Convergence spaces and diagonal conditions

D.C. Kent a,*, G.D. Richardson b

a Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164-3113, USA
b Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Received 28 April 1995; revised 15 May 1995

Abstract

Certain diagonal axioms due to Kowalsky, Cook and Fischer are studied and compared.

Keywords: Convergence space; Regular convergence space; Compression operator; Diagonal axiom; Initial property

AMS classification: 54A20; 54D10

This paper is dedicated to the memory of our friend and colleague, Václav Koutník

Introduction

In 1954, Kowalsky [4] introduced a diagonal condition (that we call K) for convergence spaces such that any convergence space satisfying K has a pretopological modification which is topological. In 1967, Cook and Fischer [2] defined a stronger diagonal condition (that we call F) which, as we show herein, is necessary and sufficient for a convergence structure to be a topology. Furthermore a dual version of F (which we call DF) is necessary and sufficient for a convergence space to be regular, a fact established in [1] and [2]. The dual of Kowalsky's axiom, DK, defines a weaker form of regularity which, to our knowledge, has not been previously studied, and for which we obtain a relatively simple characterization.

All four of the diagonal axioms cited above involve in their definitions a filter selection function σ. If the values of σ are restricted to being ultrafilters, we obtain what appear to be weaker axioms K*, F*, DK*, and DF*. However, we show that F is equivalent to F*, DF is equivalent to DF*, and DK is equivalent to DK*. Only K and K* are distinct, as we show by an example.

* Corresponding author
1. Preliminaries

Let X be a set, $\mathcal{F}(X)$ the set of all (proper) filters on X, $\mathcal{U}(X)$ the set of all ultrafilters on X, and 2^X the set of all subsets of X. For $x \in X$, let \hat{x} be the fixed ultrafilter generated by $\{x\}$. For $\mathcal{F}, \mathcal{G} \in \mathcal{F}(X)$, we write $\mathcal{F} \leq \mathcal{G}$ iff $\mathcal{F} \subseteq \mathcal{G}$.

Definition 1.1. A convergence structure q on a set X is a function $q : \mathcal{F}(X) \rightarrow 2^X$ satisfying:

1. $x \in q(\hat{x})$, for all $x \in X$;
2. $\mathcal{F} \leq \mathcal{G} \Rightarrow q(\mathcal{F}) \subseteq q(\mathcal{G})$;
3. $x \in q(\mathcal{F}) \Rightarrow x \in q(\mathcal{F} \cap \hat{x})$.

The statement $x \in q(\mathcal{F})$ means "\mathcal{F} q-converges to x", which will usually be written "$\mathcal{F} \xrightarrow{q} x$". If q is a convergence structure on X, then (X, q) is a convergence space.

Let $\mathcal{C}(X)$ be the set of all convergence structures on X, partially ordered by: $p \leq q$ iff $q(\mathcal{F}) \subseteq p(\mathcal{F})$, for all $\mathcal{F} \in \mathcal{F}(X)$. Relative to this order, $\mathcal{C}(X)$ is a complete lattice whose largest member is the discrete topology on X and whose least member is the indiscrete topology.

With each convergence space (X, q), there is an associated closure operator cl_q and an associated interior operator I_q; these are defined for each $A \in 2^X$ as follows:

$\text{cl}_q A = \{ x \in X : \exists \mathcal{F} \xrightarrow{q} x \text{ such that } A \in \mathcal{F} \}$,

$\text{I}_q A = \{ x \in A : \mathcal{F} \xrightarrow{q} x \Rightarrow A \in \mathcal{F} \}$.

If \mathcal{F} is a filter on X, $\text{cl}_q \mathcal{F}$ denotes the filter generated by $\{\text{cl}_q F : F \in \mathcal{F}\}$. At each $x \in X$, let $\mathcal{V}_q(x) = \{ V \subseteq X : x \in \text{I}_q V \}$; $\mathcal{V}_q(x)$ is called the q-neighborhood filter at x. It can also be described as the intersection of all filters which q-converge to x.

We consider three additional convergence axioms:

1. $q(\mathcal{F} \cap \mathcal{G}) = q(\mathcal{F}) \cap q(\mathcal{G})$, for all $\mathcal{F}, \mathcal{G} \in \mathcal{F}(X)$;
2. for each $\mathcal{F} \in \mathcal{F}(X), x \in q(\mathcal{F})$ iff $x \in q(\mathcal{G})$, for every ultrafilter $\mathcal{G} \geq \mathcal{F}$;
3. $x \in q(\mathcal{V}_q(x))$, for all $x \in X$.

A convergence structure which satisfies (C4) (respectively (C5), (C6)) is called a limit structure (respectively pseudo-topology, pretopology). Note that pretopology \Rightarrow pseudo-topology \Rightarrow limit structure \Rightarrow convergence structure. A pretopology q is a topology if each neighborhood filter $\mathcal{V}_q(x)$ has a filter base of sets which are q-open in the sense the set equals its own interior. It is well known that for any convergence structure q on X, there is a finest pretopology πq coarser than q; πq is called the pretopological modification of q.

2. The diagonal axioms

Let (X, q) be a convergence space, and let J be any set. If $\mathcal{F} \in \mathcal{F}(J)$ and $\sigma : J \rightarrow \mathcal{F}(X)$ is any "selection function", we define $\kappa \sigma \mathcal{F}$ to be the filter $\bigcup_{\mathcal{F} \in \mathcal{F}} \bigcap_{x \in \mathcal{F}} \sigma(x)$ in $\mathcal{F}(X)$;
K is sometimes called the "compression operator" for \(\sigma \).

We next define four diagonal axioms.

K: Let \(\sigma : X \to F(X) \) be any function such that \(\sigma(y) \xrightarrow{q} y \), for all \(y \in X \). If \(F \xrightarrow{q} x \), then \(\kappa \sigma F \xrightarrow{q} x \).

K*: Let \(\sigma : X \to U(X) \) be any function such that \(\sigma(y) \xrightarrow{q} y \), for all \(y \in X \). If \(F \xrightarrow{q} x \), then \(\kappa \sigma F \xrightarrow{q} x \).

F: Let \(J \) be any set, let \(\psi : J \to X \), and let \(\sigma : J \to F(X) \) have the property that \(\sigma(y) \xrightarrow{q} \psi(y) \), for all \(y \in J \). If \(F \in F(J) \) is such that \(\psi(F) \xrightarrow{q} x \), then \(\kappa \sigma F \xrightarrow{q} x \).

F*: Let \(J \) be any set, let \(\psi : J \to X \), and let \(\sigma : J \to U(X) \) have the property that \(\sigma(y) \xrightarrow{q} \psi(y) \), for all \(y \in J \). If \(F \in F(J) \) is such that \(\psi(F) \xrightarrow{q} x \), then \(\kappa \sigma F \xrightarrow{q} x \).

The axioms \(K \) and \(F \) are those cited in the Introduction; \(K^* \) and \(F^* \) are slightly weaker versions of \(K \) and \(F \), respectively, for which the selection function \(\sigma \) is restricted to selecting ultrafilters. Note also that \(K \) is a special case of \(F \), where \(J = X \) and \(\psi \) is the identity map on \(X \); likewise, \(K^* \) is a special case of \(F^* \). These observations are summarized in the next proposition.

Proposition 2.1. For any convergence space \((X, q)\), \(K \Rightarrow K^* \), \(F \Rightarrow F^* \Rightarrow K^* \), and \(F \Rightarrow K \).

In [7], Kowalsky showed that if a convergence space \((X, q)\) satisfies \(K \), then \(\pi q \) is a topology. The next proposition slightly improves this result.

Proposition 2.2. If a convergence space \((X, q)\) satisfies \(K^* \), then \(\pi q \) is a topology.

Proof. It suffices to show that a convergence structure satisfying \(K^* \) has the property \(\text{cl}_q A \subseteq \text{cl}_q A \) for arbitrary \(A \in 2^X \). Let \(F \) be an ultrafilter on \(X \) containing \(\text{cl}_q A \) such that \(F \xrightarrow{q} x \). For each \(y \in \text{cl}_q A \), choose an ultrafilter \(H_y \xrightarrow{q} y \) such that \(A \in H_y \). We define \(\sigma : X \to U(X) \) as follows:

\[
\sigma(y) = \begin{cases} y, & y \notin \text{cl}_q A, \\ H_y, & y \in \text{cl}_q A. \end{cases}
\]

Then \(\kappa \sigma F \xrightarrow{q} x \), and since \(\text{cl}_q A \in F \) and \(A \in H_y \) for all \(y \in \text{cl}_q A \), \(A \in \kappa \sigma F \). Thus \(x \in \text{cl}_q A \). \(\square \)

Fischer showed (in unpublished notes) that a pseudo-topology satisfying \(F \) is a topology. The next proposition extends this result.

Proposition 2.3. If \((X, q)\) is a convergence space satisfying \(F^* \), then \(q \) is a topology.

Proof. Let \(x \in X \), and let \(\{H_\alpha : \alpha \in J\} \) be the set of all ultrafilters \(q \)-converging to \(x \). Define \(\psi : J \to X \) by \(\psi(\alpha) = x \), for all \(\alpha \in J \), and let \(\sigma(\alpha) = H_\alpha \), for all \(\alpha \in J \). Let \(F \) be the filter \(\{J\} \). Since \(\psi(F) = x \xrightarrow{q} x \), \(\kappa \sigma F \xrightarrow{q} x \), by \(F^* \). However

\[
\bigcap \{\sigma(y) : y \in J\} = \bigcap \{H_\alpha : \alpha \in J\} = \nu_q(x) \xrightarrow{q} x.
\]
Thus \(q \) is a pretopology. By Propositions 2.1 and 2.2, \(q \) is also a topology. \(\square \)

It is well known that a topological space satisfies Condition \(F \). Thus we have the following corollaries.

Corollary 2.4. For a convergence space \((X, q) \), the following are equivalent. (1) \(q \) is a topology; (2) \(q \) satisfies \(F \); (3) \(q \) satisfies \(F^* \).

Corollary 2.5. For a pretopological space \((X, q) \), the following are equivalent. (1) \(q \) is a topology; (2) \(q \) satisfies \(K \); (3) \(q \) satisfies \(K^* \); (4) \(q \) satisfies \(F \); (5) \(q \) satisfies \(F^* \).

Proposition 2.6. Let \((X, q) \) be a convergence space.

(a) If \((X, q) \) satisfies \(K \), then \(q \) is a limit structure.

(b) If \((X, q) \) satisfies \(K^* \), then a finite intersection of ultrafilters \(q \)-converging to \(x \) must also \(q \)-converge to \(x \).

Proof. The proofs of (a) and (b) are essentially the same, so we prove only (a). Let \(F \) and \(G \) \(q \)-converge to \(x \) and assume \(K \). Define

\[
\sigma(y) = \begin{cases}
 y, & y \neq x, \\
 G \cap \hat{x}, & y = x.
\end{cases}
\]

For \(F \in F \), \(\bigcap \{ \sigma(y): y \in F \cup \{x\} \} = F \cap G \cap \hat{x} \), where \(F \) denotes the filter of oversets of \(F \). Thus \(\kappa \sigma(F \cap \hat{x}) = F \cap G \cap \hat{x} \), which \(q \)-converges to \(x \) by \(K \). \(\square \)

The diagonal property \(F \) is obviously an initial property, since it is equivalent to the property of being topological. The next proposition gives a partial result in this direction for the properties \(K \) and \(K^* \).

Proposition 2.7. Let \((X, q) \) be a convergence space, equipped with the initial convergence structure induced by a family \(\{(Y_\alpha, p_\alpha): \alpha \in A\} \) of spaces and \(\{f_\alpha: \alpha \in A\} \), where each \(f_\alpha: X \to Y_\alpha \) is injective. Then if each \((Y_\alpha, p_\alpha) \) satisfies condition \(K \) (or \(K^* \)), the same is true of \((X, q) \).

Proof. We prove the result only for \(K \); the proof for \(K^* \) is essentially the same. Let \(F \xrightarrow{q} x \) and let \(\sigma: X \to F(X) \) be any function such that \(\sigma(y) \xrightarrow{q} y \), for all \(y \in X \). We must verify that \(\kappa \sigma F \xrightarrow{q} x \). Let \(\alpha \in A \) be fixed, and let \(\sigma_\alpha: Y_\alpha \to F(Y_\alpha) \) be defined as follows: \(\sigma_\alpha(y) = \hat{y} \) if \(y \in Y_\alpha - f_\alpha(X) \), \(\sigma_\alpha(y) = f_\alpha(\sigma(f_\alpha^{-1}(y))) \) if \(y \in f_\alpha(X) \). One easily verifies that \(f_\alpha(\kappa \sigma F) \geq \kappa \sigma_\alpha f_\alpha(F) \). The latter filter \(p_\alpha \)-converges to \(f_\alpha(x) \) by Condition \(K \), and consequently \(f_\alpha(\kappa \sigma F) \xrightarrow{p_\alpha} f_\alpha(x) \). This holds for all \(\alpha \in A \), and so \(\kappa \sigma F \xrightarrow{q} x \). \(\square \)

We conclude this section with two examples. The first is a limit space which satisfies \(K \) but fails to be pretopological, showing that \(K \) does not imply \(F \). Furthermore, we define
a set X and a surjective function $f : X \to Y$ such that there is no coarsest convergence structure q on X satisfying K such that $f : (X, q) \to (Y, p)$ is continuous. This shows that the assumption of Proposition 2.7 that the f_{α}'s be injective cannot be dismissed. In other words, unlike F, K is not an initial property.

Example 2.8. Let Y be an infinite set, and choose $a \in Y$. Let $\{F_n: n \in \mathbb{N}\}$ be a set of distinct, free ultrafilters on Y, and let $G_n = F_n \cap \mathfrak{a}$, for all $n \in \mathbb{N}$. We define p to be the finest limit structure on Y such that each G_n p-converges to a; thus p is not pretopological since $G = \bigcap\{G_n: n \in \mathbb{N}\}$ does not p-converge.

To check that (Y, p) satisfies K, assume $\sigma : Y \to F(Y)$ is such that $\sigma(y) \xrightarrow{p} y$, for all $y \in Y$, and let $\mathcal{H} \xrightarrow{p} x$. If $x \neq a$, then $\mathcal{H} = \mathfrak{x}$ and $\kappa \sigma \mathcal{H} = \sigma(x) = \mathfrak{x}$. If $x = a$, then $\mathcal{H} \supseteq \bigcap\{G_n: i = 1, \ldots, k\}$, and one easily checks that $\kappa \sigma \mathcal{H} \supseteq \mathcal{H} \cap \sigma(a)$, which p-converges to a. However, since p is not pretopological, it follows by Proposition 2.3 that (Y, p) does not satisfy F.

Next, let $X_n = Y \times \{n\}$, and let $X = \bigcup\{X_n: n \in \mathbb{N}\}$. Let $f : X \to Y$ be defined by $f(y, n) = y$, for all $(y, n) \in X$. Let $x_n = (a, n)$, for all $n \in \mathbb{N}$, and let q_n be the finest limit structure on X such that $f^{-1}(G_k) \xrightarrow{q_n} x_n$, for all $k \in \mathbb{N}$. The argument of the preceding paragraph shows that q_n satisfies K, for all $n \in \mathbb{N}$. Also note that $f : (X, q_n) \to (Y, p)$ is continuous, for all $n \in \mathbb{N}$.

Finally, suppose there is a coarsest convergence structure q on X satisfying K such that $f : (X, q) \to (Y, p)$ is continuous. Obviously, $q \leq q_n$ for all n, and so $f^{-1}(G_n) \xrightarrow{q} x_n$, for all $n \in \mathbb{N}$. To see that q does not satisfy K, define $\sigma : X \to F(X)$ as follows:

$$
\sigma(z) = \begin{cases}
 f^{-1}(G_n), & \text{if } z = x_n \text{ for some } n \in \mathbb{N}, \\
 \mathfrak{x}, & \text{otherwise}.
\end{cases}
$$

Let $F = f^{-1}(G_1)$; then $F \xrightarrow{q} x_1$. Let $F = f^{-1}(G) \in F$, where $G \in G_1$. Since $x_n \in f^{-1}(G)$, for all $n \in \mathbb{N}$,

$$
K = \bigcap\{f^{-1}(G_n): n \in \mathbb{N}\} = \bigcap\{\sigma(z): z \in F\},
$$

and therefore $K \supseteq \kappa \sigma F$. If $\kappa \sigma F \xrightarrow{q} x_1$, then $f(K) = G \xrightarrow{p} a$, a contradiction. Thus $\kappa \sigma F$ fails to q-converge to x, and therefore q does not satisfy K.

The second example describes a convergence space which satisfies K^* but not K, showing that (unlike F and F^*) the axioms K and K^* are distinct.

Example 2.9. Let X be any infinite set, and let \mathcal{F} and \mathcal{G} be two distinct, free filters on X such that neither is a finite intersection of free ultrafilters. Fix $x_0 \in X$, and define q to be the finest convergence structure on X such that:

$\mathcal{H} \xrightarrow{q} x_0$ iff either there is a finite set of free ultrafilters $\mathcal{G}_1, \ldots, \mathcal{G}_n$, all finer than \mathcal{G}, such that $\mathcal{H} \supseteq \mathcal{F} \cap \mathcal{G}_i \cap \cdots \cap \mathcal{G}_n \cap \mathfrak{x}_0$, or else there is a finite set of free ultrafilters $\mathcal{F}_1, \ldots, \mathcal{F}_k$, all finer than \mathcal{F}, such that $\mathcal{H} \supseteq \mathcal{G} \cap \mathcal{F}_i \cap \cdots \cap \mathcal{F}_k \cap \mathfrak{x}_0$.
Note that if \(\sigma : X \to U(X) \) is such that \(\sigma(x) \nrightarrow x \) for all \(x \), then
\[
\kappa \sigma(\mathcal{F} \cap \mathcal{G}_1 \cap \cdots \cap \mathcal{G}_n) \supseteq \mathcal{F} \cap \mathcal{G}_1 \cap \cdots \cap \mathcal{G}_n \cap \mathcal{K},
\]
where \(\mathcal{K} \) is some free ultrafilter finer than \(\mathcal{G} \); a similar observation applies to \(\kappa \sigma(\mathcal{G} \cap \mathcal{F}_1 \cap \cdots \cap \mathcal{F}_k) \). Thus \(\mathcal{H} \nrightarrow x_0 \) implies \(\kappa \sigma \mathcal{H} \nrightarrow x_0 \), and it follows that \((X, \mathcal{Q}) \) satisfies \(\mathbf{K}^* \). But \((X, \mathcal{Q}) \) is not a limit space, so \((X, \mathcal{Q}) \) fails to satisfy \(\mathbf{K} \), by Proposition 2.6.

Finally, we remark that none of the diagonal properties are preserved under final structures, since every convergence space is the image of a topological space under a convergence quotient map.

3. The dual axioms

Corresponding to the axioms \(\mathbf{K} \) and \(\mathbf{F} \) for a convergence space \((X, \mathcal{Q}) \) are the following dual axioms.

DK: Let \(\sigma : X \to \mathcal{F}(X) \) be any function such that \(\sigma(y) \nrightarrow y \), for all \(y \in X \). If \(\kappa \sigma \mathcal{F} \nrightarrow x \), then \(\mathcal{F} \nrightarrow x \).

DF: Let \(J \) be any set, let \(\psi : J \to X \), and let \(\sigma : J \to \mathcal{F}(X) \) have the property that \(\sigma(y) \nrightarrow \psi(y) \), for all \(y \in J \). If \(\mathcal{F} \in \mathcal{F}(J) \) is such that \(\kappa \sigma \mathcal{F} \nrightarrow x \), then \(\psi(\mathcal{F}) \nrightarrow x \).

If \(\sigma \) is restricted to range in \(U(X) \) in each of the above axioms, we obtain the axioms \(\mathbf{DK}^* \) and \(\mathbf{DF}^* \), respectively.

A convergence space \((X, \mathcal{Q}) \) is regular if \(\mathcal{Cl}_\mathcal{Q} \mathcal{F} \nrightarrow x \) whenever \(\mathcal{F} \nrightarrow x \). If \(\mathcal{Q} \) and \(\mathcal{P} \) are convergence structures on the same set \(X \), we say that \((X, \mathcal{Q}) \) is \(\mathcal{P} \)-regular if \(\mathcal{Cl}_\mathcal{P} \mathcal{F} \nrightarrow x \) whenever \(\mathcal{F} \nrightarrow x \). This notion of \(\mathcal{P} \)-regularity was introduced by the authors in [3].

In [2], Cook and Fischer showed that \(\mathbf{DF} \) implies regularity, and in [1], Biesterfeldt showed that regularity implies \(\mathbf{DF} \). Furthermore, the proofs used to establish the equivalence of regularity and the condition \(\mathbf{DF} \) can be adapted to prove that regularity is equivalent to \(\mathbf{DF}^* \). Thus we obtain the following result.

Theorem 3.1. For a convergence space \((X, \mathcal{Q}) \), the following are equivalent.

1. \((X, \mathcal{Q}) \) is regular,
2. \((X, \mathcal{Q}) \) satisfies \(\mathbf{DF} \),
3. \((X, \mathcal{Q}) \) satisfies \(\mathbf{DF}^* \).

The conditions \(\mathbf{DK} \) and \(\mathbf{DK}^* \) are obviously weaker than \(\mathbf{DF} \), and consequently they define weaker versions of regularity, which we will call \(\mathbf{K} \)-regularity and \(\mathbf{K}^* \)-regularity, respectively. For the purpose of studying these new concepts, it will be convenient to introduce some new notation.

Given a convergence space \((X, \mathcal{Q}) \), let \(\Sigma \) denote the set of all selection functions \(\sigma : X \to \mathcal{F}(X) \) such that \(\sigma(y) \nrightarrow y \), for every \(y \in F \), and let \(\Sigma^* \) be the subset consisting of all \(\sigma \in \Sigma \) such that \(\sigma(y) \in U(X) \), for all \(y \in X \). If \(A \subseteq X \) and \(\sigma \in \Sigma \), let \(A^\sigma = \{ y \in X : A \in \sigma(y) \} \); note that \((A \cap B)^\sigma = A^\sigma \cap B^\sigma \). If \(\mathcal{F} \in \mathcal{F}(X) \) and \(F^\sigma \neq \emptyset \), for all \(F \in \mathcal{F} \), then \(\mathcal{F}^\sigma \) denotes the (proper) filter generated by \(\{ F^\sigma : F \in \mathcal{F} \} \); however,
may sometimes fail to be a proper filter. We omit the straightforward proof of the next lemma.

Lemma 3.2. Let \((X, \tau)\) be a convergence space, \(\mathcal{F} \in \mathcal{F}(X)\), and \(\sigma \in \Sigma\). Then:

1. \((\kappa \sigma \mathcal{F})^\sigma\) is a proper filter and \(\mathcal{F} \supseteq (\kappa \sigma \mathcal{F})^\sigma\).
2. If \(\mathcal{F}^\sigma\) is a proper filter, then \(\kappa \sigma (\mathcal{F})^\sigma \supseteq \mathcal{F}\).

Theorem 3.3. Let \((X, \tau)\) be a convergence space. Then \((X, \tau)\) is K-regular (respectively K*-regular) iff for each \(\sigma \in \Sigma\) (respectively \(\sigma \in \Sigma^*\)), \(\mathcal{F}^\sigma \nrightarrow x\) whenever \(\mathcal{F}^\sigma\) is a proper filter and \(\mathcal{F} \nrightarrow x\).

Proof. We give the proof only for K-regularity, the proof for K*-regularity being similar.

Assume the given condition, and let \(\sigma \in \Sigma\) and \(\kappa \sigma \mathcal{F} \nrightarrow x\). Then \((\kappa \sigma \mathcal{F})^\sigma \nrightarrow x\), and by Lemma 3.2, \(\mathcal{F} \supseteq (\kappa \sigma \mathcal{F})^\sigma\), which implies \(\mathcal{F} \nrightarrow x\), and so DK holds and \((X, \tau)\) is K-regular.

Conversely, suppose that \(\mathcal{F} \nrightarrow x\), \(\sigma \in \Sigma\), and \(\mathcal{F}^\sigma\) is proper filter. By Lemma 3.2, \(\kappa \sigma (\mathcal{F}^\sigma) \supseteq \mathcal{F}\), and hence \(\kappa \sigma (\mathcal{F}^\sigma) \nrightarrow x\). It follows by DK that \(\mathcal{F}^\sigma \nrightarrow x\), and so the given condition is satisfied. \(\Box\)

Theorem 3.4. For a convergence space \((X, \tau)\), the conditions DK and DK* are equivalent.

Proof. Let \((X, \tau)\) be K*-regular. Let \(\sigma \in \Sigma\) and define \(\sigma^*\) to be any member of \(\Sigma^*\) such that \(\sigma(y) \subseteq \sigma^*(y)\), for all \(y \in X\). Assume that \(\mathcal{F} \nrightarrow x\), and that \(\mathcal{F}^\sigma\) is a proper filter. If \(F \in \mathcal{F}\), then \(F^\sigma \subseteq F^{\sigma^*}\); thus \(\mathcal{F}^{\sigma^*} \subseteq \mathcal{F}^\sigma\). By Theorem 3.3, \(\mathcal{F}^{\sigma^*} \nrightarrow x\), and therefore \(\mathcal{F}^\sigma \nrightarrow x\). Thus \((X, \tau)\) is K-regular. The converse is clear. \(\Box\)

We next consider the relationship between K-regularity and p-regularity. A pretopology \(p\) on a set \(X\) will be called an ultrapretopology if, for each \(y \in X\), there is \(\mathcal{H}_y \in \mathcal{U}(X)\) such that \(\mathcal{V}_p(y) = \mathcal{H}_y \cap \bar{y}\).

Proposition 3.5. Let \((X, \tau)\) be a convergence space which is p-regular relative to every ultrapretopology \(p \supseteq \tau\). Then \((X, \tau)\) is K-regular.

Proof. By Theorem 3.4, it is sufficient to show that \((X, \tau)\) satisfies DK*. Let \(\sigma \in \Sigma^*\), and let \(p\) be the ultrapretopology defined by \(\mathcal{V}_p(y) = \sigma(y) \cap \bar{y}\), for all \(y \in X\). Let \(\mathcal{F} \in \mathcal{F}(X)\) be such that \(\kappa \sigma \mathcal{F} \nrightarrow x\). Given \(F \in \mathcal{F}\), choose \(A_y \in \sigma(y)\), for all \(y \in F\), so that \(A = \bigcup_{y \in F} A_y\) is a basic set in \(\kappa \sigma \mathcal{F}\). Note that \(F \subseteq \text{cl}_p A\), and thus \(\text{cl}_p(\kappa \sigma \mathcal{F}) \subseteq \mathcal{F}\). By p-regularity, \(\mathcal{F} \nrightarrow x\), and therefore DK* holds. \(\Box\)

Theorem 3.6. A topological space \((X, \tau)\) is K-regular iff it is p-regular for every ultrapretopology \(p \supseteq \tau\).

Proof. The proof in one direction follows by Proposition 3.5. For the converse argument, it suffices to show that if \((X, \tau)\) is K*-regular, then \((X, \tau)\) is p-regular for an arbitrary
ultrapretopology $p \geq q$. Let $x \in X$, and assume $\mathcal{V}_p(y) = \mathcal{H}_y \cap \check{y}$, where $\mathcal{H}_y \in U(X)$, and $\mathcal{H}_y \not\rightarrow y$, for all $y \in X$. Let $\mathcal{G} = \text{cl}_p \mathcal{V}_q(x)$. Let $\sigma(y) = \mathcal{H}_y$, for all $y \in X$. Using the fact that $\mathcal{V}_q(x)$ has a base of q-open sets, one easily verifies that $\kappa \sigma \mathcal{G} \geq \mathcal{V}_q(x)$, implying that $\kappa \sigma \mathcal{G} \not\rightarrow x$. Thus, by DK^*, $\text{cl}_p \mathcal{V}_q(x) \not\rightarrow x$, and therefore $\text{cl}_p \mathcal{V}_q(x) = \mathcal{V}_q(x)$. Since this holds for arbitrary $x \in X$, p-regularity is established. \(\square \)

It is easy to verify that K-regularity is an initial property relative to any family of injective maps; the proof is similar to that of Proposition 2.7. We conclude with a simple example to show that regularity and K-regularity are distinct notions.

Example 3.7. Let X be an infinite set, \mathcal{H} a free ultrafilter on X, and $a, b \in X$. Define the convergence structure q on X as follows:

- $\mathcal{F} \not\rightarrow a$ iff $\mathcal{F} \not\supseteq \mathcal{H} \cap \check{a}$,
- $\mathcal{F} \not\rightarrow b$ iff $\mathcal{F} \not\supseteq \mathcal{G} \cap \check{b}$, where \mathcal{G} is any free ultrafilter on X distinct from \mathcal{H},
- $\mathcal{F} \not\rightarrow x$, for $x \notin \{a, b\}$, iff $\mathcal{F} = \check{x}$.

Note that (X, q) is not regular, since $\mathcal{H} \not\rightarrow a$, $\check{b} \not\geq \text{cl}_q \mathcal{H}$, and \check{b} does not q-converge to a. However it is clear that (X, q) is p-regular for every ultrapretopology $p \geq q$, and consequently (X, q) is K-regular by Proposition 3.5.

References