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Abstract: Transformations of the form x = tanh( g( t)) for g(t) = t” and for g(t) = c sinh( t), as well as transformations 
of the error function type are employed on double and triple singular integrals. Extensions of the one-dimensional 
approach allow variable limit multiple integrals to be attempted successfully. Some shortcomings of the double 
exponential or DE rule are exposed in the comparisons. Finally, comparison is made with the method of good lattice 
points (Sugihara, 1987). 
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1. Introduction 

The transformation 

x = tanh( t”) 

has been studied extensively for handling one-dimensional singular integrals by Takahasi and 
Mori [8], Mori [5,6] and Evans, Forbes and Hyslop [4]. The higher derivatives of the function 
vanish exponentially at + cc allowing the trapezium rule to behave as a very high order 
technique, and at the same time the singularity is removed. 

More recently Ail-tie and Evans [l] extended this technique to two dimensions by considering 
integrals of the form 

I= /;I/;J(xy Y) dx dy, 

where a linear transformation is employed to reduce any general finite range to ( - 1, 1). 
By setting x = tanh IX” and y = tanh /3”, (1) becomes 

(1) 

Co 

I=n2 J J f(tanh an, tanh pn)( a/?)n-l sech’a” sech2P” da d/3. 
--m -02 

(2) 
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Two strategies were then adopted in implementing (2). First a further transformation was 
initiated by making the substitution 

a=rcos 8 and P=r sine, 

in (2) so yielding 

I= r2 
cc 2ll 

Jl G(r cos 0, r sin f?)r dr do, 
0 0 

where 

and 

G(a, p) = g(a, j3)(@)n-1sech2a” sech2P”, 

g(a, p) =f(tanh a*, tanh p’). 

The trapezoidal rule was applied to (3) to give 

(3) 

I = n2h2 g ij2TG( ih cos 8, ih sin 0) de. 
i=o 0 

(4) 

Clenshaw-Curtis quadrature was then used to complete the evaluation of (4) from 0 to 2~. The 
total effect of this was that integration was carried out in concentric circles until further 
contributions to the quadrature were insignificant, 

The other strategy was to invoke the trapezoidal rule in both dimensions. Hence (2) was 
evaluated as 

I = 4n2h,h2x Cf(tanh cry, tanh /3;)( aiPj)n-l sech2an sech2by, 
i j 

(5) 

where (Y~ and pj are the trapezoidal rule points and i and j cover the region of significant 
contributions to the quadrature. In implementing (5) it was necessary to set up a grid in the 
infinite plane whose boundary was determined by the monitoring of the values of the integrand. 

By exactly the same philosphy the error function transformation can also be implemented. 
Here instead of the tanh transformation in (1) we adopt the substitutions 

x=g(t) and v=g(u), (6) 

where 

g(t) = cite-u2n du. 

As demonstrated by Aihie and Evans [2], g(t) maps the interval (- 1, 1) into (- cc, co); hence 
(1) becomes 

I = ,‘jm jrn f( g( t), g(u)) e-‘*’ e-“*’ dt du. 
--m --oo 

(7) 

As in (3), if we adopt the substitution 

t=rcos 8 and u=r sine, 

we have 

(8) 

I = c2JoZTJoh( r cos f3), g(r sin 0)) e(rcose)2” e-” sin ‘)‘” r dr de. (9) 
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Now putting 

fM4 g(4) = WY 4 and B(t, U) = b(t, U) e-‘2”e-U2n, 

reduces equation (9) to 

I=c2 
2-n m 

If B(r cos 8, r sin 6)r dr do, 
0 0 

(10) 

so allowing either strategy to be employed. 
Finally the double exponential or DE transformation defined by 

x = tanh( c sinh CY) 

and 

Y = tanh( c sinh CY) 

(11) 

(12) 

was employed with c = 1. This transformation is generally accepted as resulting in a quadrature 
rule with errors which are asymptotically smaller than the earlier transformations of equations 
(2) and (9) [6]. Hence the quadrature rule is now 

I = 4c2h,h2~ xf(tanh( c sinh ai), tanh( c sinh P,)) 
i j 

x sech2( c sinh ai) sech2( c sinh P,) cosh( CX;) cosh( bj), 
(13) 

which corresponds to (5) for the simple tanh( t”) transformation. 

2. Extension to variable limits 

In the preparation of this work the authors have been presented with some examples which 
have previously proved intractable. One such example is 

fJdld20-x2-yZln]Y2-x]dxdY. (14) 

Here the singularities lie inside the region of integration and it is natural to evaluate the 
integral in two parts, splitting the region at the boundary of discontinuity. This results in the two 
integrals 

/*r’/_ In 1 y2 -x 1 dx dy + 12i:/w In 1 y2 -x 1 dx dy, 
0 0 

(15) 
which requires a variable limit to be handled. This is achieved by the simple device, in terms of 
programming, of including a transformation of the local inner integration range for a current 
outer integration point to the standard range ( - 1, 1). Hence a transformation of the form 

x2=(b(Y)-a(Y))+r+W(Y)+a(Y)) (16) 

is used where the subprogramme parameters for the limits are now themselves functions of the 
outer integration range y. This code can be used without any marked loss of speed for the 
previous cases with singularities at fixed points. The results for these integrals are presented in 
Section 4. 
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3. Extension to three dimensions 

The design of the code was so arranged to allow easy extension to higher dimensions. Again 
by analogy with two dimensions, two situations arise in halving the step size and reusing 
existing function values for a progressive rule. These are illustrated in Fig. 1. 

The bold lines indicate the first set of points. Along these x-directions new intermediate points 
can be simply added in. This is the first situation. However subdivision in the y-direction will 
result in intermediate search directions with no existing points (the light lines). For these 
directions a search using the current step length is made to fix the relevant end-point for the new 
line. This is the second situation. 

Clearly in three dimensions, a two-dimensional search is required in the equivalent situation to 
fix a whole plane of new intermediate points for a given new intermediate z-value. The above 
two-dimensional procedure is also required to complete the addition of points to the planes with 
the original z-values. This is a clear case of recursion from a computational point of view in 
which a search routine with dimension as a parameter can call itself as required. In practice, 
however, it is rare to require the same routine to perform for varying dimension. FG~ the purpose 
of these tests a separate three-dimensional routine was used. 

A further problem which arises with high dimensions is the high number of function 
evaluations needed to effect even a low accuracy quadrature. With singularities present efficient 
one-dimensional quadratures use the order of 30 points for 8 figure accuracy. A three-dimen- 
sional equivalent is of order 27,000. In fact this is an overestimate as often the singular part is 
handled in only one of the quadratures. However, if progression is used to confirm accuracy of 
an integral by step reduction, a halving of the step size in all dimensions yields an enormous 
function count at the second step. In the two-dimensional cases only one such subdivision was 
executed for this reason: in three dimensions even this could prove excessive. 

Instead the search step was adjusted to allow a more accurate run to be made without having 
to halve the step size. 

first intermediate line 

initial search line 

Fig. 1. Progressive search pattern for first quadrant. 
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Again the three-dimensional version used the variable limit implementation of Section 2, and 
both used the doubly infinite range strategy of (5). The possible criticism of the Clenshaw-Curtis 
and trapezoidal combination is that on the range [0, 001 the trapezoidal rule is not being used on 
an integrand with all its higher derivatives vanishing at the two end-points-the theoretical basis 
of the high accuracy obtained. Though this is the case at cc, at 0 only the first few derivatives 
vanish because of the terms (Cup)“-’ in (3) with r dr d8 gives a power r2n-1. Hence in practice 
this approach is not obviously less good than the alternative of integrating r from (- cc, cc) and 
then letting 8 go from (0, IT). 

At first sight it looks as though having all the higher derivative end-points to vanish is a 
laudable end. However such vanishing does not make the trapezoidal rule arbitrarily accurate. 
The reason is that the error term in the Euler-Maclaurin sum on which this work is based is an 
asymptotic series. An experiment was carried out with a well-behaved series of integrals using a 
Romberg-like approach to see at which term the error series terminated in practice. The results 
gave a quite low order cut off around order five-much in line with the findings above for the 
limit at zero. This is also why for nonsingular integrals such a method is not competitive with a 
straight application of Clenshaw-Curtis or Patterson. 

All the examples use an integrand programmed as a function of two variables for each actual 
variable, being the distances from each end of the range of integration of the actual variable. 
This technique is discussed in [l] and a specific example is illustrated in the three-dimensional 
examples. 

4. Tests and results 

In Table 1, seven test integrals which have been considered in [l] are now evaluated with the 
error function transformation and the results compared with the original tanh form and the DE 
transformation. In making comparisons it must be remembered that for n # 1 the error function 
transformation is not a standard function and hence some extra effort is required to evaluate the 
transformation as discussed in [2]. 

Both the Clenshaw-Curtis trapezoidal rule combination and the trapezoidal product rule were 
implemented with the error function transformation. It was found that the error transformation 
yielded integrals which proved considerably less amenable to completion by Clenshaw-Curtis 
than the original tanh transformation. Hence for example on 1, with 7738 points a value of 
1.66624372 resulted, the errors arising from the inability of the Clenshaw-Curtis quadrature to 
handle the transformed integral. 

As a product rule however the error function is competitive with tanh, though more involved 
to implement for n > 1. For integrals with singular integrands, the DE transform performs best 
of the group, but quite poor performance is observed on integrals I, and I, which have 
singularities in their first derivatives. 

In Table 2, three examples which involve variable limits and hence curves of singularities were 
evaluated. The analytic values of these integrals are, in general, not known and hence a straight 
application of a Gauss-Legendre product rule was used as a reliable way of obtaining a low 
accuracy value. The tanh transformation and the DE rule were employed, as the gain in function 
evaluations in using the error function would seem to be outweighed by the extra work in 
evaluating the transformation g(t) itself, the integrands being of a simple nature. 
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Table 2 
Values for non end-point singular integrals 

Integral Gauss results tanh rule 

n=3 n=3 n=5 DE 

Is = ’ ‘sitP2(xy) In lx3 JJ - y3 1 dx d y - 0.706841938 * - 0.70682656 - 0.70682640 - 7.06826448 - 0.70682654 
0 Cl 

(256) (739) (2823) (1669) (536) 

z9 = JJ o1 011x-y11/2dxdg true value 0.5333333 0.5333333 0.5333333 

i% (740) (1662) (234) 

I,, = Jo’rffjSq - 2.38911408 - 2.4420488 - 2.4420485 - 2.4420488 - 2.4420486 

xlnly’-xldxdy (256) (843 + 895) (3273 + 3427) (1806+ 1891) (620-t 662) 

* Gauss-Legendre and a Gauss-ln formula were used here. The figures in parentheses represent the number of 
function evaluations. 

Integrals I, and I9 were evaluated as 
1 Y 

2 
JS 

sW2( xy) In 1 x3 -y3(dxdy and 2 1 
JJ 

ylx-y11/2 dx dy (17) 
0 0 0 0 

because of their symmetry about x = y, integral I,, was split into the two integrals shown in (15) 
and the function count for both halves is shown. Integral I9 is now linear and is resolved to 
machine accuracy without recourse to further subdivision. The progressive subdivision yields 
good agreement in I, and I,,, demonstrating well the power of the method. 

In Table 3 five three-dimensional singular integrals have been evaluated with the extended 
code. The analytic values of four of these integrals have been found and quoted for reference. In 
the case of example 1i4 a Gauss product rule was used as a means of obtaining a low accuracy 
value as a check against a m&-program occurring in the main code. The integral in 1i4 required 
splitting to ensure that the singularities were at the end-points of the dynamic range. Hence the 
integral 1i4 was written as 

1 1 1 114 = JJJ sid'2(xyz) dx dy dz 

0 0 0 (Ix+y-z1)3'4 

1 1 
-t us 1 sirP2 (xyz) 

l-X(x+y-z)3’4 
dy dx dz= 1141 + 1142 + 1143, say. 

0 0 

As in all the examples the integrand is programmed as a function of two variables for each actual 
variable giving six in three dimensions, i.e., f(x,, y,, zi, x2, y2, z2) where xi is the distance of x 
from the lower end-point and x2 is the distance from the upper end-point. Hence as in all the 
previous work cancellation in evaluating the integrand near the singularity is eliminated. Hence 

in 1141 wehavez=x+y+z,= 1.0 - z2, and so the denominator is coded as ( z~)~/~. A further 
problem of cancellation can occur in variable limit examples and in 1i41 it is required to evaluate 
1.0 - x -y for the range of integration in the z-variable. Cancellation occurs when x + y - 1.0, 



152 V. U. Aihie, G.A. Evans / Multiple singular integrals 

Table 3 
Values for three-dimensional singular integrals 

Integral Analytic values tanh product rule, n = 3 DE rule 

= = = I,,= 

/// 

dx dy dz 
(J c c l-cosxcosycosz 

4nK2(;fi) = 43.1980665 43.198325 43.3234143 43.210988 

(78208) (10722) (77432) 

* = = Z,,= 
/// 

dx dy dz 

3-g(x,y)-g(x,z)-g(y,z) 
fi=K’(sin q/12) =13.897646 13.8976554 13.9288723 13.9019318 

0 0 0 
and g(x, y) = cos x cos y (72848) (10324) (71032) 

n n n Z,,= 
/// 

dx dy dz 
3-cosx-cosy-cosz 4+tr[18 + 12fi - 106 - 76’1 15.672138 15.703623 15.676757 0 0 o 

1 1 

//I 
1 

114 = 

sin”’ (xyz ) 

o a o []x+y-z]]3’4dxdydz 

x K*[(2- fi)(fi -a)] (65812) (9425) (62456) 
= 15.67249525 

0.29757191 0.297572564 

(58444) (7956) 
0.365749083 0.365748588 
(57733) (7947) fail 
0.30981519 0.309817251 
(52901) (7584) 

Ix*+ y2+z2-f(dxdydz 7 + &n = 7.026179936 7.018352808 7.019202288 7.02053952 

(21143) (9551) (63167) 

C By comparison Romberg yields 15.641116 in 653 function evaluations [3] for Z13 and 7.01853 in 653 function 
evaluations for I,,. 

I> 

Z,, with 203 functions evaluations, yields 
( 

0.252831619 
0.300018810 by Gauss-Legendre. 
0.30973640 

Z,4 values are for Z14t, Zt42 and Zt4r, respectively. 

which is also the region of singular behaviour. Hence a special form for the integration range was 
introduced to avoid this problem. 

Hence if x’ = tanh q, and y’ = tanh PI, with q = a3 and PI = p3, then 

x’zl- 2 -1+ 2 2 
2 

= e2a1 + 1 1 + e-2cr1 and y’=l- eZP,+l = -1+ 1 + ,-*PI ’ 

where x’ and y’ satisfy the linear transformations 

x=q(x’+l) and y=$(l-x)(y’+l). 

Hence 

l-x-y= 
1 1 

1 + e2ar1 1 + e2B1 ’ 
so avoiding the cancellation. 

The example I4 causes some difficulties for the DE transformation because of the necessity to 
approach the singularity very closely-in fact well beyond the limit of overflow before the 
contributions to the integral have been made negligible by the sech* terms. This can be seen by 
considering the x-variable, say, which is at a distance from the singularity of order 6 = 
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expP2(sinh a) for large CX. Hence the function values are of order 1/cY314. On the other hand, 
the transformed function is multiplied by sech2(sinh CX) cash (Y which for large (Y is of order 
4 expm2(sinh CI) cash CL Hence these terms are of the same order excluding the effect of cash (Y, 
and relatively large (Y is required before the multiplying term dominates the singularity. The 
machine used for the computations has an exponent limit of 1O38 and this was easily exceeded in 
this case. The effect is less marked for the simple tanh an transformation which was able to 
handle this example. 

The first column of values in Table 3 used H = 0.1 and the second column used H = 0.2 to 
give a comparison and test of achieved accuracy. To complete the comparison the DE rule results 
are shown in column 3. Even for the order of 10,000 points, values correct to 3 figures are 
obtained; this accuracy rises to around 7 figures at around 60,000 points. The DE rule is less 
good on these examples where the dimensionality effect of having to integrate a nonsingular 
function is present. By comparison the results from [3] which “ignore the singularity” are both 
expensive and inaccurate. 

Finally, comparison was made with the results of Sugihara [7]. Sugihara combines the method 
of good lattice points with the DE rule for singular (and indeed general) integrands over a 
hypercube. Hence these examples are less general than those attempted in the earlier tables, in 
particular in Tables 2 and 3. 

The number of quadrature points used by Sugihara for a given accuracy have been read off 
from the graphical results given in his paper. The comparison with the above methods is 
illustrated in Table 4. The integrals considered were 

I = 1 lexd-b+_d 
16 

JJ 
\ixv 

dx dy = 7~ erf 2(1) = 2.2309851, 
0 0 

1 1 

I17 = lJ 
dx dy 

0 0 (O.l+~+y)~ sinnx+sinTy ’ 

I = l 1 
18 

IJJ 

lexp(-(x+Y+z)) dxdydz+)3/2 

\ixyz 

erf 3(1) = 3.3323071, 
0 0 0 

1 1 1 

119 = lJl 
dx dy dz 

’ 0 0 0 (0.1 +x+y+z)2\lw(x)w(y) +w(y)w(z) +w(z)w(x) 

where 

w(a) = sin 71(~. 

In all four cases the accuracy obtained for a given number of points is comparable across the 

Table 4 

Integral tanhrule, n=3 

Error Number of points 

Sugihara [ 71 

Number of points 

I 16 -4.9 (-6) 355 200 
Z 17 1.5 (-7) 1168 900 
Z 18 -2.1 (-7) 13786 13000 
Z 19 6.8 (-5) 10763 llooo 
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methods. The integrals were also computed using the DE rule and again the two-dimensional 
cases gave similar accuracy; II6 reaching an error of 0.2( - 7) in 854 points (Sugihara used about 
800 points), and II7 reaching 0.21( - 6) in 611 points (Sugihara using 500). However as in Table 3 
the three-dimensional results were less good than either the tanh t3 transformation or than 
Sugihara. 

5. Conclusions 

A number of conclusions can be drawn from these tests. Firstly, the slight gain in using an 
error function transformation with say n = 3 would only be significantly advantageous if the 
integrands were themselves expensive to evaluate, when any saving becomes worthwhile. The 
relevant simplicity of tanh in a product rule certainly is attractive when complications such as 
variable limits and higher dimensions are tackled. For general use it is unreasonable to expect a 
user to contend with nonstandard functions when the gain is not considerable. This could be 
overcome by publishing a minimum rational approximation to the required functions over the 
relevant range. 

The DE transformation is generally the most efficient rule for singular, low dimensional 
integrands but this rule is less good for dealing with integrands with singular derivatives and can 
enhance overflow problems in some cases. The rule is less good if singularities are absent and 
this can prove a problem in high dimensional quadratures where the singularity affects only one 
of the dimensions. The choice reduces to one of robustness with a slight loss of speed against 
efficiency with occasional failures. Equally a method which will cope with variable limit 
singularities will not be quite as fast as a more restricted algorithm for a specific integration 
range such as that of Sugihara. 

The capability of the methods on the integrals with their singularities on internal curves shows 
efficiency and the experience gained in running the algorithm suggests a high level of robustness. 
On the three-dimensional cases it is of note that II4 is particularly hard with singular derivatives 
from the sin1/2( xyz) term compounded with a power of $ in the denominator. 
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