesins, Nat. Rev. Mol. Cell Biol. 15 (2014) 257-271.
[17] W. Cui, L.R. Sproul, S.M. Gustafson, H.J.G. Matthies, S.P. Gilbert, R.S. Hawley, Drosophila Nod protein binds preferentially to the plus ends of microtubules and promotes microtubule polymerization in vitro, Mol. Biol. Cell 16 (2005) 5400-5409.
[18] S.C. Dawson, A.R. Paredez, Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists, Curr. Opin. Cell Biol. 25 (2013) 134-141.
[19] S.C. Dawson, M.S. Sagolla, J.J. Mancuso, D.J. Woessner, S.A. House, L. Fritz-Laylin, W.Z. Cande, Kinesin-13 regulates flagellar,
interphase, and mitotic microtubule dynamics in Giardia intestinalis, Eukaryot. Cell 6 (2007) 2354-2364.
[20] A. Desai, S. Verma, T.J. Mitchison, C.E. Walczak, Kin I kinesins are microtubule-destabilizing enzymes, Cell 96 (1999) 69-78.
[21] S.B. Domnitz, M. Wagenbach, J. Decarreau, L. Wordeman, MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment, J. Cell Biol. 197 (2012) 231-237.
[22] H. Drechsler, A.D. McAinsh, Exotic mitotic mechanisms, Open Biol. 2 (2012) 120140.
[23] Y. Du, C.A. English, R. Ohi, The kinesin-8 Kif18A dampens microtubule plus-end dynamics, Curr. Biol. 20 (2010) 374-380.
[24] M. Erent, D.R. Drummond, R.A. Cross, S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules, PloS One 7 (2012) e30738.
[25] N. Ertych, A. Stolz, A. Stenzinger, W. Weichert, S. Kaulfuß, P. Burfeind, A. Aigner, L. Wordeman, H. Bastians, Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells, Nat. Cell Biol. 16 (2014) 779-791.
[26] M.A. Garcia, N. Koonrugsa, T. Toda, Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A, Curr. Biol. 12 (2002) 610-621.
[27] G.J. Gorbsky, G.G. Borisy, Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase, J. Cell Biol. 109 (1989) 653-662.
[28] G.J. Gorbsky, P.J. Sammak, G.G. Borisy, Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends, J. Cell Biol. 104 (1987) 9-18.
[29] P.M. Grissom, T. Fiedler, E.L. Grishchuk, D. Nicastro, R.R. West, J.R. McIntosh, Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement, Mol. Biol. Cell 20 (2009) 963-972.
[30] M.L. Gupta, P. Carvalho, D.M. Roof, D. Pellman, Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle, Nat. Cell Biol. 8 (2006) 913-923.
[31] J. Helenius, G. Brouhard, Y. Kalaidzidis, S. Diez, J. Howard, The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends, Nature 441 (2006) 115-119.
[32] S.V. Holt, M.A.S. Vergnolle, D. Hussein, M.J. Wozniak, V.J. Allan, S.S. Taylor, Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint, J. Cell Sci. 118 (2005) 4889-4900.
[33] C.-K. Hu, M. Coughlin, C.M. Field, T.J. Mitchison, KIF4 regulates midzone length during cytokinesis, Curr. Biol. 21 (2011) 815-824.
[34] A.W. Hunter, M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman, J. Howard, The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends, Mol. Cell 11 (2003) 445-457.
[35] Y. Imoto, Y. Yoshida, F. Yagisawa, H. Kuroiwa, T. Kuroiwa, The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations, J. Electron Microsc 60 (2011) S117-S136.
[36] L.C. Kapitein, E.J.G. Peterman, B.H. Kwok, J.H. Kim, T.M. Kapoor, C.F. Schmidt, The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks, Nature 435 (2005) 114-118.
[37] T.M. Kapoor, M.A. Lampson, P. Hergert, L. Cameron, D. Cimini, E.D. Salmon, B.F. McEwen, A. Khodjakov, Chromosomes can congress to the metaphase plate before biorientation, Science 311 (2006) 388-391.
[38] A.S. Kashina, G.C. Rogers, J.M. Scholey, The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation, Biochim. Biophys. Acta: Mol. Cell Res. 1357 (1997) 257-271.
[39] P.J. Keeling, J.D. Palmer, Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet. 9 (2008) 605-618.
[40] S.L. Kline-Smith, A. Khodjakov, P. Hergert, C.E. Walczak, Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments, Mol. Biol. Cell 15 (2004) 1146-1159.
[41] S.L. Kline-Smith, C.E. Walczak, The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells, Mol. Biol. Cell 13 (2002) 2718-2731.
[42] C.J. Lawrence, et al., A standardized kinesin nomenclature, J. Cell Biol. 167 (2004) 19-22.
[43] K.-Y. Lee, T. Davies, M. Mishima, Cytokinesis microtubule organisers at a glance, J. Cell Sci. 125 (2012) 3495-3500.
[44] T. Maney, A.W. Hunter, M. Wagenbach, L. Wordeman, Mitotic centromere-associated kinesin is important for anaphase chromosome segregation, J. Cell Biol. 142 (1998) 787-801.
[45] M.I. Mayr, S. Hümmer, J. Bormann, T. Grüner, S. Adio, G. Woehlke, T.U. Mayer, The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression, Curr. Biol. 17 (2007) 488-498.
[46] M.I. Mayr, M. Storch, J. Howard, T.U. Mayer, A non-motor microtubule binding site is essential for the high processivity and mitotic function of kinesin-8 Kif18A, PloS One 6 (2011) e27471.
[47] H. Miki, Y. Okada, N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol. 15 (2005) 467-476.
[48] T. Mitchison, M. Kirschner, Dynamic instability of microtubule growth, Nature 312 (1984) 237-242.
[49] V. Mountain, C. Simerly, L. Howard, A. Ando, G. Schatten, D.A. Compton, The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle, J. Cell Biol. 147 (1999) 351-366.
[50] Y. Noda, R. Sato-Yoshitake, S. Kondo, M. Nangaku, N. Hirokawa, KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B, J. Cell Biol. 129 (1995) 157-167.
[51] R. Ohi, K. Burbank, Q. Liu, T.J. Mitchison, Nonredundant functions of Kinesin-13s during meiotic spindle assembly, Curr. Biol. 17 (2007) 953-959.
[52] S. Oh, H. Hahn, T.A. Torrey, H. Shin, W. Choi, Y.M. Lee, H.C. Morse, W. Kim, Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein, Biochim. Biophys. Acta 1493 (2000) 219-224.
[53] T. Piao, M. Luo, L. Wang, Y. Guo, D. Li, P. Li, W.J. Snell, J. Pan, A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas, Proc. Natl. Acad. Sci. USA 106 (2009) 4713-4718.
[54] J. Pickett-Heaps, The evolution of mitosis and the eukaryotic condition, Biosystems 6 (1974) 37-48.
[55] K.E. Rankin, L. Wordeman, Long astral microtubules uncouple mitotic spindles from the cytokinetic furrow, J. Cell Biol. 190 (2010) 35-43.
[56] T.A. Richards, T. Cavalier-Smith, Myosin domain evolution and the primary divergence of eukaryotes, Nature 436 (2005) 1113-1118.
[57] C.L. Rieder, E.A. Davison, L.C. Jensen, L. Cassimeris, E.D. Salmon, Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle, J. Cell Biol. 103 (1986) 581-591.
[58] G.C. Rogers, S.L. Rogers, T.A. Schwimmer, S.C. Ems-McClung, C.E. Walczak, R.D. Vale, J.M. Scholey, D.J. Sharp, Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase, Nature 427 (2004) 364-370.
[59] J. Roostalu, T. Surrey, The multiple talents of kinesin-8, Nat. Cell Biol. 15 (2013) 889-891.
[60] K. Samejima, et al., Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase II α, J. Cell Biol. 199 (2012) 755-770.
[61] H.S. Sardar, V.G. Luczak, M.M. Lopez, B.C. Lister, S.P. Gilbert, Mitotic kinesin CENP-E promotes microtubule plus-end elongation, Curr. Biol. 20 (2010) 1648-1653.
[62] W. Saunders, D. Hornack, V. Lengyel, C. Deng, The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules, J. Cell Biol. 137 (1997) 417-431.
[63] W.M. Saxton, D.L. Stemple, R.J. Leslie, E.D. Salmon, M. Zavortink, J.R. McIntosh, Tubulin dynamics in cultured mammalian cells, J. Cell Biol. 99 (1984) 2175-2186.
[64] B.T. Schaar, G.K. Chan, P. Maddox, E.D. Salmon, T.J. Yen, CENP-E function at kinetochores is essential for chromosome alignment, J. Cell Biol. 139 (1997) 1373-1382.
[65] M. Selman, J.-F. Pombert, L. Solter, L. Farinelli, L.M. Weiss, P. Keeling, N. Corradi, Acquisition of an animal gene by microsporidian intracellular parasites, Curr. Biol. 21 (2011) R576-R577.
[66] E. Shelden, P. Wadsworth, Microinjection of biotin-tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to-pole motion, J. Cell Biol. 116 (1992) 1409-1420.
[67] A. Slangy, H.A. Lane, P. d' Hérin, M. Harper, M. Kress, E.A. Niggt, Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo, Cell 83 (1995) 1159-1169.
[68] L.R. Sproul, D.J. Anderson, A.T. Mackey, W.S. Saunders, S.P. Gilbert, Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends, Curr. Biol. 15 (2005) 1420-1427.
[69] A.F. Straight, J.W. Sedat, A.W. Murray, Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast, J. Cell Biol. 143 (1998) 687-694.
[70] J. Stumpff, G. von Dassow, M. Wagenbach, C. Asbury, L. Wordeman, The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment, Dev. Cell 14 (2008) 252-262.
[71] J. Stumpff, Y. Du, C.A. English, Z. Maliga, M. Wagenbach, C.L. Asbury, L. Wordeman, R. Ohi, A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A, Mol. Cell 43 (2011) 764-775.
[72] J. Stumpff, M. Wagenbach, A. Franck, C.L. Asbury, L. Wordeman, Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension, Dev. Cell 22 (2012) 1017-1029.
[73] E.G. Sturgill, R. Ohi, Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate, Curr. Biol. 23 (2013) 1280-1290.
[74] X. Su, H. Arellano-Santoyo, D. Portran, J. Gaillard, M. Vantard, M. Thery, D. Pellman, Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control, Nat. Cell Biol. 15 (2013) 948-957.
[75] X. Su, R. Ohi, D. Pellman, Move in for the kill: motile microtubule regulators, Trends Cell Biol. 22 (2012) 567-575.
[76] X. Su, W. Qiu, M.L. Gupta, J.B. Pereira-Leal, S.L. Reck-Peterson, D. Pellman, Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8, Mol. Cell 43 (2011) 751-763.
[77] M.E. Tanenbaum, L. Macůrek, A. Janssen, E.F. Geers, M. AlvarezFernández, R.H. Medema, Kif15 cooperates with Eg5 to promote bipolar spindle assembly, Curr. Biol. 19 (2009) 1703-1711.
[78] R. Uehara, Y. Tsukada, T. Kamasaki, I. Poser, K. Yoda, D.W. Gerlich, G. Goshima, Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase, J. Cell Biol. 202 (2013) 623-636.
[79] B. van der Vaart, A. Akhmanova, A. Straube, Regulation of microtubule dynamic instability, Biochem. Soc. Trans. 37 (2009) 1007.
[80] R.D. Vale, T. Funatsu, D.W. Pierce, L. Romberg, Y. Harada, T. Yanagida, Direct observation of single kinesin molecules moving along microtubules, Nature 380 (1996) 451-453.
[81] R.D. Vale, T.S. Reese, M.P. Sheetz, Identification of a novel forcegenerating protein, kinesin, involved in microtubule-based motility, Cell 42 (1985) 39-50.
[82] V. Varga, J. Helenius, K. Tanaka, A.A. Hyman, T.U. Tanaka, J. Howard, Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner, Nat. Cell Biol. 8 (2006) 957-962.
[83] V. Varga, C. Leduc, V. Bormuth, S. Diez, J. Howard, Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization, Cell 138 (2009) 1174-1183.
[84] C.E. Walczak, The Kin I kinesins are microtubule end-stimulated ATPases, Mol. Cell 11 (2003) 286-288.
[85] C.E. Walczak, T.J. Mitchison, A. Desai, XKCM1: a Xenopus kinesinrelated protein that regulates microtubule dynamics during mitotic spindle assembly, Cell 84 (1996) 37-47.
[86] C. Wandke, et al., Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis, J. Cell Biol. 198 (2012) 847-863.
[87] L. Wang, T. Piao, M. Cao, T. Qin, L. Huang, H. Deng, T. Mao, J. Pan, Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13, J. Cell Sci. 126 (2013) 1531-1540.
[88] M.M. Wargacki, J.C. Tay, E.G. Muller, C.L. Asbury, T.N. Davis, Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase, Cell Cycle 9 (2010) 2581-2588.
[89] L.N. Weaver, S.C. Ems-McClung, J.R. Stout, C. LeBlanc, S.L. Shaw, M.K. Gardner, C.E. Walczak, Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation, Curr. Biol. 21 (2011) 1500-1506.
[90] R.R. West, T. Malmstrom, J.R. McIntosh, Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis, J. Cell Sci. 115 (2002) 931-940.
[91] B. Wickstead, K. Gull, A "Holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions, Mol. Biol. Cell 17 (2006) 1734-1743.
[92] B. Wickstead, K. Gull, Dyneins across eukaryotes: a comparative genomic analysis, Traffic 8 (2007) 1708-1721.
[93] B. Wickstead, K. Gull, The evolution of the cytoskeleton, J. Cell Biol. 194 (2011) 513-525.
[94] B. Wickstead, K. Gull, T.A. Richards, Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton, BMC Evol. Biol. 10 (2010) 110.
[95] J.D. Wilbur, R. Heald, Mitotic spindle scaling during Xenopus development by kif2a and importin α, eLife 2 (2013) e00290.
[96] K.W. Wood, R. Sakowicz, L.S. Goldstein, D.W. Cleveland, CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment, Cell 91 (1997) 357-366.
[97] L. Wordeman, T.J. Mitchison, Identification and partial characterization of mitotic centromere-associated kinesin, a kinesinrelated protein that associates with centromeres during mitosis, J. Cell Biol. 128 (1995) 95-104.
[98] L. Wordeman, M. Wagenbach, G. von Dassow, MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover, J. Cell Biol. 179 (2007) 869-879.
[99] A. Yildiz, M. Tomishige, R.D. Vale, P.R. Selvin, Kinesin walks hand-over-hand, Science 303 (2004) 676-678.
[100] N. Yubuki, B.S. Leander, Evolution of microtubule organizing centers across the tree of eukaryotes, Plant J. Cell Mol. Biol. 75 (2013) 230-244.
[101] Y. Zhai, P.J. Kronebusch, G.G. Borisy, Kinetochore microtubule dynamics and the metaphase-anaphase transition, J. Cell Biol. 131 (1995) 721-734.
[102] C. Zhu, J. Zhao, M. Bibikova, J.D. Leverson, E. Bossy-Wetzel, J.-B. Fan, R.T. Abraham, W. Jiang, Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference, Mol. Biol. Cell 16 (2005) 3187-3199.

[^0]: *Corresponding author.
 E-mail addresses: jjvr@uw.edu (J.J. Vicente), worde@uw.edu (L. Wordeman).

