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1. Introduction

In this article, we are concerned with the system of equations

∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

) = f in Ω, (1.1)

where the unknown u = (u1, u2, u3) and the inhomogeneous term f = ( f 1, f 2, f 3) are vector valued
functions defined on a (possibly unbounded) domain Ω ⊆ R

3, and the coefficients a(x) and b(x) are
positive scalar functions on Ω that are measurable and bounded away from zero and infinity. It should
be noted from the beginning that the above system (1.1) is elliptic. As a matter of fact, the following
vector identity
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∇ × (∇ × u) − ∇(∇ · u) = −�u (1.2)

implies that in the case when a and b are constants, the above system reduces to

−a�u + (a − b)∇(∇ · u) = f in Ω,

which (under the assumption that a > 0 and b > 4a/3) becomes the Lamé system of linearized elas-
tostatics in dimension three; see e.g., Dahlberg et al. [4]. A special case of the system (1.1) is the
following system

∇ × (
a(x)∇ × u

) = 0, ∇ · u = 0 in Ω, (1.3)

which arises from Maxwell’s equations in a quasi-static electromagnetic field, where the displacement
of the electric current is neglected; see e.g., Landau et al. [21, Chapter VII]. In [14], the authors proved
that weak solutions of the system (1.3) are Hölder continuous in Ω; see also Yin [25]. It is an interest-
ing result because in general, weak solutions of elliptic systems with bounded measurable coefficients
in dimension three or higher are not necessarily continuous; see De Giorgi [6]. Another motivation for
studying the system (1.1) comes from an interesting article by Giaquinta and Hong [10], where they
considered the following equations involving differential forms:

d∗(σ(x)dA
) = 0, −d∗ A = 0 in Ω, (1.4)

where σ(x) ∈ L∞(Ω) is a function with σ1 � σ(x) � σ2, σ1 and σ2 being two positive constants,
A is a one-form, dA is its exterior differential, and d∗ denotes the adjoint of d (i.e., d∗ = δ, the
codifferential). Related to the well-known result of De Giorgi [5] on elliptic equations, they raised
an interesting question of whether any weak solution A of Eqs. (1.4) is Hölder continuous in Ω . In
the three dimensional setting, Eqs. (1.4) become the system (1.3), and thus, in dimension three, a
positive answer was given in [14]. Conversely, in terms of differential forms, the system (1.1) with
f = 0 becomes

d∗(a(x)dA
) + d

(
b(x)d∗ A

) = 0 in Ω; A = u1 dx1 + u2 dx2 + u3 dx3.

Similar to the question raised by Giaquinta and Hong [10], it is natural to ask whether weak solutions
of the above equations are Hölder continuous in Ω . We hereby thank Marius Mitrea for suggesting
this question to us.

In this article, we prove that weak solutions of the system (1.1) are Hölder continuous in Ω assum-
ing a minimal condition on f , and thus give a positive answer to the above question in dimension
three; see Theorem 3.1 below for the precise statement. With this Hölder estimate at hand, we are
able to show that there exists a unique Green’s function G(x, y) of the system (1.1) in an arbitrary
domain Ω ⊆ R

3, and it has the natural bound

∣∣G(x, y)
∣∣ � N|x − y|−1

for all x, y ∈ Ω such that 0 < |x − y| < dx ∧ dy , where dx := dist(x, ∂Ω), a ∧ b := min(a,b), and N is a
constant independent of Ω . In particular, when Ω = R

3, the above estimate holds for all x �= y; see
Theorem 6.2 and Remark 6.7 below. It also follows that the heat kernel K t(x, y) of the system (1.1)
exists in any domain Ω , and in the case when Ω = R

3, we have the following usual Gaussian bound
for K t(x, y); see Theorem 7.13 below:

∣∣K t(x, y)
∣∣ � Nt−3/2 exp

{−κ |x − y|2/t
}
, ∀t > 0, x, y ∈ R

3.
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Another goal of this article is to establish a global Hölder estimate for weak solutions of the sys-
tem (1.3) in bounded Lipschitz domains. More precisely, we consider the following Dirichlet problem

⎧⎨
⎩

∇ × (
a(x)∇ × u

) = f + ∇ × g in Ω,

∇ · u = h in Ω,

u = 0 on ∂Ω,

(1.5)

where Ω is a bounded, simply connected Lipschitz domain. We prove that the weak solution u of
the above problem (1.5) is uniformly Hölder continuous in Ω under some suitable conditions on the
inhomogeneous terms f , g , and h; see Theorem 3.4 for the details. This question of global Hölder
regularity for weak solutions of the system (1.3) turned out to be a rather delicate problem and was
not discussed at all in [14]. Yin addressed this issue in [25], but it appears that there is a serious flaw
in his proof; he also considered a similar problem with a more general boundary condition in [26],
but it seems to us that his argument there regarding estimate near the boundary has a gap too.
Utilizing the above mentioned global Hölder estimate for weak solutions of the system (1.5), we show
that the Green’s function G(x, y) of the system (1.3) in Ω has the following global bound:

∣∣G(x, y)
∣∣ � N

{
dx ∧ |x − y|}α{

dy ∧ |x − y|}α|x − y|−1−2α, ∀x, y ∈ Ω, x �= y,

where 0 < α < 1; see Theorem 6.6 for the details. In that case, we also have the following global
estimate for the heat kernel K t(x, y) of the system (1.3) in Ω: For all T > 0, there exists a constant
N such that for all x, y ∈ Ω and 0 < t � T , we have

∣∣K t(x, y)
∣∣ � N

(
1 ∧ dx√

t ∨ |x − y|
)α(

1 ∧ dy√
t ∨ |x − y|

)α

t−3/2 exp
{−κ |x − y|2/t

}
,

where κ > 0 and α ∈ (0,1) are constants independent of T , and we used the notation a ∨ b =
max(a,b); see Theorem 7.15 below. At the moment, it is not clear to us whether or not any global
Hölder estimate is available for weak solutions of the full system (1.1) with zero Dirichlet boundary
data.

The organization of the paper is as follows. In Section 2, we introduce some related notation and
definitions. In Section 3, we state our main theorems and give a few remarks concerning extensions
of them. The proofs of our main results are given in Section 4 and some applications of them are
presented in Section 5. We devote Section 6 entirely to the study of the Green’s functions of the
system (1.1), and Section 7 to the investigation of the parabolic system and the heat kernels associated
to the system (1.1).

2. Notation and definitions

2.1. Basic notation

The basic notation used in this article are those employed in Gilbarg and Trudinger [11]. A function
in bold symbol such as u means that it is a three dimensional vector valued function; ∇ · u denotes
div u, ∇ × u denotes curl u, and ∇u denotes the gradient matrix of u. Throughout the article, Ω

denotes a (possibly unbounded) domain in R
3 (i.e., an open connected set in R

3) and ∂Ω denotes its
boundary. For a domain Ω with C1 boundary ∂Ω , we denote by n the unit outward normal to ∂Ω .
Let L be the operator of the form

Lu := ∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

)

whose coefficients are measurable functions on Ω satisfying the following condition:

ν � a(x),b(x) � ν−1, ∀x ∈ Ω, for some ν ∈ (0,1]. (2.1)
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For x ∈ Ω and r > 0, we denote Br(x) the open ball of radius r centered at x and

Ωr(x) := Ω ∩ Br(x); (∂Ω)r(x) := ∂Ω ∩ Br(x).

We write S ′ � S if S ′ has a compact closure in S; S ′ is strictly contained in S .

2.2. Function spaces

The Hölder spaces Ck,α(Ω) (Ck,α(Ω)) are defined as the subspaces of Ck(Ω) (Ck(Ω)) consisting
of functions whose k-th order partial derivatives are uniformly Hölder continuous (locally Hölder
continuous) with exponent α in Ω . For simplicity we write

C0,α(Ω) = Cα(Ω), C0,α(Ω) = Cα(Ω),

with the understanding 0 < α < 1 whenever this notation is used. We set

‖u‖Cα(Ω) = |u|0,α;Ω = [u]α;Ω + |u|0;Ω := sup
x,y∈Ω

x�=y

|u(x) − u(y)|
|x − y|α + sup

Ω

|u|.

For p � 1, we let L p(Ω) denote the classical Banach space consisting of measurable functions on Ω

that are p-integrable. The norm in L p(Ω) is defined by

‖u‖p;Ω = ‖u‖L p(Ω) =
( ∫

Ω

|u|p dx

)1/p

.

For p � 1 and k a non-negative integer, we let W k,p(Ω) the usual Sobolev space; i.e.

W k,p(Ω) = {
u ∈ Lp(Ω): Dαu ∈ Lp(Ω) for all |α| � k

}
.

We denote by C∞
0 (Ω) the set of all functions in C∞(Ω) with compact support in Ω . Some other

notations are borrowed from Galdi [8] and Malý and Ziemer [23]. Setting

D = D(Ω) = {
u ∈ C∞

0 (Ω): ∇ · u = 0 in Ω
}
,

for q ∈ [1,∞) we denote by Hq(Ω) the completion of D(Ω) in the norm of Lq . The space Y 1,2(Ω)

is defined as the family of all weakly differentiable functions u ∈ L6(Ω), whose weak derivatives are
functions in L2(Ω). The space Y 1,2(Ω) is endowed with the norm

‖u‖Y 1,2(Ω) := ‖u‖L6(Ω) + ‖∇u‖L2(Ω).

If |Ω| < ∞, then Hölder’s inequality implies that Y 1,2(Ω) ⊂ W 1,2(Ω). We define Y 1,2
0 (Ω) as the

closure of C∞
0 (Ω) in Y 1,2(Ω). In the case Ω = R

3, we have Y 1,2(R3) = Y 1,2
0 (R3). Notice that by the

Sobolev inequality, it follows that

‖u‖L6(Ω) � N‖∇u‖L2(Ω), ∀u ∈ Y 1,2
0 (Ω). (2.2)

Therefore, we have W 1,2
0 (Ω) ⊂ Y 1,2

0 (Ω) and W 1,2
0 (Ω) = Y 1,2

0 (Ω) if |Ω| < ∞; see [23, §1.3.4]. In par-

ticular, if Ω is a bounded domain, then we have Y 1,2
0 (Ω) = W 1,2

0 (Ω).
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2.3. Lipschitz domain

We say that Ω ⊂ R
3 is a (bounded) Lipschitz domain if

(i) Ω is a bounded domain; i.e.

diam Ω := sup
{|x − y|: x, y ∈ Ω

}
< ∞.

(ii) There are constants M and r0 > 0, called Lipschitz character of ∂Ω , such that for each P ∈ ∂Ω ,
there exists a rigid transformation of coordinates such that P = 0 and

Ω ∩ Br0 = {
x = (

x′, x3
) ∈ R

3: x3 > ϕ
(
x′)} ∩ Br0; Br0 = Br0(0),

where ϕ : R
2 → R is a Lipschitz function such that ϕ(0) = 0, with Lipschitz constant less than or

equal to M; i.e.

∣∣ϕ(
x′) − ϕ

(
y′)∣∣ � M

∣∣x′ − y′∣∣, ∀x′, y′ ∈ R
2.

2.4. Weak solutions

We say that u is a weak solution in Y 1,2(Ω) of the system (1.1) if

∫
Ω

a(∇ × u) · (∇ × φ) + b(∇ · u)(∇ · φ) =
∫
Ω

f · φ, ∀φ ∈ C∞
0 (Ω). (2.3)

We say that a function u is a weak solution in Y 1,2
0 (Ω) of the problem

{∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

) = f in Ω,

u = 0 on ∂Ω,
(2.4)

if u belongs to Y 1,2
0 (Ω) and satisfies the identity (2.3). By a weak solution in Y 1,2

0 (Ω) of the prob-

lem (1.5), we mean a function u ∈ Y 1,2
0 (Ω) satisfying

∫
Ω

a(∇ × u) · (∇ × φ) =
∫
Ω

f · φ + g · (∇ × φ), ∀φ ∈ C∞
0 (Ω), (2.5)

∫
Ω

u · ∇ψ = −
∫
Ω

hψ, ∀ψ ∈ C∞
0 (Ω). (2.6)

By using the standard elliptic theory, one can easily prove the existence and uniqueness of a weak
solution of the problem (2.4) in Y 1,2

0 (Ω) provided f ∈ L6/5(Ω). Similarly, if f ∈ H6/5(Ω) and g ∈
L2(Ω), one can show that there exists a weak solution in Y 1.2

0 (Ω) of the problem (1.5) when h = 0;
in the more general case when h ∈ L6/5(Ω) and

∫
Ω

h = 0, one can show that there exists a unique
weak solution in Y 1.2

0 (Ω) of the problem (1.5) provided that Ω is a bounded Lipschitz domain; see
Appendix A for the proofs.
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3. Main results

Our first theorem says that if f ∈ Lq(Ω) with q > 3/2, then weak solutions of the system (1.1) are
locally Hölder continuous in Ω .

Theorem 3.1. Let Ω be a (possibly unbounded) domain in R
3 . Assume that a(x) and b(x) are measurable

functions on Ω satisfying the condition (2.1), and that u ∈ Y 1,2(Ω) is a weak solution of the system (1.1),
where f ∈ Lq(Ω) with q > 3/2. Then u is Hölder continuous in Ω , and for all B R = B R(x0) � Ω , we have the
following estimate for u:

Rα[u]α;B R/2 + |u|0;B R/2 � N
(

R−3/2‖u‖L2(B R ) + R2−3/q‖ f ‖Lq(B R )

)
, (3.2)

where α = α(ν,q) ∈ (0,1) and N = N(ν,q) > 0.

In order to establish a global Hölder estimate for weak solutions of the problem (1.5), we need to
impose some conditions on Ω . We shall assume that Ω is a bounded Lipschitz domain whose first
homology group H1(Ω;R) is trivial; i.e.,

H1(Ω;R) = 0. (3.3)

For example, if Ω is simply connected, then it satisfies the above condition. As mentioned in Sec-
tion 2.4, the existence and uniqueness of a weak solution in W 1,2

0 (Ω) of the problem (1.5) is
established by a standard argument; see Appendix A.

Theorem 3.4. Let Ω ⊂ R
3 be a bounded Lipschitz domain satisfying the condition (3.3). Let a(x) be a measur-

able function on Ω satisfying the condition (2.1) and u ∈ W 1,2
0 (Ω) be the weak solution of the problem (1.5),

where f ∈ Hq/2(Ω), g,h ∈ Lq(Ω) for some q > 3, and
∫
Ω

h = 0. Then, u is uniformly Hölder continuous in
Ω and satisfies the following estimate:

‖u‖Cα(Ω) � N
(‖ f ‖Lq/2(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)
, (3.5)

where α = α(ν,q,Ω) ∈ (0,1) and N = N(ν,q,Ω) > 0.

Related to the above theorems, several remarks are in order.

Remark 3.6. In Theorem 3.1, one may assume that a(x) is not a scalar function but a 3 × 3 symmetric
matrix valued function satisfying

ν|ξ |2 � ξ T a(x)ξ � ν−1|ξ |2, ∀ξ ∈ R
3, ∀x ∈ Ω, for some ν ∈ (0,1].

There is no essential change in the proof; see [17]. As a matter of fact, one may drop the symmetry
assumption on a(x) if one assume further that a ∈ L∞(Ω).

Remark 3.7. In Theorem 3.1, instead of assuming f ∈ Lq(Ω), one may assume that f belongs to the
Morrey space L p,λ with p = 6/5 and λ = 6(1+2δ)/5 for some δ ∈ (0,1); see the proof of Theorem 7.3
and Remark 7.6 in Section 7. The “interior” Morrey space L p,λ is defined to be the set of all functions
f ∈ L p(Ω) with finite norm

‖u‖L p,λ = sup
Br(x0)⊂Ω

(
r−λ

∫
B (x )

|u|p
)1/p

.

r 0
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Moreover, instead of the system (1.1), one may consider the following system:

∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

) = f + ∇ × F + ∇g in Ω.

One can show that weak solutions u of the above system are Hölder continuous in Ω if

f ∈ L6/5,6(1+2δ)/5, F ∈ L2,(1+2δ)/2, and g ∈ L2,(1+2δ)/2 for some δ ∈ (0,1).

In particular, if f ∈ Lq/2(Ω), F ∈ Lq(Ω), and g ∈ Lq(Ω) for q > 3, then weak solutions u ∈ Y 1,2(Ω) of
the above system are Hölder continuous in Ω . Moreover, in that case, we have the estimate

rα[u]α;Br/2 + |u|0;Br/2 � N
(
r−3/2‖u‖2;Br + r2−6/q‖ f ‖q/2;Br + r1−3/q‖F‖q;Br + r1−3/q‖g‖q;Br

)
,

whenever Br = Br(x0) � Ω , where α = α(ν,q) ∈ (0,1) and N = N(ν,q).

Remark 3.8. In Theorem 3.4, one may wish to consider the following problem with non-zero Dirichlet
boundary data, instead of the problem (1.5):

⎧⎨
⎩

∇ × (
a(x)∇ × u

) = f + ∇ × g in Ω,

∇ · u = h in Ω,

u = ψ on ∂Ω,

(3.9)

where one needs to assume the compatibility condition
∫
Ω

h = ∫
∂Ω

ψ · n instead of the condition∫
Ω

h = 0 in Theorem 3.4. If ψ is the trace of a Sobolev function w ∈ W 1,q(Ω) with q > 3, then

v := u − w is a solution of the problem (1.5) with g and h replaced respectively by g̃ and h̃, where

g̃ := g − a∇ × w, h̃ := h − ∇ · w ∈ Lq(Ω).

Notice that
∫
Ω

h̃ = 0. Therefore, by the estimate (3.5) and Morrey’s inequality, we have the following
estimate the weak solution u of the problem (3.9):

‖u‖Cα(Ω) � N
(‖ f ‖Lq/2(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω) + ‖w‖W 1,q(Ω)

)
,

where α = α(ν,q,Ω) ∈ (0,1) and N = N(ν,q,Ω) > 0. Recall that Ω ⊂ R
3 is assumed to be a bounded

Lipschitz domain. It is known that if ψ belongs to the Besov space Bq
1−1/q(∂Ω), then it can be ex-

tended to a function w in the Sobolev space W 1,q(Ω) in such a way that the following estimate
holds:

‖w‖W 1,q(Ω) � N‖ψ‖Bq
1−1/q(∂Ω),

where N = N(Ω,q); see e.g., Jerison and Kenig [13, Theorem 3.1]. Therefore, the following estimate is
available for the weak solution u of the problem (3.9):

‖u‖Cα(Ω) � N
(‖ f ‖Lq/2(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω) + ‖ψ‖Bq

1−1/q(∂Ω)

)
,

where α = α(ν,q,Ω) ∈ (0,1) and N = N(ν,q,Ω) > 0. The above estimate provides, in particular, the
global bounds for the weak solution u of the problem (3.9) in Ω . It seems to us that Theorem 3.4 is
the first result establishing the global boundedness of weak solutions of the Dirichlet problem (3.9)
in Lipschitz domains.
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4. Proofs of main theorems

4.1. Proof of Theorem 3.1

We shall make the qualitative assumption that the weak solution u is smooth in Ω . This can be
achieved by assuming coefficient a(x) and the inhomogeneous term f are smooth in Ω and adopting
the standard approximation argument. It should be clear from the proof that the constant α and N
will not depend on these extra smoothness assumption. By a standard computation (see e.g., [14,
Lemma 4.4]), we can derive the following Caccioppoli’s inequality for u:

Lemma 4.1 (Caccioppoli’s inequality). With u, f , and R as in the theorem, we have

∫
B2r

|∇ × u|2 + |∇ · u|2 � N

(
r−2

∫
B3r

|u|2 + ‖ f ‖2
L6/5(B3r)

)
; r = R/3.

We take the divergence in the system (1.1) to get

−�ψ = 0 in Ω; ψ := b∇ · u.

Denote B(x) = 1/b(x) and observe that u satisfies

∇ · u = Bψ in Ω. (4.2)

Next, we split u = v + w in Br = Br(x0), where r = R/3 and v is a solution of the problem

{∇ · v = Bψ − (Bψ)x0,r in Br,

v = 0 on ∂ Br,

where we used the notation

(Bψ)x0,r := −
∫

Br(x0)

Bψ.

We assume that the function v is chosen so that following estimate, which is originally due to Bo-
govskiı̌ [1], holds for v (see Galdi [8, §III.3]):

‖∇v‖L p(Br) � N
∥∥Bψ − (Bψ)x0,r

∥∥
L p(Br)

� N‖Bψ‖L p(Br), ∀p ∈ (1,∞); N = N(p). (4.3)

Since ψ is a harmonic function, the mean value property of ψ yields

‖ψ‖L p(Br) � Nr3/p−3/2‖ψ‖L2(B2r)
, ∀p ∈ (0,∞]; N = N(p). (4.4)

Combining the estimates (4.3) and (4.4), and then using (4.2) followed by Lemma 4.1 and Hölder’s
inequality, we get

‖∇v‖Lq(Br) � Nr3/q−5/2‖u‖L2(B3r)
+ Nr‖ f ‖Lq(B3r); N = N(ν,q). (4.5)

By the Sobolev inequality, (4.3), (4.2), Lemma 4.1, and Hölder’s inequality, we also estimate

‖v‖L2(B ) � Nr‖∇v‖L2(B ) � N
(‖u‖L2(B ) + r7/2−3/q‖ f ‖Lq(B3r)

)
. (4.6)
r r 3r
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On the other hand, note that w = u − v is a weak solution of the problem

{∇ × (
a(x)∇ × w

) = ∇ψ − ∇ × (
a(x)∇ × v

)
in Br,

∇ · w = (Bψ)x0,r in Br .

We remark that in the proof of [14, Theorem 2.1], we used the condition ∇ · u = 0 only to establish
the following equality (recall the identity (1.2) above),

∇ × (∇ × u) = −�u,

which can be also obtained by merely assuming that ∇ · u is constant. Therefore, by [14, Theorem 2.1
and Remark 2.10], we have (via a standard scaling argument)

rα[w]α;Br/2 � N
(
r−3/2‖w‖L2(Br)

+ r2−6/q‖∇ψ‖Lq/2(Br)
+ r1−3/q‖∇v‖Lq(Br)

)
, (4.7)

where α = α(ν,q) ∈ (0,1 − 3/q] and N = N(ν,q).
We estimate the RHS of (4.7) as follows. By the estimate (4.6), we have

‖w‖L2(Br)
� ‖u‖L2(Br)

+ ‖v‖L2(Br)
� N

(‖u‖L2(B3r)
+ r7/2−3/q‖ f ‖Lq(B3r)

)
. (4.8)

By a gradient estimate for harmonic functions followed by (4.2), Lemma 4.1, and Hölder’s inequality,
we get

‖∇ψ‖Lq/2(Br)
� Nr6/q−5/2‖ψ‖L2(B2r)

� N
(
r6/q−7/2‖u‖L2(B3r)

+ r3/q‖ f ‖Lq(B3r)

)
. (4.9)

By combining (4.7)–(4.9), and (4.5), we obtain

rα[w]α;Br/2 � N
(
r−3/2‖u‖L2(B3r)

+ r2−3/q‖ f ‖Lq(B3r)

)
.

By Morrey’s inequality followed by (4.5), we also get

[v]μ;Br � N
(
r−3/2−μ‖u‖L2(B3r)

+ r‖ f ‖Lq(B3r)

); μ = 1 − 3/q.

By combining the above two estimates and noting that α � μ = 1 − 3/q, we conclude

rα[u]α;Br/2 � N
(
r−3/2‖u‖L2(B3r)

+ r2−3/q‖ f ‖Lq(B3r)

)
. (4.10)

From the above estimate (4.10), we can estimate |u|0;Br/4 as follows. For all y ∈ Br/4, the triangle
inequality yields

∣∣u(y)
∣∣ �

∣∣u(x)
∣∣ + [u]α;Br/2(r/2)α, ∀x ∈ Br/4.

Taking the average over Br/4 in x, and then using Hölder’s inequality and (4.10), we get

∣∣u(y)
∣∣ �

(
−
∫
Br/4

|u|2
)1/2

+ N
(
r−3/2‖u‖L2(B3r)

+ r2−3/q‖ f ‖Lq(B3r)

)
.

Since the above estimate is uniform in y ∈ Br/4, we thus have

|u|0;Br/4 � N
(
r−3/2‖u‖L2(B3r)

+ r2−3/q‖ f ‖Lq(B3r)

)
. (4.11)

Recall that r = R/3. Therefore, the desired estimate (3.2) follows from (4.10) and (4.11) and the stan-
dard covering argument. The theorem is proved. �
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4.2. Proof of Theorem 3.4

We shall again make the qualitative assumption that the coefficient a(x), the inhomogeneous terms
f , g , h, and the domain Ω are smooth. By a standard elliptic regularity theory, we may then assume
that u is also smooth in Ω . In this proof, we denote by N a constant that depends only on ν , q,
and Ω , unless explicitly otherwise stated. It should be emphasized that those constants N employed
in various estimates below, do not inherit any information from the extra smoothness assumption
imposed on Ω; its dependence on Ω will be only that on the Lipschitz character M, r0 of ∂Ω and
diam Ω . Let us recall the following lemma, the proof of which can be found in [15].

Lemma 4.12. Let f ∈ D(Ω), where Ω is a domain in R
3 . Then, there exists F ∈ C∞(Ω) such that ∇ × F = f

in Ω . Moreover, for any p ∈ (1,∞), we have

‖∇ F‖L p(Ω) � N‖ f ‖L p(Ω); N = N(p).

By using the above lemma, we may write f = ∇ × F , where F ∈ C∞(Ω) satisfies the following
estimate

‖∇ F‖Lq/2(Ω) � N‖ f ‖Lq/2(Ω); N = N(q). (4.13)

Notice that u then satisfies

∇ × (
a(x)∇ × u − F − g

) = 0 in Ω. (4.14)

Let ϕ be a solution of the Neumann problem

{
�ϕ = ∇ · (a(x)∇ × u − F − g

)
in Ω,

∂ϕ/∂n = −(F + g) · n on ∂Ω,
(4.15)

where n denotes the outward unit normal vector of ∂Ω . Recall that ϕ is unique up to an additive
constant. We shall hereafter fix ϕ by assuming −

∫
Ω

ϕ = 0.

Lemma 4.16. With u and ϕ given as above, we have

∇ϕ = a(x)∇ × u − F − g in Ω. (4.17)

Proof. First we claim that the boundary condition u = 0 on ∂Ω implies that

(∇ × u) · n = 0 on ∂Ω. (4.18)

To see this, take any surface S ⊂ ∂Ω with a smooth boundary ∂S ⊂ ∂Ω . By Stokes’ theorem, we then
have

∫ ∫
S

(∇ × u) · n dS =
∫
∂S

u · dr = 0.

Since S is arbitrary and (∇ × u) · n is continuous, we have (∇ × u) · n = 0 on ∂Ω as claimed. Next,
we set

G = ∇ϕ − a(x)∇ × u + F + g.
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The lemma will follow if we prove that G ≡ 0 in Ω . By (4.14) we have ∇ × G = 0 in Ω , and thus
by the condition (3.3), there exists a potential ψ such that G = ∇ψ in Ω . Then by (4.15) and (4.18),
we find that ψ satisfies �ψ = 0 in Ω and ∂ψ/∂n = 0 on ∂Ω . Therefore, we must have G = ∇ψ = 0
in Ω . The lemma is proved. �

Hereafter, we shall denote A(x) = 1/a(x). It follows from (2.1) that

ν � A(x) � ν−1, ∀x ∈ Ω.

Observe that from (4.17) we have

0 = ∇ · (∇ × u) = ∇ · [A(x)(∇ϕ + F + g)
]
,

and thus by Lemma 4.16 we find that ϕ satisfies the following conormal problem:

{
div

(
A(x)∇ϕ

) = −div(A F + A g) in Ω,(
A(x)∇ϕ

) · n = −(A F + A g) · n on ∂Ω.
(4.19)

In the variational formulation, (4.19) means that we have the identity

∫
Ω

A∇ϕ · ∇ζ = −
∫
Ω

(A F + A g) · ∇ζ, ∀ζ ∈ W 1,2(Ω). (4.20)

In particular, by using ϕ itself as a test function, we get

‖∇ϕ‖L2(Ω) � N
(‖F‖L2(Ω) + ‖g‖L2(Ω)

); N = N(ν).

By Poincaré’s inequality (recall −
∫

Ω
ϕ = 0) and Hölder’s inequality, we then have

‖ϕ‖W 1,2(Ω) � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω)

)
.

Moreover, one can obtain the following estimate by utilizing (4.20) and adjusting, for example, the
proof of [11, Theorem 8.29] (see [20] and also [22, §VI.10]):

[ϕ]μ;Ω � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω)

); μ = μ(ν,q,Ω) ∈ (0,1). (4.21)

Then, by Campanato’s integral characterization of Hölder continuous functions (see e.g., [9, Theo-
rem 1.2, p. 70]), we derive from (4.21) that

∫
Ωr(x0)

|ϕ − ϕx0,r |2 � Nr3+2μ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω)

)2; ϕx0,r := −
∫

Ωr(x0)

ϕ. (4.22)

From the identity (4.20), we also obtain the following Caccioppoli’s inequality:

∫
Ωr/2(x0)

|∇ϕ|2 � Nr−2
∫

Ωr(x0)

|ϕ − ϕx0,r |2 + Nr3−6/q(‖F‖2
Lq(Ω) + ‖g‖2

Lq(Ω)

)
. (4.23)
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Setting γ = min(μ,1 − 3/q), and combining (4.22) and (4.23), we get the following Morrey–
Campanato type estimate for ∇ϕ:

∫
Ωr(x0)

|∇ϕ|2 � Nr1+2γ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω)

)2
, ∀x0 ∈ Ω, ∀r ∈ (0,diam Ω). (4.24)

Having the estimate (4.24) together with the boundary condition u = 0 on ∂Ω , which is assumed
to be locally Lipschitz, we now derive a global Hölder estimate for u as follows. Since ∇ · u = h,
by (1.2) and (4.17) we see that u satisfies

−�u = ∇ × (A∇ϕ) + ∇ × (A F + A g) − ∇h in Ω.

By Hölder’s inequality, we find that (recall γ � 1 − 3/q)

∫
Ωr(x0)

|F + g|2 � Nr1+2γ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω)

)2
, ∀x0 ∈ Ω, ∀r ∈ (0,diam Ω),

where we used the assumption that diamΩ < ∞. Similarly, Hölder’s inequality yields

∫
Ωr(x0)

|h|2 � Nr1+2γ ‖h‖2
Lq(Ω), ∀x0 ∈ Ω, ∀r ∈ (0,diam Ω).

Setting G := A(∇ϕ + F + g), we find that u satisfies

{−�u = ∇ × G − ∇h in Ω,

u = 0 on ∂Ω,
(4.25)

where G and h satisfies the following estimate for all x0 ∈ Ω and 0 < r < diam Ω:

∫
Ωr(x0)

|G|2 + |h|2 � Nr1+2γ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
. (4.26)

Observe that the identity (4.17) implies that ∇ × u enjoys the Morrey–Campanato type esti-
mate (4.24). The following lemma asserts that in fact, the “full gradient” ∇u satisfies a similar
estimate.

Lemma 4.27. With u given as above, there exists α = α(ν,q,Ω) ∈ (0,1) such that for all x0 ∈ Ω and 0 < r <

diam Ω , we have

∫
Ωr(x0)

|∇u|2 � Nr1+2α
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
. (4.28)

Proof. We decompose u = v + w in Ωr(x0), where v is the solution of

{−�v = 0 in Ωr(x0),

v = u on ∂Ω (x ).
r 0
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Notice that each vi (i = 1,2,3) is a harmonic function vanishing on (∂Ω)r(x0) ⊂ ∂Ω . By a well-
known boundary Hölder regularity theory for harmonic functions in Lipschitz domains, there exists
β = β(Ω) ∈ (0,1) and N = N(Ω) such that

∫
Ωρ(x0)

|∇v|2 � N

(
ρ

r

)1+2β ∫
Ωr(x0)

|∇v|2, ∀ρ ∈ (0, r]. (4.29)

On the other hand, observe that w = u − v is a weak solution of the problem

{−�w = ∇ × G − ∇h in Ωr(x0),

w = 0 on ∂Ωr(x0).

By using w itself as a test function in the above equations and utilizing (4.26), we derive

∫
Ωr(x0)

|∇w|2 � N

∫
Ωr(x0)

|G|2 + |h|2 � Nr1+2γ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
. (4.30)

By combining (4.29) and (4.30), we get for any ρ � r,

∫
Ωρ(x0)

|∇u|2 � N

(
ρ

r

)1+2β ∫
Ωr(x0)

|∇u|2 + Nr1+2γ
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
.

Take any α > 0 such that α < min(β,γ ) and applying a well-known iteration argument (see e.g. [9,
Lemma 2.1, p. 86]), for all x0 ∈ Ω and 0 < r < R � diam Ω , we have

∫
Ωr(x0)

|∇u|2 � N

(
r

R

)1+2α ∫
ΩR (x0)

|∇u|2 + Nr1+2α
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
.

The lemma follows from the above estimate (take R = diam Ω) and the estimate

∫
Ω

|∇u|2 � N

∫
Ω

|G|2 + |∇h|2 � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
, (4.31)

which is obtained by using u itself as a test function in (4.25) and then applying (4.26) with r =
diam Ω . The lemma is proved. �

We now estimate [u]α;Ω as follows. Denote by ũ the extension of u by zero on R
3 \Ω . Notice that

ũ ∈ W 1,2(R3) and ∇ ũ = χΩ∇u. Then by Poincaré’s inequality and (4.28), we find that for all x ∈ Ω

and 0 < r < diam Ω , we have

∫
Br(x)

|ũ − ũx,r |2 � Nr3+2α
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
.

By a standard argument in the boundary regularity theory, it is readily seen that the above estimate is
valid for all x ∈ B R(x0) and r < 2R , where x0 ∈ Ω and R = diam Ω . Therefore, by the Campanato’s in-
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tegral characterization of Hölder continuous functions, we find that ũ is uniformly Hölder continuous
in B R(x0) ⊃ Ω with the estimate

[ũ]α;B R (x0) � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)
. (4.32)

The above estimate (4.32) clearly implies that

[u]α;Ω � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)
. (4.33)

Finally, we estimate of |u|0;Ω similar to (4.11). For x0 ∈ Ω , the triangle inequality yields

∣∣u(x0)
∣∣ �

∣∣u(x)
∣∣ + [ũ]C0,α(B R (x0))Rα, ∀x ∈ Ω; R = diamΩ.

Taking the average over Ω in x, and then using Hölder’s inequality and (4.32), we have

∣∣u(x0)
∣∣ �

(
−
∫
Ω

|u|2
)1/2

+ N(diam Ω)α
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)
.

On the other hand, by (4.31) and the Poincaré’s inequality, we have

∫
Ω

|u|2 � N

∫
Ω

|∇u|2 � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)2
.

Therefore, by combining the above two inequalities, we obtain

|u|0;Ω � N
(‖F‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖Lq(Ω)

)
. (4.34)

The desired estimate (3.5) now follows from (4.33), (4.34), (4.13), and the Sobolev’s inequality. The
proof is complete. �
5. Applications

5.1. Quasi-linear system

As a first application, we consider the quasi-linear system,

∇ × (
A(x, u)∇ × u

) − ∇(
B(x, u)∇ · u

) = f in Ω. (5.1)

Here we assume A, B : Ω × R
3 → R satisfy the following conditions:

(i) ν � A, B � ν−1 for some constants ν ∈ (0,1].
(ii) A and B are Hölder continuous in Ω × R

3; i.e. A, B ∈ Cμ(Ω × R
3) for μ ∈ (0,1).

Theorem 5.2. Let A and B satisfy the above conditions and let u ∈ Y 1,2(Ω) be a weak solution of the sys-
tem (5.1) with f ∈ Lq(Ω) for q > 3. Then, we have u ∈ C1,α(Ω), where α = min(μ,1 − 3/q).

Proof. By Theorem 3.1, we know u ∈ Cβ(Ω) for some β ∈ (0,1). Then the coefficients a(x) :=
A(x, u(x)) and b(x) := B(x, u(x)) are Hölder continuous with some exponent γ ∈ (0,1). The rest of
proof relies on the well-known “freezing coefficients” method in Schauder theory and is omitted; cf.
[14, Theorem 2.2]. �
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Remark 5.3. In Theorem 5.2, if one assumes instead that A, B ∈ Ck,μ(Ω × R
3) and f ∈ Ck−1,μ(Ω)

with k ∈ Z+ and μ ∈ (0,1), then one can show that u ∈ Ck+1,μ(Ω); in particular, u becomes a classi-
cal solution of the system (5.1).

5.2. Maxwell’s system in quasi-static electromagnetic fields with temperature effect

As mentioned in the introduction, the problem (1.5) arises from the Maxwell’s system in a quasi-
static electromagnetic field. Especially, if the electric conductivity strongly depends on the temper-
ature, then by taking the temperature effect into consideration the classical Maxwell system in a
quasi-static electromagnetic field reduces to the following mathematical model (see Yin [24]):

⎧⎨
⎩

H t + ∇ × (
ρ(u)∇ × H

) = 0,

∇ · H = 0,

ut − �u = ρ(u) |∇ × H |2,
where H and u represent, respectively, the strength of the magnetic field and temperature while ρ(u)

denotes the electrical resistivity of the material, which is assumed to be bounded below and above
by some positive constants; i.e.,

ν � ρ � v−1 for some ν ∈ (0,1]. (5.4)

We are thus lead to consider the following Dirichlet problem in the steady-state case:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × (
ρ(u)∇ × H

) = 0 in Ω,

∇ · H = 0 in Ω,

H = Ψ on ∂Ω,

−�u = ρ(u) |∇ × H |2 in Ω,

u = φ on ∂Ω,

(5.5)

where we assume that Ψ and φ are functions in W 1,q(Ω) for q > 3. Existence of a pair of weak so-
lutions (H , u) was proved in Yin [24] and local Hölder continuity of the pair (H , u) in Ω was proved
by the authors in [14]. Here, we prove that the pair (H , u) is indeed uniformly Hölder continuous
in Ω .

Theorem 5.6. Let Ω satisfy the hypothesis of Theorem 3.4 and ρ satisfy the condition (5.4). Let (H , u) be the
weak solution of the problem (5.5). Then we have (H , u) ∈ Cα(Ω) for some α ∈ (0,1). In particular, H and u
are bounded in Ω .

Proof. By Theorem 3.4 and Remark 3.8, we find that H ∈ Cα(Ω) for some α ∈ (0,1) and satisfies the
estimate

‖H‖Cα(Ω) � N‖Ψ ‖W 1,q(Ω). (5.7)

Also, notice from (4.28) and Remark 3.8 that for all x0 ∈ Ω and 0 < r < diam Ω , we have

∫
Ωr(x0)

|∇ H |2 � Nr1+2α‖Ψ ‖2
W 1,q(Ω)

. (5.8)

On the other hand, using the vector calculus identity,

∇ · (F × G) = (∇ × F ) · G − F · (∇ × G),
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together with the first equation ∇ × (ρ(u)∇ × H) = 0 in (5.5), we find that u satisfies

−�u = ∇ · (H × (
ρ(u)∇ × H

))
in Ω.

By (5.7) and (5.8), we see that Φ := H × (ρ(u)∇ × H) satisfies the following estimate:

∫
Ωr(x0)

|Φ|2 � Nr1+2α‖Ψ ‖4
W 1,q(Ω)

, ∀x0 ∈ Ω, ∀r ∈ (0,diam Ω). (5.9)

Therefore, u is a solution of the Dirichlet problem

{−�u = ∇ · Φ in Ω,

u = φ on ∂Ω,

where Φ satisfies the Morrey–Campanato type estimate (5.9) and φ ∈ W 1,q(Ω), and thus by a well-
known elliptic regularity theory, we have

‖u‖Cα(Ω) � N
(‖Ψ ‖2

W 1,q(Ω)
+ ‖φ‖W 1,q(Ω)

)
.

In particular, we see that H and u are bounded in Ω . The proof is complete. �
Remark 5.10. In Theorem 5.6, if one assumes further that ρ ∈ Ck(R), where k ∈ Z+ , then by Theo-
rem 5.2 and the bootstrapping method, one finds that H ∈ Ck,α(Ω) ∩ Cα(Ω) and u ∈ Ck+1,α(Ω) ∩
Cα(Ω); see [14, Theorem 3.2 and Remark 3.3]. In particular, if ρ ∈ C2(R), then the pair (H , u) be-
comes a classical solution of the problem (5.5).

6. Green’s function

In this section, we will discuss the Green’s functions (more appropriately, it should be called
Green’s matrices) of the operator L in arbitrary domains. Let Σ be any subset of Ω and u be a
Y 1,2(Ω) function. Then we shall say u vanishes on Σ (in the sense of Y 1,2(Ω)) if u is a limit in
Y 1,2(Ω) of a sequence of functions in C∞

0 (Ω \ Σ).

Definition 6.1. We say that a 3 × 3 matrix valued function G(x, y), with entries Gij(x, y) defined on
the set {(x, y) ∈ Ω × Ω: x �= y}, is a Green’s function of L in Ω if it satisfies the following properties:

(i) G(·, y) ∈ W 1,1
loc (Ω) and LG(·, y) = δy I for all y ∈ Ω , in the sense that for k = 1,2,3,

∫
Ω

a
(∇ × G(·, y)ek

) · (∇ × φ) + b
(∇ · G(·, y)ek

)
(∇ · φ) = φk(y), ∀φ ∈ C∞

0 (Ω),

where ek denotes the k-th unit column vector; i.e., e1 = (1,0,0)T , etc.
(ii) G(·, y) ∈ Y 1,2(Ω \ Br(y)) for all y ∈ Ω and r > 0 and G(·, y) vanishes on ∂Ω .

(iii) For any f ∈ C∞
0 (Ω), the function u given by

u(x) :=
∫
Ω

G(y, x)T f (y)dy

is a weak solution Y 1,2
0 (Ω) of the problem (2.4); i.e., u belongs to Y 1,2

0 (Ω) and satisfies Lu = f
in the sense of the identity (2.3).
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We note that part (iii) of the above definition gives the uniqueness of a Green’s matrix; see Hof-
mann and Kim [12]. We shall hereafter say that G(x, y) is the Green’s matrix of L in Ω if it satisfies
all the above properties. Then, by using Theorem 3.1 and following the proof of [12, Theorem 4.1], we
obtain the following theorem, where we use the notation

a ∧ b := min(a,b), a ∨ b := max(a,b), where a,b ∈ R.

Theorem 6.2. Let Ω be a (possibly unbounded) domain in R
3 . Denote dx := dist(x, ∂Ω) for x ∈ Ω; we set

dx = ∞ if Ω = R
3 . Then, there exists a unique Green’s function G(x, y) of the operator L in Ω , and for all

x, y ∈ Ω satisfying 0 < |x − y| < dx ∧ dy , we have

∣∣G(x, y)
∣∣ � N|x − y|−1, where N = N(ν) > 0. (6.3)

Also, we have G(x, y) = G(y, x)T for all x, y ∈ Ω with x �= y. Moreover, G(·, y) ∈ Cα(Ω \ {y}) for some
α = α(ν) ∈ (0,1) and satisfies the following estimate:

∣∣G(x, y) − G
(
x′, y

)∣∣ � N
∣∣x − x′∣∣α |x − y|−1−α, where N = N(ν) > 0, (6.4)

provided that |x − x′| < |x − y|/2 and |x − y| < dx ∧ dy .

Next, we consider the Green’s functions of the system (1.3).

Definition 6.5. We say that a 3×3 matrix valued function G(x, y), which is defined on the set {(x, y) ∈
Ω × Ω: x �= y}, is a Green’s function of the system (1.3) in Ω if it satisfies the following properties:

(i) G(·, y) ∈ W 1,1
loc (Ω) for all y ∈ Ω and for k = 1,2,3, we have

∫
Ω

a
(∇ × G(·, y)ek

) · (∇ × φ) = φk(y), ∀φ ∈ C∞
0 (Ω),

∫
Ω

G(·, y)ek · ∇ψ = 0, ∀ψ ∈ C∞
0 (Ω),

where ek denotes the k-th unit column vector; i.e., e1 = (1,0,0)T , etc.
(ii) G(·, y) ∈ Y 1,2(Ω \ Br(y)) for all y ∈ Ω and r > 0 and G(·, y) vanishes on ∂Ω .

(iii) For any f ∈ D(Ω), the function u given by

u(x) :=
∫
Ω

G(y, x)T f (y)dy

is a weak solution in Y 1,2
0 (Ω) of the problem

⎧⎨
⎩

∇ × (
a(x)∇ × u

) = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

that is, u belongs to Y 1,2
0 (Ω) and satisfies the above system in the sense of the identities (2.5)

and (2.6) with g = 0 and h = 0.
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Then by the same reasoning as above, Theorem 6.2 also applies to the Green’s functions of the sys-
tem (1.3). Moreover, in the case when Ω is a bounded Lipschitz domain satisfying the condition (3.3),
a global version of estimate (6.3) is available thanks to Theorem 3.4 and [16, Theorem 3.13].

Theorem 6.6. The statement of Theorem 6.2 remains valid for the Green’s functions of the system (1.3). More-
over, if we assume that Ω is a bounded Lipschitz domain satisfying the condition (3.3), then for all x, y ∈ Ω

with x �= y, we have

∣∣G(x, y)
∣∣ � N

{
dx ∧ |x − y|}α{

dy ∧ |x − y|}α|x − y|−1−2α,

where α = α(ν,Ω) ∈ (0,1) and N = N(ν,Ω).

Remark 6.7. Theorem 6.2 in particular establishes the existence of the Green’s function of the operator
L in R

3, which is usually referred to as the fundamental solution of the operator L. Notice that in that
case, we have the pointwise estimate (6.3) available for all x, y ∈ R

3 with x �= y, and estimate (6.4)
for all x, x′ satisfying |x − x′| < |x − y|/2. The various estimates for the Green’s function that appears
in [12, Theorem 4.1] are also available in Theorem 6.2.

7. Associated parabolic system

In this separate and independent section, we consider the system of equations

ut + ∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

) = f in Ω × (0, T ), (7.1)

and prove that weak solutions of the system (7.1) are Hölder continuous in Ω × (0, T ) provided that
f satisfies some suitable condition, which is an extension of [17, Theorem 3.1], where it is shown
that weak solutions of the following system are Hölder continuous:

ut + ∇ × (
a(x)∇ × u

) = 0, ∇ · u = 0 in Ω × (0, T ). (7.2)

As mentioned in the introduction, the above system arises naturally from Maxwell’s equations in a
quasi-static electromagnetic field. More precisely, let σ(x) denote the electrical conductivity of a ma-
terial and the vector H(x, t) represent the magnetic field. It is shown in Landau et al. [21, Chapter VII]
that in the quasi-static electromagnetic fields, H satisfies the equations

H t + ∇ ×
(

1

σ
∇ × H

)
= 0, ∇ · H = 0 in Ω × (0, T ),

which is a special case of the system (7.1). Also, in this section we study the Green’s functions of the
system (7.1) and the system (7.2), by using recent results from [2,3].

7.1. Notation and definitions

In this section, we abandon some notations introduced in Section 3. Instead, we follow the nota-
tions of Ladyzhenskaya et al. [19] with a slight variation. We denote by Q T the cylindrical domain
Ω × (0, T ), where T > 0 is a fixed but arbitrary number, and ST the lateral surface of Q T ; i.e.,
ST = ∂Ω × [0, T ]. Parabolic function spaces such as Lq,r(Q T ), Lq(Q T ), W 1,0

2 (Q T ), W 1,1
2 (Q T ), V 2(Q T ),

and V 1,0
2 (Q T ) are exactly those defined in Ladyzhenskaya et al. [19]. We define the parabolic distance

between the points X = (x, t) and Y = (y, s) by

|X − Y |p := max
(|x − y|,√|t − s| )
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and define the parabolic Hölder norm as follows:

|u|α/2,α;Q = [u]α/2,α;Q + |u|0;Q := sup
X,Y ∈Q

X �=Y

|u(X) − u(Y )|
|X − Y |αp + sup

X∈Q

∣∣u(X)
∣∣.

We write ∇u for the spatial gradient of u and ut for its time derivative. We define

Q −
r (X) = Br(x) × (

t − r2, t
)
, Q r(X) = Br(x) × (

t − r2, t + r2).
We denote by L the operator ∂t + L; i.e.,

Lu := ut + Lu = ut + ∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

)
,

and by tL the adjoint operator −∂t + L. For a cylinder Q of the form Ω × (a,b), where −∞ � a <

b � ∞, we say that u is a weak solution in V 2(Q ) (V 1,0
2 (Q )) of Lu = f if u ∈ V 2(Q ) (V 1,0

2 (Q )) and
satisfies the identity

−
∫
Q

u · φt +
∫
Q

a(∇ × u) · (∇ × φ) + b(∇ · u)(∇ · φ) =
∫
Q

f · φ, ∀φ ∈ C∞
0 (Q ).

Similarly, we say that u is a weak solution in V 2(Q ) (V 1,0
2 (Q )) of tLu = f if u ∈ V 2(Q ) (V 1,0

2 (Q ))
and satisfies the identity

∫
Q

u · φt +
∫
Q

a(∇ × u) · (∇ × φ) + b(∇ · u)(∇ · φ) =
∫
Q

f · φ, ∀φ ∈ C∞
0 (Q ).

7.2. Hölder continuity estimates

The following theorem is a parabolic analogue of Theorem 3.1. However, it should be clearly un-
derstood that in the theorem below, the coefficients a and b of the system (7.1) are assumed to be
time-independent.

Theorem 7.3. Let Q T = Ω × (0, T ), where Ω be a domain in R
3 . Assume that a(x) and b(x) are measurable

functions on Ω satisfying (2.1). Let u be a weak solution in V 2(Q T ) of the system (7.1) with f ∈ Lq(Q T ) for
some q > 5/2. Then u is Hölder continuous in Q T , and for any Q −

R = Q −
R (X0) � Q T , we have the following

estimate for u in Q −
R/2:

Rα[u]α,α/2;Q −
R/2

+ |u|0;Q −
R/2

� N
(

R−5/2‖u‖L2(Q −
R ) + R2−5/q‖ f ‖Lq(Q −

R )

)
, (7.4)

where α = α(ν,q) ∈ (0,1) and N = N(ν,q) > 0.

The proof of the above theorem will be given in Section 7.4 below.

Remark 7.5. As in [17, Theorem 3.2], one can consider the case when the coefficients a and b of the
system (7.1) are time-dependent but still have some regularity in t-variable. For a measurable function
f = f (X) = f (x, t), we set

ωδ( f ) := sup
X=(t,x)∈R4

sup
r�δ

1

|Q r(X)|
t+r2∫

2

∫
B (x)

∣∣ f (y, s) − f̄t,r(y)
∣∣dy ds, ∀δ > 0,
t−r r
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where f̄t,r(y) = −
∫ t+r2

t−r2 f (y, s)ds. We say that f belongs to VMOt if limδ→0 ωδ( f ) = 0. Assume that the

coefficients a(x, t) and b(x, t) are defined in the entire space R
4 and belong to VMOt . Let u ∈ V 2(Q T )

be a weak solution of the system

ut + ∇ × (
a(x, t)∇ × u

) − ∇(
b(x, t)∇ · u

) = f in Q T ,

where f ∈ Lq(Q T ) with q > 5/2. Then one can show that u is Hölder continuous in Q T . The proof is
very similar to that of [17, Theorem 3.2]. Also, as is mentioned in Remark 3.6, one may assume that
a is a 3 × 3 (possibly non-symmetric) matrix valued function satisfying the uniform ellipticity and
boundedness condition; see [17] and also consult [18] for treatment of non-symmetric coefficients.

Remark 7.6. In Theorem 7.3, instead of assuming that f ∈ Lq(Q T ), one may assume that f belongs to
the mixed norm space Lq,r(Q T ) with suitable q and r. In fact, one may assume that f belongs to the
Morrey space, M10/7,10(3+2δ)/7 with δ ∈ (0,1), where M p,q is the set of all functions f ∈ L p(Q T ) with
finite norm (cf. Lieberman [22, §VI.7])

‖u‖M p,q = sup
Q −

r (X0)⊂Q T

(
r−q

∫

Q −
r (X0)

|u|p
)1/p

.

Then, instead of the estimate (7.22) in the proof of Theorem 7.3, we would have∫

Q −
r (X)

|∇w|2 � N‖ f ‖2
L10/7(Q −

r (X))
� Nr3+2δ‖ f ‖2

M10/7,10(3+2δ)/7 .

The rest of proof remains essentially the same.

7.3. Green’s function

Let U = Ω × R be an infinite cylinder in with the base Ω being a (possibly unbounded) domain
in R

3 and let ∂U be its (parabolic) boundary ∂Ω × R. Let S ⊂ Q and u be a W 1,0
2 (Q ) function. We

say that u vanishes (or write u = 0) on S if u is a limit in W 1,0
2 (Q ) of a sequence of functions in

C∞
0 (Q \ S).

Definition 7.7. We say that a 3 × 3 matrix valued function G(X, Y ) = G(x, t, y, s), with entries
Gij(X, Y ) defined on the set {(X, Y ) ∈ U × U : X �= Y }, is a Green’s function of the operator L in
U if it satisfies the following properties:

(i) G(·, Y ) ∈ W 1,0
1,loc(U ) and LG(·, Y ) = δY I for all Y ∈ U , in the sense that for k = 1,2,3, the follow-

ing identity holds for all φ ∈ C∞
0 (U ):∫

U

−G(·, Y )ek · φt + a
(∇ × G(·, y)ek

) · (∇ × φ) + b
(∇ · G(·, y)ek

)
(∇ · φ) = φk(Y ),

where ek denotes the k-th unit column vector; i.e., e1 = (1,0,0)T , etc.
(ii) G(·, Y ) ∈ V 1,0

2 (U \ Q r(Y )) for all Y ∈ U and r > 0 and G(·, Y ) vanishes on ∂U .
(iii) For any f ∈ C∞

0 (U ), the function u given by

u(X) :=
∫
U

G(Y , X)T f (Y )dY

is a weak solution in V 1,0
2 (U ) of tLu = f and vanishes on ∂U .



2486 K. Kang, S. Kim / J. Differential Equations 251 (2011) 2466–2493
We note that part (iii) of the above definition gives the uniqueness of a Green’s function; see [2].
We shall thus say that G(X, Y ) is the Green’s function of L in U if it satisfies the above properties.
By Theorem 7.3 and [2, Theorem 2.7], we have the following theorem:

Theorem 7.8. Let U = Ω × R be an infinite cylinder, where the base Ω is a (possibly unbounded) domain
in R

3 . Then the Green’s function G(X, Y ) of L exists in U and satisfies

G(x, t, y, s) = G(x, t − s, y,0); G(x, t, y,0) ≡ 0 for t < 0. (7.9)

For all f ∈ C∞
0 (U ), the function u given by

u(X) :=
∫
U

G(X, Y ) f (Y )dY (7.10)

is a weak solution in V 1,0
2 (U ) of Lu = f and vanishes on ∂U . Moreover, for all g ∈ L2(Ω), the function u(x, t)

defined by

u(x, t) :=
∫
Ω

G(x, t, y,0)g(y)dy

is a unique weak solution in V 1,0
2 (Q T ) of the problem1

Lu = 0, u|ST = 0, u|t=0 = g(x),

and if g is continuous at x0 ∈ Ω in addition, then we have

lim
(x,t)→(x0,0)

x∈Ω, t>0

u(x, t) = g(x0).

Remark 7.11. The identity G(x, t, y, s) = G(x, t − s, y,0) in Theorem 7.8 comes from the fact that L
has time-independent coefficients; see [7]. The function K t(x, y) defined by

K t(x, y) = G(x, t, y,0), x, y ∈ Ω, t > 0 (7.12)

is usually called the (Dirichlet) heat kernel of the elliptic operator L in Ω . It is known that K t satisfies
the semi-group property

K t+s(x, y) =
∫
Ω

K t(x, z)K s(z, y)dz, ∀x, y ∈ Ω, ∀t, s > 0,

and in particular, if Ω = R
3, then we also have the following identity:

∫

R3

K t(x, y)dy = I, ∀x ∈ R
3, ∀t > 0,

where I denotes the 3 × 3 identity matrix; see [2, Theorem 2.11 and Remark 2.12].

1 See, Ladyzhenskaya et al. [19, §III.1].
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The following theorem is another consequence of Theorem 7.3; see [2, Theorem 2.11].

Theorem 7.13. Let K t(x, y) be the heat kernel for the operator L in R
3 as constructed in Theorem 7.8. Then

we have the following Gaussian bound for the heat kernel:

∣∣K t(x, y)
∣∣ � Nt−3/2 exp

{−κ |x − y|2/t
}
, ∀t > 0, x, y ∈ R

3,

where N = N(ν) > 0 and κ = κ(ν) > 0.

Next, we consider the Green’s functions of the system (7.2).

Definition 7.14. We say that a 3 × 3 matrix valued function G(X, Y ) = G(x, t, y, s), with entries
Gij(X, Y ) defined on the set {(X, Y ) ∈ U × U : X �= Y }, is a Green’s function of the system (7.2) in
U if it satisfies the following properties:

(i) G(·, Y ) ∈ W 1,0
1,loc(U ) for all Y ∈ U and for k = 1,2,3, we have

∫
U

−G(·, Y )ek · φt + a
(∇ × G(·, y)ek

) · (∇ × φ) = φk(Y ), ∀φ ∈ C∞
0 (U ),

∫
U

G(·, Y )ek · ∇ψ = 0, ∀ψ ∈ C∞
0 (U ),

where ek denotes the k-th unit column vector; i.e., e1 = (1,0,0)T , etc.
(ii) G(·, Y ) ∈ V 1,0

2 (U \ Q r(Y )) for all Y ∈ U and r > 0 and G(·, Y ) vanishes on ∂U .
(iii) For any f ∈ C∞

0 (U ) satisfying ∇ · f = 0 in U , the function u defined by

u(X) :=
∫
Ω

G(Y , X)T f (Y )dY

is a weak solution in V 1,0
2 (U ) of the problem

−ut + ∇ × (
a(x)∇ × u

) = f , ∇ · u = 0, u|∂U = 0,

that is, u belongs to V 1,0
2 (U ), vanishes on ∂U , and satisfies the above system in the sense of the

following identities:

∫
U

u · φt + a(∇ × u) · (∇ × φ) =
∫
U

f · φ, ∀φ ∈ C∞
0 (U ),

∫
Ω

u · ∇ψ = 0, ∀ψ ∈ C∞
0 (U ).

It can be easily seen that existence of the Green’s function of the system (7.2) in U follows from
[17, Theorem 3.1] and [2, Theorem 2.7], and that it satisfies the relations (7.9) in Theorem 7.8. We shall
say that K t defined by the formula (7.12) is the (Dirichlet) heat kernel of the elliptic system (1.3) in Ω .
Then it satisfies the statement in Remark 7.11 as well as that in Theorem 7.13. If we assume further
that Ω is a domain satisfying the hypothesis of Theorem 3.4, then we have the following result, which
is an easy consequence of [3, Theorem 3.6] combined with Theorem 3.4 and [7, Lemma 4.4] (see also
[3, Remark 3.10]):
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Theorem 7.15. Let U = Ω ×R with Ω satisfying the hypothesis of Theorem 3.4. Then the heat kernel K t(x, y)

of the system (1.3) exists in Ω . Moreover, for all T > 0 there exists a constant N = N(ν,Ω, T ) such that for all
x, y ∈ Ω and 0 < t � T , we have

∣∣K t(x, y)
∣∣ � N

(
1 ∧ dx√

t ∨ |x − y|
)α(

1 ∧ dy√
t ∨ |x − y|

)α

t−3/2 exp
{−κ |x − y|2/t

}
,

where κ = κ(ν,Ω) > 0 and α = α(ν,Ω) ∈ (0,1) are constants independent of T , and we used the notation
a ∧ b = min(a,b), a ∨ b = max(a,b), and dx = dist(x, ∂Ω).

7.4. Proof of Theorem 7.3

We follow the strategy used in [17]. As before, we shall make the qualitative assumption that the
weak solution u is smooth in Q T . Let us first assume that f = 0 and consider the homogeneous
system

ut + Lu := ut + ∇ × (
a(x)∇ × u

) − ∇(
b(x)∇ · u

) = 0 in Q T . (7.16)

The proof of the following lemma is very similar to that of [17, Lemmas 3.1–3.3], where we strongly
used the assumption that coefficients of the operator are time-independent.

Lemma 7.17. Let v ∈ V 2(Q −
λr), where Q −

λr = Q −
λr(X0) with λ > 1, be a weak solution of vt + Lv = 0 in Q −

λr .
Then we have the following estimates:

sup
t0−r2�t�t0

∫
Br

∣∣v(·, t)
∣∣2 +

∫

Q −
r

|∇v|2 � Nr−2
∫

Q −
λr

|v|2,

sup
t0−r2�t�t0

∫
Br

∣∣∇v(·, t)
∣∣2 +

∫

Q −
r

|vt |2 � Nr−4
∫

Q −
λr

|v|2,

sup
t0−r2�t�t0

∫
Br

∣∣vt(·, t)
∣∣2 +

∫

Q −
r

|∇vt |2 � Nr−6
∫

Q −
λr

|v|2,

where N = N(ν,λ) > 0.

The proofs of following lemmas are also standard in parabolic theory and shall be omitted; see
e.g., [2, Lemmas 2.4 and 3.1] and also [3, Lemma 8.6].

Lemma 7.18. Let u ∈ V 2(Q −
r ), where Q −

r = Q −
r (X0), be a weak solution of ut + Lu = f in Q −

r . Then we
have the estimate

∫

Q −
r

|u − u X0,r |2 � N

(
r2

∫

Q −
r

|∇u|2 + r−1‖ f ‖2
L1(Q −

r )

)
; u X0,r = −

∫

Q −
r (X0)

u,

where N = N(ν) > 0.
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Lemma 7.19. Let u ∈ V 2(Q −
λr), where Q −

λr = Q −
λr(X0) with λ > 1, be a weak solution of ut + Lu = f in Q −

λr .
Then we have

sup
t0−r2�t�t0

∫
Br

∣∣u(·, t)
∣∣2 +

∫

Q −
r

|∇u|2 � N

(
r−2

∫

Q −
λr

|u|2 + ‖ f ‖2
L10/7(Q −

λr)

)
,

where N = N(ν,λ) > 0.

With the above lemmas and Theorem 3.1 at hand, we now proceed as in the proof of [17, Theo-
rem 3.1] (see also proof of [18, Theorem 3.3]) to conclude that any weak solution v ∈ V 2(Q T ) of the
system (7.16) is Hölder continuous in Q T and satisfies the estimate

[v]μ,μ/2;Q −
R/2

� N R−5/2−μ‖v‖L2(Q −
R ); Q −

R = Q −
R (X0), (7.20)

where μ = μ(ν) ∈ (0,1) and N = N(ν) > 0. There is a well-known procedure to obtain Hölder esti-
mates for weak solutions of the inhomogeneous system ut + Lu = f from the above estimate (7.20)
for weak solutions of the corresponding homogeneous system ut + Lu = 0, which we shall demon-
strate below for the completeness. For X ∈ Q −

R/4(X0) and r ∈ (0, R/4], we split u = v + w in Q −
r (X),

where w is the unique weak solution in V 1,0
2 (Q −

r (X)) of wt + Lw = f in Q −
r (X) with zero boundary

condition on the parabolic boundary ∂p Q −
r (X). Then, v = u − w satisfies vt + Lv = 0 in Q −

r (X), and
thus, for 0 < ρ � r (cf. [2, Eq. (3.9)]), we have

∫

Q −
ρ (X)

|∇u|2 � 2
∫

Q −
ρ (X)

|∇v|2 + 2
∫

Q −
ρ (X)

|∇w|2

� N(ρ/r)3+2μ

∫

Q −
r (X)

|∇v|2 + 2
∫

Q −
r (X)

|∇w|2

� N(ρ/r)3+2μ

∫

Q −
r (X)

|∇u|2 + N

∫

Q −
r (X)

|∇w|2. (7.21)

Choose p ∈ (5/2,q) such that α := 2 − 5/p < μ. By the energy inequality and a parabolic embedding
theorem (see [19, §II.3]), we get (cf. [2, Eq. (3.10)])

∫

Q −
r (X)

|∇w|2 � N‖ f ‖2
L10/7(Q −

r (X))
� Nr3+2α‖ f ‖2

Lp(Q −
R/2)

. (7.22)

Combining (7.21) with (7.22), we get for all ρ < r � R/4,

∫

Q −
ρ (X)

|∇u|2 � N(ρ/r)3+2μ

∫

Q −
r (X)

|∇u|2 + Nr3+2α‖ f ‖2
Lp(Q −

R/2)
.

Then, by a well-known iteration argument (see e.g., [9, Lemma 2.1, p. 86]), we have

∫

Q −
r (X)

|∇u|2 � N(r/R)3+2α

∫

Q −
R/4(X)

|∇u|2 + Nr3+2α‖ f ‖2
Lp(Q −

R/2)
.
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By Lemma 7.18, the above estimate, and Hölder’s inequality, we get

∫

Q −
r (X)

|u − u X,r |2 � Nr5+2α
(

R−3−2α‖∇u‖2
L2(Q −

R/4(X))
+ ‖ f ‖2

Lp(Q −
R/2)

)
.

Then, by Campanato’s characterization of Hölder continuous functions, we have

[u]α,α/2;Q −
R/4

� N
(

R−3/2−α‖∇u‖L2(Q −
R/2) + ‖ f ‖L p(Q −

R/2)

)
.

By Lemma 7.19 and Hölder’s inequality (recall α = 2 − 5/p), we then obtain

Rα[u]α,α/2;Q −
R/4

� N
(

R−5/2‖u‖L2(Q −
R ) + R2−5/q‖ f ‖Lq(Q −

R )

)
. (7.23)

Similar to (4.11), we then also obtain

|u|0;Q −
R/8

� N
(

R−5/2‖u‖L2(Q −
R ) + R2−5/q‖ f ‖Lq(Q −

R )

)
. (7.24)

Finally, the desired estimate (7.4) follows from (7.23), (7.24), and the standard covering argument. The
theorem is proved. �
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Appendix A

A.1. Existence of a unique weak solution of the problem (2.4)

We prove existence of a unique weak solution in Y 1,2
0 (Ω) of a more general problem

{
∇ × (

a(x)∇ × u
) − ∇(

b(x)∇ · u
) = f + ∇ × F + ∇g in Ω,

u = 0 on ∂Ω,
(A.1)

where f ∈ L6/5(Ω) and F , g ∈ L2(Ω). We say that a function u is a weak solution in Y 1,2
0 (Ω) of the

problem (A.1) if u that belongs to Y 1,2
0 (Ω) and satisfies the identity

∫
Ω

a(∇ × u) · (∇ × v) + b(∇ · u)(∇ · v) =
∫
Ω

f · v + F · ∇ × v + g∇ · v, ∀v ∈ C∞
0 (Ω).

Notice that the inequality (2.2) implies that the bilinear form

〈u, v〉 = 〈u, v〉H =
3∑

i=1

∫
∇ui · ∇vi (A.2)
Ω
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defines an inner product on H := Y 1,2
0 (Ω)3 and that H equipped with the above inner product is a

Hilbert space. We define the bilinear form associated to the operator L as

B[u, v] :=
∫
Ω

a(∇ × u) · (∇ × v) + b(∇ · u)(∇ · v).

Then, in light of the identity (1.2), we find that

∫
Ω

|∇ × u|2 + |∇ · u|2 =
∫
Ω

|∇u|2, ∀u ∈ H .

It is routine to check that the bilinear form B satisfies the hypothesis of the Lax–Milgram theorem.
On the other hand, by the inequality (2.2), the linear functional

F (v) :=
∫
Ω

f · v + F · ∇ × v + g∇ · v

is bounded on H . Therefore, by the Lax–Milgram theorem, there exists a unique element u ∈ H such
that B[u, v] = F (v) for all v ∈ H , which shows that u is a unique weak solution in Y 1,2

0 (Ω) of the
problem (A.1). �
A.2. Existence of a unique weak solution of the problem (1.5)

We shall assume that f ∈ H6/5(Ω) and g ∈ L2(Ω). First, we consider the case when h = 0 and

construct a weak solution in Y 1,2
0 (Ω) of the problem (1.5) as follows. Let H be the completion of

D(Ω) (see Section 2 for its definition) in the norm of Y 1,2(Ω). Then H ⊂ Y 1,2
0 (Ω)3 and as above, it

equipped with the inner product (A.2) becomes a Hilbert space. We define the bilinear form B on H
by

B[u, v] :=
∫
Ω

a(∇ × u) · (∇ × v).

Then the bilinear form B satisfies the hypothesis of the Lax–Milgram theorem. We also define the
linear functional F on H as

F (v) :=
∫
Ω

f · v + g · (∇ × v).

One can easily check that F is bounded on H . Therefore, by the Lax–Milgram theorem, there exists a
unique element u ∈ H such that B[u, v] = F (v) for all v ∈ H . In particular, u satisfies identities (2.5)
and (2.6) with h = 0. Therefore, u is a weak solution in Y 1,2

0 (Ω) of the problem (1.5) in the case when
h = 0.

Next, we consider the case when h �= 0. In this case, we assume further that Ω is a bounded
Lipschitz domain so that in particular, we have Y 1,2

0 (Ω) = W 1,2
0 (Ω). For h ∈ L2(Ω) such that

∫
Ω

h = 0,

let v ∈ W 1,2
0 (Ω) be a solution of the divergence problem

{∇ · v = h in Ω,

v = 0 on ∂Ω,
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that satisfies the following estimate (see e.g., Galdi [8, §III.3])

‖∇v‖L2(Ω) � N‖h‖L2(Ω); N = N(Ω).

Let w be a solution in Y 1,2
0 (Ω) of the problem (1.5) with g − a∇ × v in place of g and h = 0, which

can be constructed as above. Then, it is easy to check that u := v + w is a solution in Y 1,2
0 (Ω) =

W 1,2
0 (Ω) of the original problem (1.5).

Finally, we prove the uniqueness of weak solutions in Y 1,2
0 (Ω) of the problem (1.5) under the as-

sumption that Ω is a bounded Lipschitz domain. Notice that in that case we have Y 1,2
0 (Ω) = W 1,2

0 (Ω).

Suppose u and v are two weak solutions in W 1,2
0 (Ω) of the problem (1.5). Then the difference

w = u − v is a weak solution in W 1,2
0 (Ω) of the problem (1.5) with f = g = 0 and h = 0. By the

identity (2.6), we find that w ∈ H ; see e.g., Galdi [8, §III.4]. Then by the identity (2.5), we conclude
that w = 0, which proves the uniqueness of weak solutions in Y 1,2

0 (Ω) of the problem (1.5). �
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