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a b s t r a c t

Reaction systems are a formal model based on the regulation mechanisms of facilitation
and inhibition between biochemical reactions, which underlie the functioning of living
cells. The aim of this paper is to explore the expressive power of reaction systems as
a modeling framework, showing how their basic assumptions and properties can be
exploited to formalize computer science and biology oriented problems. In this view, we
first provide a reaction-based description of an iterative algorithm to solve the Tower of
Hanoi puzzle. Then, we show how the regulation of gene expression in the lac operon,
involved in the metabolism of lactose in Escherichia coli cells, can be formalized in terms
of reaction systems. Finally, we present a method to derive, given a reaction system with
n reactions, a functionally equivalent system with n′ ≤ n reactions using simplification
methods of boolean expressions. Some final remarks and directions for future research
conclude the paper.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last ten years the interaction between computer science and biology has been increasing in both directions. On the
one hand, bioinformatics and computational biology try to provide biology with appropriate tools to handle the huge mass
of data generated in the laboratories and to extract information and knowledge from them. On the other hand, biological
mechanisms and processes have given to computer scientists inspiration for innovative models of computation, such as
neural networks [1], evolutionary programming [2], molecular computing [3], cellular automata [4], membrane systems
[5], for the purpose of solving computationally difficult problems. But evenmore important is the increasing awareness that
biological processes have a computational nature and that we have to study them in terms of information processing, in
order to achieve a full comprehension of their functioning.

Biochemical reactions are the ‘‘primitive’’ information processing events inside living cells: they take place in huge
number and their complex interactions determine the correct or the anomalous functioning of the cell itself. Reaction
systems were introduced by Andrzej Ehrenfeucht and Grzegorz Rozenberg [6,7] as a formal framework based on the basic
axioms underlying the functioning of biochemical reactions, in order to investigate processes driven by the interactions
between such reactions in living cells; in particular, they assume as fundamental the regulation mechanisms of facilitation
and inhibition between reactions. Starting from the above seminal papers, the research on reaction systems is nowadays
growing in different directions, and gaining an ever increasing attention [8–13].

In reaction systems, two main assumptions are made concerning the chemistry of cells. The first consists in a ‘‘threshold
supply’’ of molecules, that is, either an element is present and then there is enough amount of it to let reactions occur, or
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an element is not present and then no reaction having this element within its set of reagents can take place. The second
assumption consists in the ‘‘no permanency’’ of elements, i.e., if an element is not sustained by any reaction, then it ceases
to exist. In other terms, these basic assumptions rely on a qualitative rather than quantitative description of the interaction
between reactions. In particular, reaction systems assume the absence of conflicts between the reactions that can take place
in a given state, which is determined by the set of chemical elements appearing in the system at that step. The basic scheme
of reaction systems can be incrementally extended, for instance by assigning specific measurement functions to the states,
in order to add quantitative parameters such as time values, molecular amounts or mass, etc. [14].

By modeling the interaction between individual reactions, this formalism allows one to investigate how the states of the
system change over (discrete) time steps. Since all reactions that can take place in the system are actually applied without
considering any possible concurrency on the consumption of elements, the evolution of a reaction system is regulated by a
core deterministic assumption, whereby the next state is univocally determined by the current state of the system. So doing,
a dynamic behavior of the reaction system is derivedby simply considering the cooperation of reactions through theirmutual
facilitation or inhibition. In this sense, reaction systems differ from other abstract formalisms of natural computing, since
they do not work in a well defined or structured environment, but rather they create their own environment of interactive
processes.

In this work, we concentrate on the basic assumptions and properties of reaction systems and we clearly show how
they can be exploited to formalize computer science and biology oriented problems, therefore proving their expressive
power and flexibility for a broad range of applications. We start by briefly recalling in Section 2 the formal definitions
of reactions and reaction systems. In Section 3 we use reaction systems as a programming environment in game theory,
giving a reaction-based program to solve the Tower of Hanoi puzzle [15]. The no permanency property of elements and
the proper use of inhibitors are essential for the correct functioning of this program; in particular, these properties will be
exploited to simulate the execution of nontrivial computational steps and to ensure that only legal moves of the puzzle
are carried out from time to time. In Section 4 the formalism of reaction systems is used to model the regulation of gene
expression in the lac operon [16], a genetic regulatory network involved in themetabolism of lactose in Escherichia coli cells.
In spite of the complex mechanisms that control this metabolic pathway, we will propose an original description of the lac
operon with a reaction system consisting of a few reactions and elements, defined by exploiting only the basic properties of
reaction systems. Then, in Section 5 we investigate the relationships between reaction systems and boolean functions, that
were first studied in [6], where Ehrenfeucht and Rozenberg show how to translate boolean vector functions into reaction
systems and vice versa. Here, we will take a step forward, showing how to derive, given a reaction system with n reactions,
a functionally equivalent system with n′ ≤ n reactions using simplification methods for boolean expressions [17]. This
method might be useful for the minimization of large reaction systems, for instance those built up with the bottom-up
modularity principle [6], a method based on set-theoretic union for the construction of complex reaction systems starting
from elementary component systems. Finally, we provide a comprehensive discussion of the capabilities of reaction systems
and address some topics for future research.

Thework presented hereby is the result of some investigations on reaction systems that have arisen after the short course
entitled ‘‘A formal framework for processes inspired by biochemistry’’, held by Grzegorz Rozenberg inMilano in April, 2011.

2. Basic notions on reaction systems

In this section we recall the basic notions and notation of reaction systems that will be used in the following sections.
We refer to [6,7,11,14] for a complete overview on reaction systems.

A reaction system is an ordered pair A = (S, A), where S is a finite set of elements, called entities, and A is a finite set of
reactions in S. The set S is called the background (set) of A; its elements represent the chemical species (e.g., atoms, ions,
molecules) in an environment where the current entities change over time.

A reaction in S is an ordered triplet a = (Ra, Ia, Pa) of nonempty finite sets, such that Ra, Ia, Pa ⊆ S and Ra ∩ Ia = ∅. The
sets Ra, Ia and Pa are called, respectively, the reactant set, the inhibitor set1 and the product set of a. Given a set A of reactions,
we denote RA =


a∈A Ra, IA =


a∈A Ia, PA =


a∈A Pa.

For a reaction a and a finite set T ⊆ S, we say that a is enabled by T if Ra ⊆ T and Ia ∩ T = ∅; otherwise, a is not enabled
by T . In other words, a reaction a is enabled by a set T if T separates the set of reactants Ra from the set of inhibitors Ia of a.
If a is enabled by T , then the result of a on T is a function resa : 2S

→ 2S that maps the set T over the set of products of a,
that is, resa(T ) = Pa. If a is not enabled by T , then resa(T ) = ∅. Stated otherwise, the map resa(T ) describes how reaction a
contributes to the change of the current state T of the reaction system A: if a is enabled by T , the next state of A will change
according to Pa, otherwise a contributes nothing to the next state. Similarly, for a set of reactions A and a set T , we say that A
is enabled on T if each a ∈ A is enabled by T , that is, if T separates RA from IA; if this holds, we denote resA(T ) =


a∈A resa(T )

the result of A on T . Finally, given a reaction systemA, the result ofA on T , denoted resA(T ), is defined by resA(T ) = resA(T ).
When applying a set of reactions in a given state T , there is no notion of conflict in the interaction of the reactions: we

assume that either an element s ∈ S is present in T and then there is enough ‘‘amount’’ of s to enable every reaction in which

1 In what follows, when we are not interested in formally expressing the nature of specific inhibitor elements that occur in the set Ia of some reaction a,
we will simply denote that reaction by the triplet (Ra, {. . .}, Pa), where {. . .} stands for some ‘‘dummy inhibitor’’.
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s appears as a reagent, or s is not present in T and then no reaction having this element within its set of reagents is enabled
by T . Stated otherwise, in the basic setup of reaction systems we rely on a ‘‘threshold supply’’ of elements. Moreover, the
notion of counting elements is not considered in reaction systems: this theoretical framework gives a qualitative rather than
a quantitative representation of chemical systems.

Another important assumption of reaction systems is that there is no permanency of elements: if an element is not a
reactant for any enabled reaction, then it ceases to exist and will not appear in the next state of the system. Therefore, the
only way to maintain an element in the system is to sustain its presence by including it in the product set of some reaction.
Formally, given a reaction a ∈ A and an element s ∈ S such that s /∈ Pa and s ∈ T\Ra, the element s will vanish unless it is
produced by some other reaction in A that is enabled by T (that is, there exists a′ ∈ A such that s ∈ Pa′ and a′ is enabled by T ).

Given a reaction system A, we can define its dynamic behavior through the notion of interactive process. Informally, this
is a sequence of states, where each state is a subset of S defined as the union of two sets: the result of transforming the
previous state by the reactions in A, and a context set which can be used to represent an ‘‘input’’ of elements of S from
the environment. In other terms, the context sets allow to formalize the notion of open (dynamic) systems. Formally, an
interactive process is a pair π = (γ , δ) of finite sequences such that, for some n ≥ 1, γ = C0, . . . , Cn, δ = D0, . . . ,Dn,
where C0, . . . , Cn,D0, . . . ,Dn ⊆ S, D0 = ∅, Di = resA(Ci−1 ∪ Di−1), with i = 1, . . . , n. The sequences γ and δ are called
the context sequence and the result sequence of π , respectively. The set Wi = Ci ∪ Di, i = 0, . . . , n, is called a state of A, and
the sequence W0, . . . ,Wn is the state sequence of the interactive process π . If Ci ⊆ Di for each i = 1, . . . , n, then the state
sequence is said to be context-independent. The sequence E0, . . . , En−1 ⊆ S, such that Ei = enA(Wi), i = 0, . . . , n − 1, is
called the activity sequence of π ; each set Ei represents the set of reactions from A that are enabled in the stateWi.

Finally, we recall the notion of functional equivalence between reaction systems. Given a reaction systemA = (S, A), we
say that two reactions a, b ∈ A are functionally equivalent in S, denoted by a ∼S b, if for each T ⊆ S, resa(T ) = resb(T ). This
notion can be extended to sets of reactions and to reaction systems: given two arbitrary sets of reactions A, B over the same
background S, we say that A, B are functionally equivalent in S, denoted by A ∼S B, if for each T ⊆ S, resA(T ) = resB(T ).
Similarly, given two reaction systems A = (S, A), B = (S, B) over the same background, we say that A, B are functionally
equivalent, denoted by A ∼ B, if A ∼S B. In [6] it is shown that the functional equivalence problem for arbitrary sets of
reactions, and hence for reaction systems, is co-NP-complete.

3. The Tower of Hanoi puzzle formalized as a reaction system

In this section we describe how to formalize the Tower of Hanoi puzzle as a reaction system. The Tower of Hanoi puzzle
was invented by the Frenchmathematician Edouard Lucas in 1883. As described in [15], the puzzle consists of three vertical
pegs set into a board, and a number of disks graded in size. These disks are initially stacked on one of the pegs so that the
largest rests at the bottom of the stack, the next largest in size atop it, and so on, ending with the smallest disk placed at the
top. A player can shift the disks from one peg to another one at a time, provided that no disk rests upon any other smaller
disk. The purpose of the game is to transfer the tower of disks from the peg upon which the disks initially rest to one of the
other pegs.

A key to facing this puzzle is to recognize that it can be solved by a ‘‘divide et impera’’ strategy, breaking the problemdown
into a collection of smaller and smaller problems until a solution is reached. This suggests a recursive solution. Nevertheless,
there are different iterative algorithms to solve the game; here, we consider the solution proposed by Franklin [18], which
is described in the next section.

3.1. Franklin’s algorithm

In [18], Franklin defines an iterative method for the Tower of Hanoi puzzle that can be derived from a simple set of
principles. We start by assuming the following conventions:

S1 Number the disks from 1 (the smallest) to N (the largest);
S2 The three pegs are ordered so that the actions of moving a disk to the right and to the left are meaningful.

Then, the whole solution derives from these four principles:

P1 Move odd-numbered disks only to the right and even-numbered disks only to the left;
P2 Do not move the same disk twice in a row;
P3 Do not place a larger disk on top of a smaller one;
P4 Move only those disks that are at the top of one of the pegs.

There is only one legal move at any time, and this fact can be proved by induction. The basis of the induction consists in the
initial state where only disk 1 can be moved. The inductive step consists in assuming that the assertion is true for state Wt ,
so it must also hold for stateWt+1, t ≥ 0. For the latter state we can have three different cases:

• Two pegs are occupied. On top of these pegs there are disk 1 and disk j. One of them has beenmoved in the previous step,
by P2we can only move the other one.
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• Three pegs are occupied. On top of them there are disk 1, disk j and disk k, with 1 < j < k. By P3 disk k has no legal
origin (1 and j are both smaller than k) and it cannot bemoved in this step for the same reason. One of the other two disks
(1 or j) has been moved in the previous step. By P2we can only move the remaining disk.
• Only one peg is occupied. We are in the final state, all the disks are stacked and only disk 1 can be moved. If we want to

stop the system, we need to treat the final state with some specific rules.

3.2. The Tower of Hanoi reaction system

In our reaction system we represent disks, pegs and states as follows. Following convention S1, we number the disks
from 1 to N , where 1 is the smallest disk and N is the largest one. Following convention S2, the three pegs are coded as
α ∈ {A, B, C}, and we use the couple αk to denote that disk k is placed on peg α, for some k ∈ {1, . . . ,N} and α ∈ {A, B, C}.
Moreover, we use ‘‘α→’’ to indicate the peg on the right of α, and ‘‘α←’’ for the peg on its left. The order is circular: if α = C
then α→ is equal to A and if α = A then α← is equal to C . Similarly, ‘‘α⇒’’ and ‘‘α⇔’’ indicate the peg two positions on the right
of α, and the peg two positions on the left of α, respectively. Namely, the notation α→k and α⇒k (α←k and α⇔k, respectively),
with α ∈ {A, B, C} and k ∈ {1, . . . ,N}, means that disk k is on the peg that is placed one position and two positions to the
right (one position and two positions to the left, respectively) of peg α. Finally, we represent the state of the gamewith a set
of N couples {α11, . . . , αNN}, where α1, . . . , αN ∈ {A, B, C} not necessarily distinct.

We highlight here that this coding system– togetherwith theway reactions are defined according to Franklin’s algorithm
(see Sections 3.2.1–3.2.3), which ensures that only one legal move is possible at every step – will not permit the formation
of illegal states. For instance, considering N = 3, the state {A1, A2, A3} can only be interpreted as the state where all the
disks are on the first peg (A) stacked in ascending order (1, 2, 3 from top to bottom).

In the following, even though k and the couple αk describe different things (a disk, and a disk in a certain location), we
will refer to both of them as ‘‘disk’’ where this does not produce ambiguity.

We want to define a reaction system that, given a legal initial state, produces the correct sequence of states to solve the
puzzle. The sketch of our approach is as follows. For each step, we identify the set F of disks that cannot bemoved. Wewrite
a set of reactions to ensure that the couples (location, f ) with location ∈ {A, B, C} and f ∈ F , will not vanish because of the
‘‘no permanency property’’: we call this process the propagation of the disks.We identify the disk d that has to bemoved, and
write a set of reactions to produce the new couple (destination, d) and a ‘‘suspension signal’’ bd, that we use to remember
the last disk that has been moved. In this case, we will exploit the no permanency property of reaction systems to remove
both disk d and the expired signal bd.

3.2.1. Covered, suspended and blocked disks
In each state, the set F of disks that do not move consists in covered disks, suspended disks and blocked disks. Covered

disks are disks that are not at the top of a peg, by P4 these disks cannot be moved. To check if αk is a covered disk we search
for all the couples with the same peg label and disk number less than k. If we find one couple of this type, the disk is covered
and we propagate it. Disk 1 is never covered. The set of reactions to deal with covered disks is:

Acovered = {({αi, αj}, {stop}, {αi}) | α ∈ {A, B, C}, i = 2, . . . ,N, j < i}.

Suspended disks are disks that have beenmoved in the previous step, by P2 these disks cannot bemoved. To check if αk is
a suspended disk we search for his suspension signal bk. If we find the signal we propagate the disk and let the signal vanish
(by no permanency). All the disks can be suspended. The set of reactions for the suspended disks is:

Asuspended = {({αi, bi}, {stop}, {αi}) | α ∈ {A, B, C}, i = 1, . . . ,N}.

Blocked disks are disks that do not have any legal destination, by P3 these disks cannot be moved. To check if αk is a
blocked disk we search for couples with a different peg label and disk number less than k. If we find one such couple for
each of the two remaining pegs, the disk is blocked and we propagate αk to the next state. Disk 1 and disk 2 are never
blocked. The set of reactions for the blocked disks is:

Ablocked ={({αi, α→ j, α⇒m}, {stop}, {αi}) | α ∈ {A, B, C}, i = 2, . . . ,N, j < i,m < i,m ≠ j}.

The reactions belonging to the sets Acovered, Asuspended, Ablocked are inhibited by the entity stop, that is produced only when
the last step of the game is reached, as explained later on (Section 3.2.3). When this state is reached, these reactions are not
enabled and all the disk couples will vanish, thus granting the end of the game.

3.2.2. Movement of disks
In general, the reactions for the movement of disks have the form:

({disk}, {propagation elements}, {destination, suspension signal}),

meaning that given a disk as reagent, we produce a destination couple and the suspension signal for that disk, unless some
propagation elements occur in the same state of the system to inhibit the application of the reaction.
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Fig. 1. A solution to the Tower of Hanoi problem with three disks.

Table 1
The Tower of Hanoi reaction system dynamics.
Index n Context set Result set State

0 A3, A2, A1 ∅ A3, A2, A1
1 ∅ A3, A2, B1, b1 A3, A2, B1, b1
2 ∅ A3, B1, C2, b2 A3, B1, C2, b2
3 ∅ A3, C2, C1, b1 A3, C2, C1, b1
4 ∅ B3, C2, C1, b3 B3, C2, C1, b3
5 ∅ A1, B3, C2, b1 A1, B3, C2, b1
6 ∅ A1, B3, B2, b2 A1, B3, B2, b2
7 ∅ B3, B2, B1, b1, stop B3, B2, B1, b1, stop
8 ∅ ∅ ∅

. . . ∅ ∅ ∅

If there is nothing against the propagation of a disk, wemove it. ByP1weneed two sets of reactions, one for even-indexed
disks and one for odd-indexed disks, plus one reaction for disk 1:

Aeven = {({αi}, {(α(i− 1), . . . , α1), bi, (α←(i− 1), . . . , α←1)}, {α← i, bi})| α ∈ {A, B, C}, i is even},
Aodd = {({αi}, {(α(i− 1), . . . , α1), bi, (α→(i− 1), . . . , α→1)}, {α→ i, bi})| α ∈ {A, B, C}, i is odd, i > 1},
Adisk1 = {{α1}, {b1}, {α→1, b1}}.

In each reaction belonging to the sets Aeven and Aodd there are three sets of inhibitor entities, having the following meaning.
The first set of inhibitors says that the disk is not covered, the second set says that the disk is not suspended, the third set
says that the disk is not blocked. Whenever enabled, these reactions produce a destination couple and a suspension signal.
Note that the reaction in the set Adisk1 is just a special case of the reactions in the set Aodd that requires the single inhibitor b1.

3.2.3. Identification of the final state
We need to identify the second–last state to produce a stopping signal. It is easy to show that disk 1 is the first and the

last disk that moves; what distinguishes the second–last state from the second state of the system is the absence of the
suspension signal b1. Using the following two reactions we are able to block the system properly:

astop1 = ({α2, . . . , αN, α→1}, {b1}, {stop}),
astop2 = ({α2, . . . , αN, α⇒1}, {b1}, {stop}).

Reaction astop1 is applied when disk 1 is on the peg placed to the right of peg α, while reaction astop2 is applied when disk
1 is on the peg placed two positions to the right of α. Whenever one of these reactions is enabled, the stop entity is produced,
and no other reaction will be enabled in the system, therefore determining the end of the game. In fact, movement reactions
are not active in the final state because the only disk that can be moved (disk 1) has been moved in the previous step and
so it is suspended.

3.2.4. Dynamic behavior of the Tower of Hanoi reaction system
Summing up, the reaction system AHanoi = (S, A) that formalizes the Franklin’s algorithm for the solution of the Tower

of Hanoi puzzle consists of the background set

S = {αi, α→ i, α⇒ i, α← i, α⇔ i, bi, stop | α ∈ {A, B, C}, i ∈ {1, . . . ,N}},

and the set of reactions

A = Acovered ∪ Asuspended ∪ Ablocked ∪ Aeven ∪ Aodd ∪ Adisk1 ∪ {astop1, astop2}.

The dynamic behavior of the proposed reaction system is reported in Table 1 for the case of N = 3, starting from the
initial state given by {A1, A2, A3}, where the three disks are on the first peg (A) stacked in ascending order (see Fig. 1). The
interactive process considered in this case is context-independent, since we do not need any additional inflow of elements
to execute the solution of the Tower of Hanoi puzzle. As it can be seen by comparing Fig. 1 with the last column of Table 1,
AHanoi produces the correct sequence of states and movements to solve the puzzle.
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Fig. 2. Regulation of the lac operon expression when the environment provides: (A) neither glucose nor lactose; (B) only glucose; (C) both lactose and
glucose; (D) only lactose.

4. The lac operon expression formalized as a reaction system

In this section we give a formalization of the lac operon expression in terms of reaction systems. In genetics, an operon is
a functional unit of genomic DNA containing a cluster of genes, which are all under the control of a specific regulatory signal.
The genes in an operon are usually involved in the same biological process and their coordinate expression is required in
order to accomplish a specific biochemical task. The lac operon is involved in the metabolism of lactose in Escherichia coli
cells, where it allows the effective digestion of lactose only when this process is useful for the bacterium [19]. For this
reason, the lac operon is under the control of an integrated signaling system which leads to the activation or inhibition of
gene expression in dependence on the nutrients available in the environment [16].

4.1. The lac operon

The lac operon is constituted by three adjacent structural genes and some regulatory components (Fig. 2). The three
genes are called lacZ, lacY and lacA: they encode for two enzymes (hereby denoted Z and A) and a transporter (Y) involved
in the digestion of lactose. The main regulatory components are:

• A gene, called lacI, that encodes for a repressor protein (I).
• A specific DNA sequence, called promoter, that is recognized by RNA polymerases to initiate the transcription of the

structural genes.
• A segment of DNA, called operator (OP), whose role is to obstruct the RNA polymerase functionality whenever the

repressor protein I is tightly bound to it (I–OP), therefore blocking gene expression.
• A short DNA sequence, called CAP-binding site, that, when bound to a specific molecular complex (formed by a protein

called CAP and a signal molecule named cAMP), has the role of enhancing the interaction between the RNA polymerase
and the promoter, therefore promoting gene expression. The genes encoding for the production of cAMP and CAP protein
are called, respectively, cya and crp, and they are indirectly involved in the regulation of the lac operon expression.

The signal which regulates the lac operon functionality depends on the integration of two different control mechanisms,
one mediated by lactose and the other by glucose, which can lead either to the promotion or to the inhibition of lac
expression, according to the (combination of) carbon sources that are available in the environment [20]. In fact, since gene



L. Corolli et al. / Theoretical Computer Science 454 (2012) 95–108 101

expression demands energy consumption, it is deleterious for the bacterium to synthesize the proteins involved in the
metabolism of lactose when this nutrient is not available in the environment, or when the environment provides a more
readily available source of energy, such as glucose.

The first control mechanism in the metabolism of lactose exploits the repressor protein I: in absence of allolactose (a
metabolite that is produced only when lactose is available), I is able to bind the operator sequence preventing the lac
operon expression. On the contrary, if lactose is available, allolactose makes protein I unable to bind the operator by
altering its shape, therefore the lac operon can be potentially expressed [21]. The second control mechanism exploits the
signal molecule cAMP and protein CAP to greatly increase the lac operon expression in absence of glucose [22]. In fact, the
intracellular amount of cAMP is inversely proportional to glucose concentration: when glucose is not present, the cAMP
concentration is high and the binding between the molecular complex cAMP–CAP and the CAP-binding site increases, thus
enhancing gene expression.

Considering the biochemical environments in which E. coli cells could be in a specific time, four different conditions are
able to regulate the lac operon expression:

1. When neither lactose nor glucose are available, even if the cAMP–CAP complex binds the CAP binding site, the presence
of the repressor protein I prevents a stable interaction between the RNA polymerase and the promoter, thus blocking the
operon gene expression (Fig. 2A).

2. When lactose is unavailable while glucose is available, the presence of the repressor protein I prevents the binding of the
RNA polymerase to the promoter, thus inhibiting the operon gene expression (Fig. 2B).

3. When both glucose and lactose are available, even if the repressor protein I is not present, the absence of the cAMP–
CAP complex prevents the formation of a stable interaction between RNA polymerase and the promoter, thus markedly
reducing the operon gene expression (Fig. 2C).

4. When lactose is available while glucose is unavailable, the repressor protein I is absent and the contemporary presence
of the cAMP–CAP complex assists the binding between RNA polymerase and the promoter, thus promoting the operon
gene expression (Fig. 2D).

4.2. The lac operon reaction system

Weprovide here a description of the lac operon as a reaction systemAlac = (S, A), where the background set S represents
the main biochemical components involved in this genetic system, while the reaction set A contains the biochemical
reactions involved in the regulation of the lac operon expression. Formally, the lac operon reaction system is defined as
follows:

S = {lac, Z, Y , A, lacI, I, I–OP, cya, cAMP, crp, CAP, cAMP–CAP, lactose, glucose},

and A consists of the following 10 reactions:

a1 = ({lac} , {. . . } , {lac}),
a2 = ({lacI} , {. . . } , {lacI}),
a3 = ({lacI} , {. . . } , {I}),
a4 = ({I} , {lactose} , {I–OP}),
a5 = ({cya} , {. . . } , {cya}),
a6 = ({cya} , {. . . } , {cAMP}),
a7 = ({crp} , {. . . } , {crp}),
a8 = ({crp} , {. . . } , {CAP}),
a9 = ({cAMP, CAP} , {glucose} , {cAMP–CAP}),
a10 = ({lac, cAMP–CAP} , {I–OP} , {Z, Y , A}).

In Table 2 we provide a short description of the biological meaning of each reaction. Note that reactions a1, a2, a5, a7 are
needed to grant the permanency of the genes in the system, while reactions a4, a9, a10 can only be enabled if the current
state of the system does not include the inhibitor elements specified in each reaction. Namely, reaction a4 can be applied
only in the absence of lactose, reaction a9 in the absence of glucose, and reaction a10 when repressor I is not bound to the
operator OP.

4.3. Dynamic behavior of the lac operon reaction system

As stated in Section 4.1, the lac operon expression depends on which substrates the environment provides. In order to
translate this situation in the lac operon reaction system, we need to evaluate what happens to the systemwhen the context
provides both glucose and lactose, only glucose, only lactose, or none of them. To this aim, we define a ‘‘default condition’’
(DC) thatmimics the real biological system inwhich the genomic elements plus their encoded proteins are normally present.
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Table 2
Biological description of the reactions of the lac operon reaction system.
Reaction Description of the biochemical process

a1 lac operon duplication
a2 Repressor gene duplication
a3 Repressor gene expression
a4 Regulation mediated by lactose
a5 cya duplication
a6 cya expression
a7 crp duplication
a8 crp expression
a9 Regulation mediated by glucose
a10 lac operon expression

Table 3
The lac operon reaction system dynamics.
Index n Context set Cn Result set Dn lac expression

0 DC ∅ No
1 {glucose} DC ∪ {I–OP, cAMP–CAP} No
2 {glucose} DC ∪ {I–OP} No
3 {glucose} DC ∪ {I–OP} No
4 {glucose} DC ∪ {I–OP} No
5 {glucose} DC ∪ {I–OP} No
6 {glucose, lactose} DC ∪ {I–OP} No
7 {glucose, lactose} DC No
8 {glucose, lactose} DC No
9 {glucose, lactose} DC No

10 {glucose, lactose} DC No
11 {lactose} DC No
12 {lactose} DC ∪ {cAMP–CAP} No
13 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
14 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
15 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
16 ∅ DC ∪ {cAMP–CAP, Z, Y , A} Yes
17 ∅ DC ∪ {I–OP, cAMP–CAP, Z, Y , A} Yes
18 ∅ DC ∪ {I–OP, cAMP–CAP} No
19 ∅ DC ∪ {I–OP, cAMP–CAP} No
20 ∅ DC ∪ {I–OP, cAMP–CAP} No
21 {lactose} DC ∪ {I–OP, cAMP–CAP} No
22 {lactose} DC ∪ {cAMP–CAP} No
23 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
24 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
25 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
26 {glucose, lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
27 {glucose, lactose} DC ∪ {Z, Y , A} Yes
28 {glucose, lactose} DC No
39 {glucose, lactose} DC No
30 {glucose, lactose} DC No
31 {lactose} DC No
32 {lactose} DC ∪ {cAMP–CAP} No
33 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
34 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
35 {lactose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
36 {glucose} DC ∪ {cAMP–CAP, Z, Y , A} Yes
37 {glucose} DC ∪ {Z, Y , A, I–OP} Yes
38 {glucose} DC ∪ {I–OP} No
39 {glucose} DC ∪ {I–OP} No
40 {glucose} DC ∪ {I–OP} No

The genomic elements are the lac operon, the repressor gene lacI, the cya and the crp genes, while the respective genetic
products are the repressor I, cAMP and CAP. Therefore, starting from the stateDC = {lac, lacI, I, cya, cAMP, crp, CAP}we can
analyze how the reaction system responds when the context provides different nutrients. We evaluate the behavior of the
system considering a dynamic situation in which the context sequence provides an ever-changing state, hence simulating
a real natural environment where the bacterial cells could live. Starting with an initial context C0 = DC , we consider an
interactive processwhere, for each i ≥ 1, Ci can be equal to one of the following sets: ∅, {glucose}, {lactose}, {glucose, lactose}.

The example of context sequence given in Table 3 (second column) shows that the elements Z, Y , A from the background
S appear in a result state Dj for some j ≥ 2 (third column), only when Cj−2 = {lactose}, independently from which context
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Table 4
Truth table for the boolean function g .
x1 x2 x3 g(x1, x2, x3)

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

is provided at step j− 1. In other words, the lac operon is expressed in a certain result state when the context set given two
steps before that result state contains lactose as the only input element. The same property holds if only lactose is provided
continuously to the system: the elements Z, Y , Awill appear in each set of consecutive result states Dj,Dj+1, . . . ,Dj+k, with
j ≥ 2, k ≥ 1, if and only if there exists a sequence of consecutive context states such that Cj−2 = · · · = Cj+k−2 = {lactose},
for any Cj+k−1 ∈ {∅, {glucose}, {glucose, lactose}}.

The rationale behind this behavior is the following: reaction a10, which is the only one that allows the expression of
the lac operon, is involved in a negative feedback mechanism with reaction a4 and in a positive feedback mechanism with
reaction a9. When lactose appears in the context state, reaction a4 is not enabled and the repressor element I cannot bind
to the operator site; in this condition, the element I–OP , which is the only inhibitor of reaction a10, is not produced. Instead,
reaction a9, whose product is cAMP–CAP (which is also a reactant of a10), is enabled only when glucose is not present in the
context. In other terms, reaction a10 is under the regulation of lactose through the interactionwith reaction a4 and under the
regulation of glucose through the interaction with reaction a9. Since the enabling of reaction a10 requires the simultaneous
inactivation of a4 and activation of a9, reaction a10 will be enabled only one step ahead of the context state that provided
only lactose, leading to the production of the Z, Y , A elements two steps ahead of that state.

This behavior is consistent with the real natural situation in which a cell reacts to the modified nutritional conditions by
regulating the expression of its genes, so that only when the proper intracellular adaptation has been carried out (which
requires a step-by-step activation of downstream reactions), the system will be able to respond correctly to the new
environmental condition. As a consequence of adaptation, another noteworthy dynamic property of the lac operon can
emerge in this reaction system, namely, the hysteresis behavior. By hysteresis we mean the dependence of the biological
system not only on the current environment where it is living (in terms of reaction systems, the context set given at the
current step), but also on the past environmental states; as a whole, hysteresis is the result of the fact that the system can be
in different internal states. In the case of the lac operon reaction system, this behavior arises because the current result state
is determined, in a context-dependent way, by an orchestrated cooperation of reactions which induce the aforementioned
delayed adaption to the given environmental states.

5. Simplification methods for boolean functions applied to reaction systems

In this section we show how simplification methods for boolean functions can be exploited to potentially reduce the
number of reactions in a reaction system. We start by providing the necessary notation for boolean functions and we recall
the relation between reaction systems and boolean functions [6]. Simplification methods for boolean functions are then
discussed and applied to reaction systems, with the following goal: given a reaction system with n reactions, derive an
equivalent reaction system with n′ ≤ n reactions.

5.1. Boolean functions and reaction systems

Let f : {0, 1}n → {0, 1} be a boolean function and let us denote x1, . . . , xn its boolean variables. The function f can be
univocally represented by writing all the possible input combinations of the values of x1, . . . , xn and their corresponding
output value f (x1, . . . , xn) in a table, called truth table, which is formed by 2n rows, or, in more compact form, using boolean
expressions. It is well known that a boolean function can be represented by many equivalent boolean expressions. In what
follows, wewrite boolean expressions in the disjunctive normal form (DNF), that is, as the sum of products of literals (called
monomials). Given two boolean variables x1, x2, the sum x1+x2 represents the logic ‘‘OR’’, while the product x1x2 represents
the logic ‘‘AND’’. The negation of a boolean variable x is denoted x.

Describing boolean functions with reaction systems is straightforward, since it simply requires to translate the input
variables and output values into entities of a reaction system A, and to appropriately express the boolean function in terms
of a set of reactions that satisfy some conditions [6].

We explain this process with an example. Table 4 shows the truth table of a boolean function g : {0, 1}3 → {0, 1}.
It is possible to directly convert this representation into a reaction system. The output of the function g(x1, x2, x3) can be
interpreted as the presence (output equal to 1) or the absence (output equal to 0) of the product of a reaction. Similarly, the
values of the input variables x1, x2, x3 denote the required presence or absence of some compounds in a reaction. Analyzing
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Table 5
Karnaugh map for the function g .
x3�x1x2 00 01 11 10

0 0 1 0 0
1 0 0 1 1

the truth table row by row, we only need to take into consideration the rows associated to an output equal to 1, as they are
the only ones that generate a product. Therefore, every such line defines a reaction, where elements corresponding to inputs
equal to 0 are inhibitors, as they must be absent in order for the reaction to be enabled, while elements corresponding to
inputs equal to 1 are reactants, as they must be present in order for the reaction to be enabled. In what follows, for the sake
of simplicity, we use a notation where reactant and inhibitor elements directly correspond to input boolean variables, i.e.,
x1, x2, x3, while product elements correspond to the output value, i.e., g(x1, x2, x3).

According to these rules, it is possible to translate the boolean function g into the reaction system Ag = (S, A), where:

S = {x1, x2, x3, g(x1, x2, x3)},

A = {a1, a2, a3},

and

a1 = ({x2} , {x1, x3} , {g(x1, x2, x3)}),

a2 = ({x1, x3} , {x2} , {g(x1, x2, x3)}),

a3 = ({x1, x2, x3} , {. . . } , {g(x1, x2, x3)}).

5.2. Simplification methods for boolean functions

Given the truth table of a boolean function, it is possible to derive the DNF of the corresponding boolean expression. The
easiest way to do this is by writing the sum of the input combinations (as products of literals) that lead to an output equal
to 1. Considering the example from Table 4, we obtain the following boolean formula for the function g:

g(x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3.

This expression can be reduced to a simpler equivalent expression (i.e., defining the same function g) using one of the
simplification methods available for boolean expressions.

One of the most used simplification methods is the Karnaugh map method [17]. A Karnaugh map for a function with n
variables is amatrix containing 2n cells, one for each possible configuration of the n input values. Coordinates are assigned to
each cell so that whenmoving horizontally or vertically from one cell to an adjacent one, the value of only one input variable
changes. Terminal cells are also considered to be adjacent, forming horizontal and vertical ‘‘rings’’. Every cell contains the
value of the output that corresponds to the input identified by its coordinates. The Karnaughmap for the function g of Table 4
is depicted in Table 5.

A function can be simplified using a Karnaugh map observing that two adjacent cells differ only on one input variable,
which has value 0 in one cell and value 1 in the other. Therefore, the product of the other n−1 variables implies both cells, as
the value of the variable that changes is irrelevant for determining the output value. This observation can be applied to any
rectangular group of 2i adjacent cells, with i ≥ 1. Given these facts, Karnaugh maps allow us to determine the minimum set
of 2i adjacent cells that cover all the cells with an output value equal to 1. The union (logic sum) of the elements of this set
(each of which corresponds to a product of input variables) forms the simplest expression representing the desired function.

Going back to the example, the Karnaugh map of Table 5 leads to the following simplest expression for the function g
represented by Table 4:

g(x1, x2, x3) = x1x2x3 + x1x3.

The Karnaughmapmethod is inefficient for functions of more than 6 variables, as it is based on a graphic representation.
For larger functions, othermethods can be used, such as the Quine–McCluskeymethod [23,24]. Thismethod is implemented
in tabular form, which makes it more efficient to use than the Karnaughmapmethod. However, the problem it solves is NP-
hard, so its runtime grows exponentially with the number of input variables. To simplify functions with a large number of
input variables it is possible to use non-optimal heuristic methods. One of these methods is implemented by the Espresso
algorithm, developed as a logic minimization algorithm for Very Large Scale Integration (VLSI). For more information on
the functioning of this algorithm, we refer the interested reader to [25]. One of the most well known implementations of
the Espresso algorithm is the Espresso logic minimizer, a computer program designed to reduce the complexity of digital
electronic gate circuits.
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5.3. Simplification of reaction systems

In Section 5.1 we have shown how to model boolean functions in terms of reaction systems. The inverse procedure is
also possible, and this allows us to obtain the truth table associated to a reaction system. As we have seen, we can apply a
simplification method in order to obtain the simplest boolean expression for a given boolean function. This expression can
be directly translated into a reaction system, making two fundamental considerations:

• Everymonomial in the boolean expression corresponds to a reaction of the simplified reaction system. This is true because
if any of the monomials has value 1, then the result of the function is 1. In reaction terms, this means that if one of the
reactions is enabled, then we get a product.
• Every reaction has as reactants the non-negated variables and as inhibitors the negated variables of the corresponding

monomial. This definition enables the reaction onlywhen all the non-negated variables are equal to 1,which corresponds
to the presence of the reactants, and when the negated variables have value 0, which corresponds to the absence of the
inhibitors.

Let us consider a reaction system A that we wish to simplify, having a reaction set A constituted by n reactions
ai = (Ri, Ii, Pi), i = 1, . . . , n. The purpose of the simplification is to obtain another reaction system that is functionally
equivalent to A but has a lower number of reactions. The first step of the simplification procedure consists in splitting A
into a set of disjoint subsets of reactions, such that the product set of each reaction belonging to a given subset is identical
to the product set of all the other reactions belonging to the same subset, but it is different from the product set of every
other reaction belonging to any other subset. Formally, we have

A = A1 ∪ A2 ∪ · · · ∪ AL

where Al = {al1, . . . , alml} for some ml ≥ 1, with
L

l=1 ml = n, alj ∈ A for each l = 1, . . . , L, j = 1, . . . ,ml, and A1, . . . , AL
are such that (i) PA1 ∩ · · · ∩ PAL = ∅ and (ii) Plj1 = Plj2 for each alj1 , alj2 ∈ Al, j1, j2 ∈ {1, . . . ,ml}.

It is necessary to separate the reactions into these disjoints subsets because reductionmethods for boolean functions only
work on a single output variable that, in terms of reaction systems, might correspond to a set of products. Hence, we need
to separate the reactions that produce different elements, and apply the simplification method separately on each subset of
reactions.

Having defined these sets of reactions, it is now possible to apply the reduction method on every single set Al (with
1 ≤ l ≤ L). First of all, each set of reactions has to be transformed into its corresponding boolean function, as follows:

fl(Al) = fl


ml
j=1

(Rlj ∪ Ilj)


=

ml
j=1


O

o=1

rljo


Q

q=1

inljq



where rljo represents the presence of a reagent element in the reagent set Rlj of alj, with |Rlj| = O, and inljo represents the
absence of an inhibitor element in the inhibitor set Ilj of alj, with |Ilj| = Q .

A simplification method for boolean functions can now be applied to all the boolean functions fl(Al), l = 1, . . . , L. The
result, for each function, will have the form

simpl(fl) =
Ul

u=1


O′

o′=1

rluo′


Q ′

q′=1

inluq′


,

where Ul is the number of addends of the simplified boolean expression obtained from each fl(Al), and O′ and Q ′ are the
number of non-negated and negated boolean variables left after the reduction, which correspond to a subset of the reagents
and of the inhibitors of the reaction alu, respectively.

The last step consists in transforming each function simpl(fl) back into a set of Ul reactions of the form

alu = ({rlu1, . . . , rluo′}, {inlu1, . . . , inluq′}, {PAl}),

for each u = 1, . . . ,Ul. The system is based on the fact thatUl ≤ ml, for each l = 1, . . . , L, which guarantees that the number
of reactions in the reduced reaction systemwill not increasewith respect to the initial reaction system. In theworst case, this
number may not decrease. In the best case, the number of reactions is reduced to 1. In general, the degree of simplification
of a reaction system depends on its redundancy – informally characterized by the number of different reactions that are
used to produce the same elements of the background set – though an a priori average estimate is difficult to formulate for
arbitrary reaction systems.

Finally, we provide an example of the application of this simplificationmethod.We intentionally apply the simplification
on a small reaction system, in order to allow the reader to follow the fundamental steps of the method easily. Therefore,
let us consider the reaction system A = (S, A) defined by the background set S = {c1, c2, c3} and a set of reactions
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A = {a1, a2, a3, a4, a5}, where

a1 = ({c1}, {c2}, {c3}),
a2 = ({c1, c2}, {. . .}, {c3}),
a3 = ({c2}, {c3}, {c1, c2}),
a4 = ({c3}, {c1}, {c1, c2}),
a5 = ({c1, c2, c3}, {. . .}, {c1, c2}).

Following the above procedure, we identify two subsets of reactions: the first subset A1 = {a1, a2} is formed by the reactions
whose product is c3, and the second subset A1 = {a3, a4, a5} is formed by the reactions whose products are c1, c2. We can
now determine the two boolean functions assigned to these sets:

f1(A1) = f1(c1, c2) = c1c2 + c1c2,
f2(A2) = f2(c1, c2, c3) = c2c3 + c3c1 + c1c2c3.

Applying a simplification method to these boolean functions, we obtain:

simpl(f1) = c1,
simpl(f1) = c2 + c3c1.

These two boolean functions correspond to a reaction system with the following reactions:

b1 = ({c1}, {. . . }, {c3}),
b2 = ({c2}, {. . . }, {c1, c2}),
b3 = ({c3}, {c1}, {c1, c2}).

This simplified reaction system B = (S, {b1, b2, b3}) is formed by 3 reactions, which is less than the 5 reactions that
composed the original system A. It is straightforward to verify that B is functionally equivalent to A in S.

6. Discussion

The concept of interaction between chemical reactions is at the heart of the framework of reaction systems. These
interactions are based on mutual facilitation and inhibition, which rely on the fact that the result of one reaction can be
a reactant of another reaction, and the inhibitor of a reaction is usually an element of some other reaction. In other terms,
the chemical reactions occurring in a living cell constitute a regulative network. The use of chemical reactions as a computing
paradigm has been previously considered in computer science, both in qualitative and quantitative terms, from a theoretical
point of view [26,27], as well as a possible natural device for the implementation of logic gates and circuits (see, e.g.,
[28,29]). The common view among these paradigms is that they represent formal models of biochemical reactions that
allow one to study how the state of a system changes in time.

In analogous terms, though from a different perspective, the dynamical evolution of networks of biochemical reactions,
such as cellular processes, can be investigated with the purpose of analyzing their emergent behaviors. With this concept we
refer to the possible dynamics that the system can present in time, according both to its internal state (the type and amounts
of molecular species, such as enzymes, substrates, ions, etc.) and to the environmental conditions where the system is living
(temperature, light, availability of nutrients, extracellular conditions, etc.). The classical approach to the analysis of these
properties relies on the definition of a mathematical model, developed according to the specific open problems that one
wishes to solve about the biochemical system of interest. For instance, traditional models based on systems of ordinary
differential equations (ODEs) [30] assume an underlying deterministic interpretation of molecular interactions – based on
ensemble properties holding for large amounts of molecules – which is however unable to take into account the effects of
biological noise, that is inherent to most cellular systems [31]. On the contrary, stochastic modeling approaches [32] are
able to detect the random behaviors due to the stochastic molecular interaction between individual molecules, which can
trigger the emergence of complex phenomena such as bistability (that is, the switching between two different stable states).

A plethora of different modeling approaches, based either on the deterministic or the stochastic assumption, and
considering distinct levels of abstraction for the formalization of the real system, have been developed in the last years
to achieve new results and insights into the functioning of biological systems [30,33]. In this context, also some formalisms
that were originally developed in computer science either to model systems of interacting components (Petri nets, process
algebras, etc.), or to develop biologically-inspired computational models (DNA computing, membrane systems, etc.), have
been successfully applied in the field of computational biology and proved their intrinsic suitability for reproducing or
analyzing the dynamics of many cellular processes (see, e.g., [34–37], just to mention a few). In relation to these well-
established frameworks, reaction systems indeed represent an innovative approach, whose global modeling power seems
anyway still difficult to debate thoroughly in comparison to the wide spectrum of aspects, potentialities, consistent
observations and theoretical results that the other approaches have already demonstrated. Nevertheless, some strengths
of this formal approach can already be explicitly stated as the direct follow-on from the topics discussed in this work, where
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we intentionally investigated the expressive power and the flexibility of reaction systems as a modeling tool for computer
science and biology oriented applications. Therefore, we discuss hereby the potentialities of reaction systems that we were
able to highlight with our work.

Concerning the modeling power in biology oriented applications, in Section 4 we exploited reaction systems to describe
a complex biological phenomenon that relies on a finemechanism to control the uptake and consumption of environmental
nutrients. Namely, we formalized the regulation of gene expression in the lac operon, a genetic regulatory network involved
in the metabolism of carbon sources in E. coli bacterial cells. Notwithstanding the complexity of the control mechanisms
that are present in this metabolic pathway, we stress the fact that we were able to propose an original description of this
biological system by using a reaction system that consists of a few reactions and elements, by just relying on the basic
assumptions of this formalism and on a proper use of inhibitors. The dynamic behavior of this reaction system, in a context-
dependent formalization, shows a qualitative correspondence with the response of cells to natural environments, where
they are exposed to ever-changing conditions and are able to react properly by regulating the expression of their genes.
The further addition of a quantitative description of the lac operon, where the amounts of chemicals are also specified,
would require the definition of ad hoc measurement functions [14], and will be the scope of future research. Anyway, even
the simple formulation of the lac operon expression in terms of reaction system given in Section 4 is able to show two
interesting biological properties, such as adaptation and hysteresis. The first is due to a step-by-step enabling of downstream
reactions, which in turn depends on the interaction of positive and negative feedback mechanisms between enabled and
inhibited reactions. The second arises as a consequence of adaptation, and shows the ability of the reaction system to retain
memory of the past environmental states. This behavior is simply explained by the capability of the reaction system to react
to the (context-dependent) stimulus with an initial adaptive mechanism, and consequently to carry out the proper internal
response to the external signal. In situations of this type, where a biological system can show hysteresis, it is therefore
not enough to know the current context and result sets to be able to predict its evolution, but we also need to know its
past. In the lac operon reaction system that we defined, this property seems to emerge as a natural consequence of the
facilitation and inhibition assumptions, that drive the evolution of the system in a deterministic way, according to the
incoming context set. Such properties might not emerge as much easily with other modeling frameworks; for instance,
by using models based on ODEs – which assume as well an underlying deterministic approach – the hysteresis response
would possibly require larger computational costs, due to the fact that the analysis of the emergent dynamics demands
the numerical integration of the whole set of equations at each time step, while in reaction systems it only requires the
identification and application of the enabled reactions. On the other way, by usingmodels based on, e.g., membrane systems
or Petri nets, the usual non-deterministic application of rules/transitions might not lead the system directly to the expected
hysteresis behavior. Even ifwe cannot debate here or compare the effective capability of reaction systems (with respect to all
these well-known frameworks) for the investigation of any biological system, we believe that their ability to easily simulate
common natural phenomena as adaptation and hysteresis suggests that they possess good potentiality for the modeling of
biochemical processes.

Concerning the expressive power of reaction systems in computer science oriented problems, in Section 3 we presented
an application in game theory, namely we used this formalism as a common programming language. As an example, we
showed an implementation of an iterative version of the Tower of Hanoi algorithm, as developed by Franklin in [18]. The
tricky solution in this application of reaction systems consists in the exploitation of the no permanency property of elements
and in the proper use of inhibitors to move disks from one peg to another, ensuring that no illegal move can be executed.
The idea behind this solution is that at each step of the game only one disk can be moved, while all the other disks are
either blocked (they have no legal destination), suspended (they were moved at the previous step) or covered (they cannot
be moved because lying below some other disk). These disks are translated into elements of the background set and act as
inhibitors for the movement of disks. Moreover, specific elements called ‘‘suspension signals’’ are produced to remember
which disk wasmoved in the previous step of the game, but then they are not kept sustained any further by other reactions:
so doing, the no permanency assumption ensures that the game can go on correctly step by step, by facilitating or inhibiting
the various moves of the puzzle. Once more, we demonstrated that the basic assumptions of reaction systems can be
exploited to simulate the execution of nontrivial computational steps, in a similar way as we were writing a ‘‘program’’
to implement an algorithmic procedure.

Then, in Section 5 we provided a formulation of boolean functions in terms of reaction systems. This is a straightforward
transformation that allows to define a reaction for every boolean input configuration that returns an output equal to 1: for
each of these configurations, the reagents correspond to the non-negated boolean variables, the inhibitors correspond to the
negated boolean variables, while a specific product element from the background set represents the boolean output. Next,
we have introduced simplification methods for boolean functions, such as Karnaughmaps, that allow to reduce the number
of monomials in a boolean formula expressed in DNF. The converse process is also possible: given a reaction system with
an arbitrary number of reactions, it is possible to derive a corresponding representation in terms of boolean expressions
in DNF. We can exploit this trick to reduce the number of reactions in a given reaction system: first, we need to separate
into disjoints subsets all the reactions that produce different product elements, and then we can apply the simplification
method independently on each subset of reactions. So doing, we derive an equivalent simplified reaction system, i.e., a
reaction system with a possibly smaller reaction set with respect to the reaction set of the initial system. A simple example
of simplification of a reaction system was presented to show the easiness of use of the proposed method. Though for large
reaction systems the procedure might be cumbersome to execute by hand due to the presence of many entities, it indeed
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represents a simple approach for the simplification of arbitrary reaction systems, which might be executed by exploiting
existing algorithms [25], or by developing novel software specifically dedicated to reaction systems. We leave this issue as
a further topic for future research. Indeed, an interesting and useful application of this simplification method would consist
in the reduction of the number of reactions for the description of large biological systems, for instance those that might be
defined by exploiting the modular, bottom-up approach based on set-theoretic union presented for reaction systems in [6].

In conclusion, it is our intention to deepen the investigation of reaction systems from both a theoretical and applicative
point of view, since the examples proposed in this paper have provided a positive confirmation of their feasibility and their
expressive power as a modeling framework in multidisciplinary applications, that range from computer science to biology
[6,7,11,12,14].
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