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In this paper, we consider a two-dimensional nonlinear equation

ρwtt + D�2 w + εμwt −
(

N1 + T

2

∫
Ω

w2
x dx dy

)
wxx

−
(

N2 + T

2

∫
Ω

w2
y dx dy

)
w yy = 0 (∗)

which arises from the model of the viscoelastic thin rectangular plate with four edges
supported. By virtue of Galerkin method combined with the priori estimates, we prove
the existence and uniqueness of the global solution under initial–boundary data for the
above equation. Especially the existence of the bounded absorbing set in space E and the
existence of the global attractor of system is also obtained.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the nonlinear viscoelastic thin rectangular plate equation (∗). For the sake of simplicity,
dividing (∗) by ρ , we get the equation

wtt + D

ρ
�2 w + εμ

ρ
wt −

(
N1

ρ
+ T

2ρ

∫
Ω

w2
x dx dy

)
wxx −

(
N2

ρ
+ T

2ρ

∫
Ω

w2
y dx dy

)
w yy = 0 (1.1)

subject to the boundary conditions

w(x,0, t) = w(x,1, t) = w(0, y, t) = w(1, y, t) = 0, (1.2)

wxx(0, y, t) = wxx(1, y, t) = w yy(x,0, t) = w yy(x,1, t) = 0 (1.3)

and the initial conditions

w(x, y,0) = w0 and wt(x, y,0) = w1. (1.4)
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Here Ω = (0,1) × (0,1) is a boundary domain of R2. w(x, y, t) is the vertical displacement of the plate. The coefficients
N1, N2, D,ρ, T , ε and μ are all positive constants, where the coefficient N1 is normal load per unit length in x-direction,

N2 is normal load per unit length in y-direction, D = Eh3

12(1−ν2)
is the plate rigidity in which E,h and ν are modulus of

elasticity, plate thickness and poisson’s ration, respectively, ρ is the material density, T is normal load per unit area, ε is a

small parameter, and μ is the damping coefficient of plate. The sign � denotes ∂2

∂x2 + ∂2

∂ y2 .

In recent more than 30 years, there have been a lot of works on the stability and the existence of the attractor for
nonlinear elastic infinite-dimensional dynamic system.

In 1950, Woinowsky-Krieger [21] proposed the equation

utt + uxxxx −
(
α + β

l∫
0

∣∣ux(s, t)
∣∣2

ds

)
uxx = 0. (1.5)

One of the first stability analysis for Eq. (1.5) is done by Ball [2]. Later Eq. (1.5) is extended to an abstract setting by
Mederios [14]. Putting α = β = 0 in (1.5) gives the equation

utt + uxxxx = 0.

Feireisl [8] and Feckan [5] study the existence of time-periodic solution for the above equation under the boundary condi-
tions

uxx(0, l) = uxx(l, t) = 0,

uxxx(0, t) = − f
(
u(0, t)

)
,

uxxx(l, t) = f
(
u(l, t)

)
.

A rather general equation

utt + uxxxx + μuxxxxt −
(
α + β

l∫
0

u2
x dx + 2δ

1∫
0

uxt ux dx

)
uxx = 0 (1.6)

is set up by Ball [3], who presents the existence and uniqueness of the solution under initial data. A larger class of stability
of beam is in papers [9,18,19] and references therein. The existence of the absorbing set and the inertial manifolds for
Eq. (1.6) under the initial–boundary data is obtained by Zhang [24]. You [23] and Fasangova [4] propose the nonlinear damp
beam equation

utt − k�2u −
(

a +
∫
Ω

|∇u|2
)

�u − δu(t) = 0, (1.7)

and prove the existence of the finite-dimensional global attractor. For the nonautonomous viscoelastic beam equation

utt − k�2u −
(

a(t) +
∫
Ω

|∇u|2
)

�u − δu(t) = f (t), (1.8)

Feireisl [6,7] studies the finite-dimensional behavior. As k = 0 in (1.7)–(1.8), we get the string equation and refer to the
works [1,11,13,15,16,20].

In the following, we mention some papers on the infinite-dimensional dynamic system determined by plate.
Lu Yang [12] studies the plate equation

utt + a(x)g(ut) + �2u + λu + f (u) = h(x), x ∈ Ω (1.9)

where Ω ⊂ Rn is a bounded domain and proves the existence of a global attractor in the space H2
0(Ω) × L2(Ω).

Haibin Xiao [22] considers the long-time behavior of the plate equation

εutt + �2u + λut + β(x)u = f (x, u), x ∈ Ω = Rn, t � 0

on the unbounded domain Rn . Moreover he shows that there exists a compact global attractor for the above equation under
certain initial–boundary data.

In 2008, Hao [10] discusses the nonlinear thermoelastic plate equations⎧⎪⎪⎨
⎪⎪⎩

utt − �ut + �(�u + θ) + f (u) = 0,

θt − �ut +
∞∫

k(s)
[−�θ(t − s)

]
ds = 0, x ∈ Ω

(1.10)
0
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where Ω ⊂ R2 is a bounded domain, and proves the existence and uniqueness of a global solution as well as the existence
of a global attractor.

In this paper, our objective is to prove the existence and uniqueness of the global solution and the existence of the global
attractor for the system (1.1)–(1.4). The outline of this paper is as follows: the definitions and assumption are presented in
Section 2. In Section 3 we give the existence and uniqueness of the global solution. In Section 4 we prove the existence
of the bounded absorbing set for the dynamic system of the Cauchy problem (1.1)–(1.4). Finally in Section 5 we prove the
existence of the global attractor of the system (1.1)–(1.4).

2. Definitions and assumption

In this paper, we use standard notation ‖ · ‖ in L2(Ω). And, in the standard L2 space, the scalar product and norm are
denoted by

(w, v) =
∫
Ω

w v dx dy, ‖w‖2 =
∫
Ω

|w|2 dx dy.

Sometimes, the function w = w(x, y, t) will simply be denoted by w(t) when the x, y-variable is not in consideration. Our
analysis is based on the Sobolev spaces

V = {
w ∈ H1

0(Ω) ∩ H2(Ω)
}
,

H = L2(Ω),

V 1 = {
w ∈ H1

0(Ω) ∩ H4(Ω)
∣∣ wxx(0, y) = wxx(1, y) = w yy(x,0) = w yy(x,1) = 0

}
,

E = V × H,

E1 = V 1 × V .

3. The existence and uniqueness of the global solution

In this section, using Galerkin method we may easily prove the existence and uniqueness of the global weak solution
and strong solution for the system (1.1)–(1.4). The main results are as follows.

Theorem 1. Let the initial data {w0, w1} belongs to E = V × H, then there exists a function w(t) with

w(t) ∈ L∞(0, T ; V ) and wt(t) ∈ L∞(0, T ; H)

such that w(t) satisfies the initial conditions (1.4) and Eq. (1.1) in the sense that

(wtt ,ϕ) + D

ρ
(wxx,ϕxx) + 2D

ρ
(wxy,ϕxy)

+ D

ρ
(w yy,ϕyy) + εμ

ρ
(wt ,ϕ) −

(
N1

ρ
+ T

2ρ

∫
Ω

w2
x dx dy

)
(wxx,ϕ)

−
(

N2

ρ
+ T

2ρ

∫
Ω

w2
y dx dy

)
(w yy,ϕ) = 0, for all ϕ ∈ V . (3.1)

In the following we give the proof of the existence of the weak solution.

Proof. This is done with the Galerkin approximations. Let {ω j(x, y)} be a Galerkin basis of V , and let Vm be the subspace
generated by the first m vectors ω1, . . . ,ωm . We search for a function

wm(x, y, t) =
m∑

i=1

gim(t)ωi(x, y) (3.2)

satisfying the approximating equation

(
wm

tt ,ω
j) + D

ρ

(
wm

xx,ω
j
xx

) + 2D

ρ

(
wm

xy,ω
j
xy

)
+ D

ρ

(
wm

yy,ω
j
yy

) + εμ

ρ

(
wm

t ,ω j) −
(

N1

ρ
+ T

2ρ

∫ (
wm

x

)2
dx dy

)(
wm

xx,ω
j)
Ω
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−
(

N2

ρ
+ T

2ρ

∫
Ω

(
wm

y

)2
dx dy

)(
wm

yy,ω
j) = 0 (1 � j � m) (3.3)

with the initial conditions

wm(0) = w0m → w0 in V , wm
t (0) = w1m → w1 in H . (3.4)

By standard methods in differential equations, we prove the existence of solution to the approximating problem
(3.3)–(3.4) on some interval [0, tm). After the estimates below the approximating solution wm(t) will be extended to the
interval [0, T ], for any given T > 0.

The following estimates show among other things that tm = T . Multiply (3.3) by
dg jm(t)

dt and sum for j = 1, . . . ,m. After
using Young inequality, we obtain that

1

2

d

dt

{∥∥wm
t

∥∥2 + D

ρ

∥∥wm
xx

∥∥2 + 2D

ρ

∥∥wm
xy

∥∥2 + D

ρ

∥∥wm
yy

∥∥2

+ N1

ρ

∥∥wm
x

∥∥2 + T

4ρ

∥∥wm
x

∥∥4 + N2

ρ

∥∥wm
y

∥∥2 + T

4ρ

∥∥wm
y

∥∥4
}

� 0. (3.5)

Integrating (3.5) from 0 to t (< tm) yields the inequality∥∥wm
t

∥∥2 + D

ρ

∥∥wm
xx

∥∥2 + 2D

ρ

∥∥wm
xy

∥∥2 + D

ρ

∥∥wm
yy

∥∥2

+ N1

ρ

∥∥wm
x

∥∥2 + T

4ρ

∥∥wm
x

∥∥4 + N2

ρ

∥∥wm
y

∥∥2 + T

4ρ

∥∥wm
y

∥∥4

�
∥∥w1m

∥∥2 + D

ρ

∥∥w0m
xx

∥∥2 + 2D

ρ

∥∥w0m
xy

∥∥2 + D

ρ

∥∥w0m
yy

∥∥2

+ N1

ρ

∥∥w0m
x

∥∥2 + T

4ρ

∥∥w0m
x

∥∥4 + N2

ρ

∥∥w0m
y

∥∥2 + T

4ρ

∥∥w0m
y

∥∥4
. (3.6)

Noticing the initial conditions

wm(0) = w0m → w0 in V , wm
t (0) = w1m → w1 in H,

we think that there exists a constant M1 > 0 independent of m and t such that∥∥wm
t

∥∥2 + D

ρ

∥∥wm
xx

∥∥2 + 2D

ρ

∥∥wm
xy

∥∥2 + D

ρ

∥∥wm
yy

∥∥2 + N1

ρ

∥∥wm
x

∥∥2

+ T

4ρ

∥∥wm
x

∥∥4 + N2

ρ

∥∥wm
y

∥∥2 + T

4ρ

∥∥wm
y

∥∥4 � M1 (3.7)

for all t ∈ [0, T ] and for all m ∈ N . Then the approximating solution wm(t) can be extended to the whole interval [0, T ].
The estimates just derived, together with the Poincaré lemma, show that{

wm}
is bounded in L∞(0, T ; V ),{

wm
t

}
is bounded in L∞(0, T ; H)

and {∥∥wm
x

∥∥2
wm

xx

}
is bounded in L∞(0, T ; H),{∥∥wm

y

∥∥2
wm

yy

}
is bounded in L∞(0, T ; H).

In particular, {wm} is bounded in H1(Q ), where Q = Ω × [0, T ]. Thus we may extract a subsequence {wμ} of {wm} with
the properties

wμ → w in L∞(0, T ; V ) weak∗,
wμ

t → wt in L∞(0, T ; H) weak∗,
wμ → w in L2(Q ) strongly and a.e.

and ∥∥wμ
x

∥∥2
wμ

xx → ‖wx‖2 wxx in L∞(0, T ; H) weak∗,∥∥wμ
y

∥∥2
wμ

yy → ‖w y‖2 w yy in L∞(0, T ; H) weak∗.
Then these convergence properties establish the theorem. �
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Theorem 2. The solution w(x, y, t) of Theorem 1 is unique.

Proof. Let w, v be two solutions of (3.1) with the same initial data. Then writing p = w − v , we can obtain p0 = p0
x = p0

y =
p0

xx = p0
yy = p0

xy = p1 = 0. From (3.1) we have

(ptt,ϕ) + D

ρ
(pxx,ϕxx) + 2D

ρ
(pxy,ϕxy)

+ D

ρ
(p yy,ϕyy) + εμ

ρ
(pt ,ϕ) −

(
N1

ρ
pxx + N2

ρ
p yy,ϕ

)

= T

2ρ

((∫
Ω

w2
x dx dy

)
wxx −

(∫
Ω

v2
x dx dy

)
vxx,ϕ

)

+ T

2ρ

((∫
Ω

w2
y dx dy

)
w yy −

(∫
Ω

v2
y dx dy

)
v yy,ϕ

)
. (3.8)

Putting ϕ = pt into (3.8), we have

1

2

d

dt

{
‖pt‖2 + D

ρ
‖pxx‖2 + 2D

ρ
‖pxy‖2 + D

ρ
‖p yy‖2 + N1

ρ
‖px‖2 + N2

ρ
‖p y‖2

}
+ εμ

ρ
‖pt‖2

= T

2ρ

(‖wx‖2 wxx − ‖vx‖2 vxx, pt
) + T

2ρ

(‖w y‖2 w yy − ‖v y‖2 v yy, pt
)
. (3.9)

Using Cauchy–Schwartz inequality to the first item of the right hand side in (3.9), we get

T

2ρ

(‖wx‖2 wxx − ‖vx‖2 vxx, pt
)

= T

2ρ

(
‖wx‖2

∫
Ω

pxx pt dx dy +
∫
Ω

px(wx + vx)dx dy

∫
Ω

vxx pt dx dy

)

� C
(‖pxx‖2 + ‖pt‖2 + ‖px‖2 + ‖pt‖2)

where C is some positive constant in this paper. Similarly,

T

2ρ

(‖w y‖2 w yy − ‖v y‖2 v yy, pt
)
� C

(‖p yy‖2 + ‖pt‖2 + ‖p y‖2 + ‖pt‖2).
From (3.9) it is easy checked that for some constant C > 0

1

2

d

dt

(
‖pt‖2 + D

ρ
‖pxx‖2 + 2D

ρ
‖pxy‖2 + D

ρ
‖p yy‖2 + N1

ρ
‖px‖2 + N2

ρ
‖p y‖2

)

� C

(
‖pt‖2 + D

ρ
‖pxx‖2 + 2D

ρ
‖pxy‖2 + D

ρ
‖p yy‖2 + N1

ρ
‖px‖2 + N2

ρ
‖p y‖2

)
. (3.10)

Then an application of the Gronwall’s lemma for (3.10) leads to

‖pt‖2 + D

ρ
‖pxx‖2 + 2D

ρ
‖pxy‖2 + D

ρ
‖p yy‖2 + N1

ρ
‖px‖2 + N2

ρ
‖p y‖2

� C

(∥∥p1
∥∥2 + D

ρ

∥∥p0
xx

∥∥2 + 2D

ρ

∥∥p0
xy

∥∥2 + D

ρ

∥∥p0
yy

∥∥2 + N1

ρ

∥∥p0
x

∥∥2 + N2

ρ

∥∥p0
y

∥∥2
)

exp(C T ). (3.11)

And noticing p0 = p0
x = p0

y = p0
xx = p0

yy = p0
xy = p1 = 0, from (3.11) we see that w = v . �

Theorem 3. Suppose (w0, w1) ∈ E1 = V 1 × V , then we conclude that there exists a unique strong solution w(t) with

w(t) ∈ L∞(0, T ; V 1), wt(t) ∈ L∞(0, T ; V ), wtt(t) ∈ L∞(0, T ; H)

such that w(t) satisfies the initial condition (1.4) and the equation

wtt + D

ρ
�2 w + εμ

ρ
wt −

(
N1

ρ
+ T

2ρ

∫
Ω

w2
x dx dy

)
wxx −

(
N2

ρ
+ T

2ρ

∫
Ω

w2
y dx dy

)
w yy = 0 in L∞(0, T ; H).
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Proof. The proof closely follows that of Theorem 1. We use the basic ω j(x, y) of V 1. The approximating solution wm(t) is
of the form

wm(t) =
m∑

i=1

gim(t)ωi

and satisfies the equation

wm
tt + D

ρ
�2 wm + εμ

ρ
wm

t −
(

N1

ρ
+ T

2ρ

∫
Ω

(
wm

x

)2
dx dy

)
wm

xx −
(

N2

ρ
+ T

2ρ

∫
Ω

(
wm

y

)2
dx dy

)
wm

yy = 0 (3.12)

in [0, tm] subject to the initial conditions

wm(0) = w0m → w0 in V 1, wm
t (0) = w1m → w1 in V .

The basic estimates (3.7) hold as before, and show that tm = T . Now let us obtain an estimate for wm
tt (0) in the L2-norm.

Taking the scalar product of (3.12) with wm
tt (0) and t = 0 and integrating it by parts, we get

∥∥wm
tt (0)

∥∥2 =
∣∣∣∣
(

− D

ρ
�2 w0m − εμ

ρ
w1m +

(
N1

ρ
+ T

2ρ

∫
Ω

(
w0m

x

)2
dx dy

)
w0m

xx

+
(

N2

ρ
+ T

2ρ

∫
Ω

(
w0m

y

)2
dx dy

)
w0m

yy , wm
tt (0)

)∣∣∣∣.
Using Cauchy–Schwartz inequality and taking into account of the initial conditions, we get that there exists a positive
constant M2 > 0 such that∥∥wm

tt (0)
∥∥ � M2 ∀m ∈ N. (3.13)

Differentiating Eq. (3.12) with respect to the time t , and taking the scalar product with wm
tt (t), using Cauchy–Schwartz

inequality and Gronwall inequality, and considering initial conditions and the estimates (3.13), we may find a constant
M3 > 0 depending only on T such that

∥∥wm
tt

∥∥2 + D

ρ

∥∥wm
xxt

∥∥2 + 2D

ρ

∥∥wm
xyt

∥∥2 + D

ρ

∥∥wm
yyt

∥∥2

+ N1

ρ

∥∥wm
xt

∥∥2 + N2

ρ

∥∥wm
yt

∥∥2 � M3 ∀m ∈ N, ∀t ∈ [0, T ]. (3.14)

Taking the scalar product of (3.12) with −(wm
xxt + wm

yyt), taking into account of the estimates (3.7) and (3.14) and using
some inequalities, we conclude that there exists a constant M4 > 0 such that

∥∥wm
xt

∥∥2 + ∥∥wm
yt

∥∥2 + D

ρ

∥∥wm
xxx

∥∥2 + 3D

ρ

∥∥wm
xxy

∥∥2 + 3D

ρ

∥∥wm
xyy

∥∥2 + D

ρ

∥∥wm
yyy

∥∥2

+ N1

ρ

∥∥wm
xx

∥∥2 + N1

ρ

∥∥wm
xy

∥∥2 + N2

ρ

∥∥wm
yy

∥∥2 + N2

ρ

∥∥wm
xy

∥∥2 � M4. (3.15)

Also taking the scalar product of (3.12) with wm
xxyyt + wm

xxxxt + wm
yyyyt and with a class of reasoning we think that there

exists a constant M5 independent of m and t such that

∥∥wm
xxt

∥∥2 + ∥∥wm
xyt

∥∥2 + ∥∥wm
yyt

∥∥2 + D

ρ

∥∥wm
xxxx

∥∥2 + 2D

ρ

∥∥wm
xxyy

∥∥2

+ D

ρ

∥∥wm
yyyy

∥∥2 + D

ρ

∥∥wm
xxxy

∥∥2 + 2D

ρ

∥∥wm
xxyy

∥∥2 + D

ρ

∥∥wm
xyyy

∥∥2 + N1

ρ

∥∥wm
xxx

∥∥2

+ N1

ρ

∥∥wm
xyy

∥∥2 + N1

ρ

∥∥wm
xxy

∥∥2 + N2

ρ

∥∥wm
yyy

∥∥2 + N2

ρ

∥∥wm
xxy

∥∥2 + N2

ρ

∥∥wm
xyy

∥∥2

� M5. (3.16)

Using the estimates (3.7), (3.14), (3.15) and (3.16) just derived, Poincaré inequality and the methods of Theorem 1, it is easy
to show the existence of a subsequence {wμ} of {wm} such that
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wμ → w in L∞(0, T ; V 1) weak∗,

wμ
t → wt in L∞(0, T ; V ) weak∗,

wμ
tt → wtt in L∞(0, T ; H) weak∗,

wμ → w in H1(Q ) strongly and a.e.,∥∥wμ
x

∥∥2
wμ

xx → ‖wx‖2 wxx in L∞(0, T ; V ) weak∗,∥∥wμ
y

∥∥2
wμ

yy → ‖w y‖2 w yy in L∞(0, T ; V ) weak∗.

These convergence properties establish the theorem. �
Remark 3.1. Theorems 1–3 are sufficient to allow us to define the mapping

S(t) :
(

w0, w1) �→ (w, wt) for all t ∈ R+,

where w(t) is the unique generalized solution to problem (1.1)–(1.4) with initial data (w0, w1). It maps from E = V × H
into itself and even E1 = V 1 × V into itself. Moreover it enjoys the usual semigroup properties

S(t + s) = S(t)S(s) ∀t, s � 0,

S(0) = I.

Hence it organizes a dynamic system. It is easily checked that the semigroup S(t) in E and E1 is continuous for all t � 0.
To prove the attractor of the system, in the following we will prove the existence of an absorbing set.

4. The existence of the bounded absorbing set in space E = V × H

Theorem 4. Suppose εμ � 1
4 and D

ρ � 3
2 in (1.1). Then for the dynamic system of the Cauchy problem (1.1)–(1.4) there exists the

boundary absorbing set in space E, that is; the bounded closed ball B E(0, R) = {(w, wt) ∈ E,‖(w, wt)‖E � R} (R2 >
17(N2

1+N2
2)

6ρT ).

Usually, proving the existence of absorbing set amounts to proving a priori estimates.

Proof. Take the scalar product of (1.1) with 2wt in H to get

d

dt

{
‖wt‖2 + D

ρ
‖wxx‖2 + 2D

ρ
‖wxy‖2 + D

ρ
‖w yy‖2 + N1

ρ
‖wx‖2

+ T

4ρ
‖wx‖4 + N2

ρ
‖w y‖2 + T

4ρ
‖w y‖4

}
+ 2εμ

ρ
‖wt‖2 = 0. (4.1)

For η fixed (arbitrary at the moment), also take the scalar product of (1.1) with ηw in H to get

d

dt

(
η(wt , w)

) − η‖wt‖2 + ηD

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2)
+ ηεμ

2ρ

d

dt
‖w‖2 + ηN1

ρ
‖wx‖2 + ηT

2ρ
‖wx‖4 + ηN2

ρ
‖w y‖2 + ηT

2ρ
‖w y‖4 = 0 (4.2)

where 0 < η � 1. Then (4.1) plus (4.2) is as follows

d

dt

{
‖wt‖2 + D

ρ
‖wxx‖2 + 2D

ρ
‖wxy‖2 + D

ρ
‖w yy‖2 + N1

ρ
‖wx‖2

+ T

4ρ
‖wx‖4 + N2

ρ
‖w y‖2 + T

4ρ
‖w y‖4 + η(wt , w) + ηεμ

2ρ
‖w‖2

}

+ 2εμ

ρ
‖wt‖2 − η‖wt‖2 + ηD

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2)
+ ηN1

ρ
‖wx‖2 + ηT

2ρ
‖wx‖4 + ηN2

ρ
‖w y‖2 + ηT

2ρ
‖w y‖4 = 0.
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Writing

L(t) = D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) + ‖wt‖2

+ N1

ρ
‖wx‖2 + T

4ρ
‖wx‖4 + N2

ρ
‖w y‖2 + T

4ρ
‖w y‖4 + η(wt , w) + ηεμ

2ρ
‖w‖2

and

Y (t) = 2εμ

ρ
‖wt‖2 − η‖wt‖2 + ηD

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2)
+ ηN1

ρ
‖wx‖2 + ηT

2ρ
‖wx‖4 + ηN2

ρ
‖w y‖2 + ηT

2ρ
‖w y‖4,

we have

2

η
Y (t) − L(t) = D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) + N1

ρ
‖wx‖2 + N2

ρ
‖w y‖2

+ 3T

4ρ
‖wx‖4 + 3T

4ρ
‖w y‖4 +

(
4εμ

ηρ
− 3

)
‖wt‖2 − η(wt, w) − ηεμ

2ρ
‖w‖2

� D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) + 3T

4ρ

[(
‖wx‖2 + 2N1

3T

)2

+
(

‖w y‖2 + 2N2

3T

)2

− 4N2
1

9T 2
− 4N2

2

9T 2

]
+

(
4εμ

ηρ
− 3

)
‖wt‖2 − η

2
‖wt‖2 − η

2
‖w‖2 − ηεμ

2ρ
‖w‖2.

Because of w(0, y, t) = w(1, y, t) = w(x,0, t) = w(x,1, t) = 0, there exist points α,β such that wx(α, y, t) = w y(x, β, t) = 0
from the Roll theorem. By Poincaré inequality we get

‖w‖2 � 1

4
‖wxx‖2, ‖w‖2 � 1

4
‖w yy‖2.

Also as wx(x,0, t) = wx(x,1, t) = 0, there exists a point γ such that wxy(x, γ , t) = 0 from the Roll theorem. By Poincaré
inequality we also have

‖w‖2 � 1

4
‖wxy‖2.

So it follows that

2

η
Y (t) − L(t) �

(
16D

ρ
− η

2
− ηεμ

2ρ

)
‖w‖2 +

(
4εμ

ηρ
− 3 − η

2

)
‖wt‖2 − N2

1

3Tρ
− N2

2

3Tρ
.

As 0 < η � min( 32D
ρ+εμ ,

√
9 + 8εμ

ρ − 3, 1
4ρ ,1), we have

2

η
Y (t) − L(t) � − N2

1

3Tρ
− N2

2

3Tρ
.

Furthermore

d

dt
L(t) + η

2
L(t) � η

2

(
N2

1

3Tρ
+ N2

2

3Tρ

)
. (4.3)

On the one hand, using the classical Gronwall inequality, we deduce from (4.3)

L(t) � L(0)exp

(
−η

2
t

)
+

(
N2

1

3Tρ
+ N2

2

3Tρ

)[
1 − exp

(
−η

2
t

)]

� L(0)exp

(
−η

2
t

)
+

(
N2

1

3Tρ
+ N2

2

3Tρ

)
. (4.4)

On the other hand, considering D � 3 , η < 1 and εμ � 1 , we have
ρ 2 4ρ 4
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L(t) = D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) + ‖wt‖2 + N1

ρ
‖wx‖2

+ T

4ρ
‖wx‖4 + N2

ρ
‖w y‖2 + T

4ρ
‖w y‖4 + η(wt, w) + ηεμ

2ρ
‖w‖2

� D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) − N2
1

ρT
− N2

2

ρT
+ (1 − 2ρη)‖wt‖2 + η

(
εμ − 1

4

2ρ

)
‖w‖2

� D

ρ

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) − N2
1

ρT
− N2

2

ρT
+ 1

2
‖wt‖2

� 3

2

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2) − N2
1

ρT
− N2

2

ρT
+ 1

2
‖wt‖2

� 1

2

(‖wxx‖2 + ‖w yy‖2 + 2‖wxy‖2 + ‖wt‖2) − N2
1

ρT
− N2

2

ρT

� 8

17

(‖wxx‖2 + ‖w yy‖2 + ‖wxy‖2 + ‖wx‖2 + ‖w y‖2 + ‖w‖2 + ‖wt‖2) − N2
1

ρT
− N2

2

ρT

= 8

17

∥∥(w, wt)
∥∥2

E − N2
1

ρT
− N2

2

ρT
. (4.5)

By (4.4) and (4.5) we get

8

17

∥∥(w, wt)
∥∥2

E − N2
1

ρT
− N2

2

ρT
� L(0)exp

(
−η

2
t

)
+ N2

1

3ρT
+ N2

2

3ρT
.

Hence we have∥∥(w, wt)
∥∥2

E � 17

8
L(0)exp

(
−η

2
t

)
+ R2

0 (4.6)

where R2
0 = 17N2

1+17N2
2

6Tρ . So

lim sup
t→∞

∥∥(w, wt)
∥∥2 � R2

0. (4.7)

The balls B E(0, R) of E centered at 0 of radius R > R0 are absorbing in E for the semigroup S(t), t � 0. We choose
R ′

0 > R0 and set ß0 = B E (0, R ′
0). If ß is any bounded set of E , S(t)ß ⊂ ß0 for t � t0(ß, R ′

0); the time t0 is easily computed
from (4.6)

t0 = 2

η
ln

17
8 L(0)

(R ′
0)

2 − R2
0

. (4.8)

Thus

B E(0, R) = {
(w, wt) ∈ E;∥∥(w, wt)

∥∥
E � R

} (
R2 >

17N2
1 + 17N2

2

6Tρ

)
is the bounded absorbing set of S(t) in E . �
Remark 4.1. The existence of an absorbing set of system is an evidence of the dissipative property.

5. The existence of the global attractor of the system

In order to prove the existence of the global attractor, we introduce the following lemma.

Lemma 1. (See [17].) We assume that E ′ is a Banach space and that operator S(t) is given and enjoys the following conditions:

(1) The usual semigroup properties

S(t + s) = S(t)S(s) ∀t, s � 0,

S(0) = I (identity in E).

(2) S(t) is continuous nonlinear operator from E ′ into itself.
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(3) S(t) exists a bounded absorbing set in E ′ .
(4) The operator S(t) is uniformly compact for t large. By this we mean that for every bounded set ß there exists t0 which may depend

on ß such that⋃
t�t0

S(t)ß

is relatively compact in E ′ . that is, S(t) is a completely continuous operator.

Then S(t) exists a compact attractor which attracts the bounded sets of E ′ .

From Lemma 1, we now need to prove the existence of a bounded absorbing set in E1 and the uniform compactness of
the S(t).

Theorem 5. The semigroup S(t) is a completely continuous operator.

Proof. We proceed as in Theorem 4, we begin with the analog of (4.1) which is obtained by taking the scalar product
of (1.1) with 2(wxxxxt + w yyyyt) in H to get

d

dt

{
‖wxxt‖2 + ‖w yyt‖2 + D

ρ
‖wxxxx‖2 + D

ρ
‖w yyyy‖2 + 2D

ρ
‖wxxyy‖2

+ 2D

ρ
‖wxxxy‖2 + 2D

ρ
‖wxyyy‖2 + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2) + N2

ρ

(‖w yyy‖2 + ‖wxxy‖2)}

+ 2εμ

ρ

(‖wxxt‖2 + ‖w yyt‖2) − T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt)

− T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt) = 0. (5.1)

For η fixed, also take the scalar product of (1.1) with η(wxxxx + w yyyy) in H to get

d

dt
(wt , ηwxxxx + ηw yyyy) − (wt , ηwxxxxt + ηw yyyyt) + ηεμ

2ρ

d

dt

(‖wxx‖2 + ‖w yy‖2)
+ ηD

ρ

(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2 + 2‖wxxxy‖2 + 2‖wxyyy‖2)
+ ηN1

ρ

(‖wxxx‖2 + ‖wxyy‖2) + ηN2

ρ

(‖wxxy‖2 + ‖w yyy‖2) − T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy)

− T

2ρ
‖w y‖2(w yy, ηwxxxx + ηw yyyy) = 0. (5.2)

Then (5.1) plus (5.2) is as follows

d

dt

{
D

ρ
‖wxxxx‖2 + 2D

ρ
‖wxxyy‖2 + 2D

ρ
‖wxxxy‖2 + 2D

ρ
‖wxyyy‖2

+ D

ρ
‖w yyyy‖2 + ‖wxxt‖2 + ‖w yyt‖2 + + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2) + N2

ρ

(‖wxxy‖2 + ‖w yyy‖2)
+ ηεμ

2ρ

(‖wxx‖2 + ‖w yy‖2) + (
wt, ηwxxxx + ηw yyyy

)} − (wt , ηwxxxxt + ηw yyyyt)

+ ηD

ρ

(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2 + 2‖wxxxy‖2 + 2‖wxyyy‖2)
+ ηN1

ρ

(‖wxxx‖2 + ‖wxyy‖2) + ηN2

ρ

(‖wxxy‖2 + ‖w yyy‖2)
+ 2εμ

ρ

(‖wxxt‖2 + ‖w yyt‖2) − T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt)

− T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt) − T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy)

− T ‖w y‖2(w yy, ηwxxxx + ηw yyyy) = 0.

2ρ
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Noting that

L1(t) = D

ρ
‖wxxxx‖2 + 2D

ρ
‖wxxyy‖2 + 2D

ρ
‖wxxxy‖2 + 2D

ρ
‖wxyyy‖2

+ D

ρ
‖w yyyy‖2 + ‖wxxt‖2 + ‖w yyt‖2 + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2)
+ N2

ρ

(‖wxxy‖2 + ‖w yyy‖2) + ηεμ

2ρ

(‖wxx‖2 + ‖w yy‖2) + (wt, ηwxxxx + ηw yyyy)

and

Y1(t) = ηD

ρ

(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2 + 2‖wxxxy‖2 + 2‖wxyyy‖2)
− (wt, ηwxxxxt + ηw yyyyt) + ηN1

ρ

(‖wxxx‖2 + ‖wxyy‖2)
+ ηN2

ρ

(‖wxxy‖2 + ‖w yyy‖2) + 2εμ

ρ

(‖wxxt‖2 + ‖w yyt‖2)
− T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt) − T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt)

− T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy) − T

2ρ
‖w y‖2(w yy, ηwxxxx + ηw yyyy),

we have

2

η
Y1(t) − L1(t) = D

ρ
‖wxxxx‖2 + 2D

ρ
‖wxxyy‖2 + 2D

ρ
‖wxxxy‖2 + 2D

ρ
‖wxyyy‖2

+ D

ρ
‖w yyyy‖2 +

(
4εμ

ηρ
− 3

)(‖wxxt‖2 + ‖w yyt‖2) + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2)
+ N2

ρ

(‖wxxy‖2 + ‖w yyy‖2) − ηεμ

2ρ

(‖wxx‖2 + ‖w yy‖2) − (wt, ηwxxxx + ηw yyyy)

+ 2

η

{
− T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt) − T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt)

− T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy) − T

2ρ
‖w y‖2(w yy, ηwxxxx + ηw yyyy)

}
.

With −(wt , ηwxxxx + ηw yyyy) � − η2

2 (‖wxx‖2 + ‖w yy‖2) − 1
2 (‖wxxt‖2 + ‖w yyt‖2) and D

ρ � 3
2 , we have

2

η
Y1(t) − L1(t) � 3

2

(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2 + 2‖wxxxy‖2 + 2‖wxyyy‖2)
+

(
4εμ

ηρ
− 7

2

)(‖wxxt‖2 + ‖w yyt‖2) + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2)

+ N2

ρ

(‖wxxy‖2 + ‖w yyy‖2) +
(

−ηεμ

2ρ
− η2

2

)(‖wxx‖2 + ‖w yy‖2)
+ 2

η

{
− T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt) − T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt)

− T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy) − T

2ρ
‖w y‖2(w yy, ηwxxxx + ηw yyyy)

}
.

Because of

2

η

{
− T

2ρ
‖wx‖2(wxx,2wxxxxt + 2w yyyyt) − T

2ρ
‖w y‖2(w yy,2wxxxxt + 2w yyyyt)

− T

2ρ
‖wx‖2(wxx, ηwxxxx + ηw yyyy) − T

2ρ
‖w y‖2(w yy, ηwxxxx + ηw yyyy)

}

� − T
R2(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2 + 2‖wxxt‖2 + 2‖w yyt‖2) − ‖wxxxx‖2 − ‖w yyyy‖2 − 2T

R6
ηρ ρ
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we have

2

η
Y1(t) − L1(t) �

(
1

2
− T R2

ηρ

)(‖wxxxx‖2 + ‖w yyyy‖2 + 2‖wxxyy‖2)

+
(

4εμ

ηρ
− 7

2
− 2T R2

ηρ

)(‖wxxt‖2 + ‖w yyt‖2)

+
(

12 − ηεμ

2ρ
− η2

2

)(‖wxx‖2 + ‖w yy‖2) − 2T

ρ
R6.

As 2T
ρ R2 � η � min{ 8εμ−4T R2

7ρ ,− εμ
2ρ +

√
ε2μ2

4ρ2 + 24, η1}, we have

2

η
Y1(t) − L1(t) � −2T

ρ
R6

where η1 = min( 32D
ρ+εμ ,

√
9 + 8εμ

ρ − 3, 1
4ρ ,1). It follows that

dL1(t)

dt
+ η

2
L1(t) � η

2

2T

ρ
R6. (5.3)

If {w0, w1} belongs to a bounded ß of E1, since ß is also bounded in E , then there exists a time t0 given by (4.7) such that
for t � t0, S(t)ß ⊂ ß0, which implies that∥∥(w, wt)

∥∥2
E �

(
R ′

0

)2
.

On the one hand thanks to the classical Gronwall lemma we infer from (5.3) that

L1(t) � L1(0)exp

(
−η

2
(t − t0)

)
+ 2T

ρ
R6

(
1 − exp

(
−η

2
(t − t0)

))
(5.4)

for t � t0. On the other hand, considering that at least η � 1, we have

(wt , ηwxxxx + ηw yyyy) � −1

4

(‖wxxxt‖2 + 2‖w yyyt‖2) − 1

2

(‖wxxx‖2 + 2‖w yyy‖2).
With a class of reasoning, we get

L1(t) � 3

2

(‖wxxxx‖2 + 2‖wxxyy‖2 + 2‖wxxxy‖2 + 2‖wxyyy‖2 + ‖w yyyy‖2)
+ ‖wxxt‖2 + ‖w yyt‖2 + N1

ρ

(‖wxxx‖2 + ‖wxyy‖2) + N2

ρ

(‖wxxy‖2 + ‖w yyy‖2)
+ ηεμ

2ρ

(‖wxx‖2 + ‖w yy‖2) + (wt, ηwxxxx + ηw yyyy)

� 1

2

∥∥(w, wt)
∥∥2

E1
. (5.5)

From (5.4) and (5.5) we have∥∥(w, wt)
∥∥2

E1
� 2L1(0)exp

(
−η

2
(t − t0)

)
+ 4T

ρ
R6

[
1 − exp

(
−η

2
(t − t0)

)]
(5.6)

for t � t0. Defining R1 by R2
1 = 4T R6

ρ , we see that

lim sup
t→∞

∥∥(w, wt)
∥∥2

E1
� R2

1. (5.7)

It follows that the ball ß1 = B E1 (0, R ′
1) centered at (0) of radius R ′

1 > R1 of E1 is absorbing in E1 for the semigroup S(t),

t � 0. The time t1 = t1(ß, R ′
1) after which S(t)ß is included in ß1, the time t1 = t1(ß, R ′

1) � t0 + t′
1, t′

1 = 2
η ln 2L1(0)

(R ′
1)2−R2

1
. This

result provides the uniform compactness of S(t). That is, S(t) is completely continuous operator. The proof is complete. �
From Lemma 1 and Theorems 1–5, we may push out the following Theorem 6.

Theorem 6. The dynamic system S(t) associated with boundary-value problem (1.1)–(1.4) possesses a compact attractor 
 which is
bounded in E1 .

Proof. We apply Lemma 1 with E ′ replaced by E . The necessary assumptions of Lemma 1 have been proved above, namely
in Theorems 1–5. �
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