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Abstract

The 1S0 pairing of symmetric nuclear matter is discussed in the framework of relativistic nuclear theory with D
Schwinger equations (DSEs). The in-medium nucleon and meson propagators are treated in a more self-consistent w
meson polarizations. The screening effects on mesons due to in-medium nucleon excitation are found to reduce the1S0 pairing
gap and shift remarkably the gap peak to low density region.
 2004 Published by Elsevier B.V.
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Compared with nonrelativistic framework, the re
ativistic nuclear theory can successfully describe
saturation at normal nuclear density. The basic me
exchange is normally considered as the nuclear sa
tion mechanism. The originalσ–ω theory of quantum
hadrodynamics model (QHD) developed by Walec
et al. and its various extensions have been widely u
to discuss the properties of finite nuclei and nucl
matter [1–4].

Superfluidity of strongly interacting Fermi syste
is very important for understanding the properties
finite nuclei, such as the dramatic reduction of the m
ments of inertia in rotating nuclei or the energy gap
the spectra of many even–even nuclei [5,6]. The
istence of superfluidity may also affect the dynami
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and thermal evolution mechanism of neutron stars
cause it is closely related to the emission of neutr
and cooling of neutron-rich matter. It is also argu
that the superfluidity of nuclear matter can lead to
glitches of astronomy phenomena and attracts m
attention in contemporary physics [7].

Although there are many works in the literature a
dressing the superfluidity of nuclear matter, the m
results are obtained from the nonrelativistic nucl
theory and no definite conclusion can be made
We noted that since Kucharek and Ring [8] first d
rived the relativistic Hartree–Fock–Bogoliubov equ
tion by using Green function method and the Gor’k
factorization analogously to nonrelativistic BCS th
ory, it was found that the superfluidity gap value
about three times larger than the “standard” value
tained with the nonrelativistic Gogny force [9]. To im
prove the description of superfluidity with relativist
license.
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nuclear theory, various approaches have been inv
gated, such as using external potential as input or v
ous cut-offs of the integration momentum [10–12].
our knowledge, there is even no definite result ab
the superfluidity gap (the gap value and peak posit
for symmetric nuclear matter within nonrelativistic
relativistic nuclear theory up to now. However, it
widely accepted that the1S0 gap values at normal nu
clear density should be very small.

Essentially one cannot expect that the softnes
equation of state (EOS) describing the bulk propert
nuclear matter is directly related with the superfluid
property of nuclear matter. For example, although
nonlinearσ–ω model with the possible embarrassi
negative coupling constantsb andc (which, in princi-
ple, lead to instability of nuclear system at high dens
scenario) inσ self-interaction termsbσ 3 + cσ 4 can
give a very soft EOS with mean field theory (MFT) [7
the gap behavior is similar to that in the original ve
sion by using frozen meson propagators [8,12].

Theoretically, since it is difficult to make low en
ergy calculations directly with quantum chromod
namics (QCD), one has to work with effective the
ries. As an effective theory, QHD-I model (and its e
tensions) has been widely used to discuss the e
tive meson masses under extreme environment in
past [13–16]. In principle, when one discusses the
medium properties of nucleons and mesons, one
to take into account the back-interactions of nucle
with in-medium mesons. Therefore theresummed nu-
cleon and meson propagators would form a closed
of coupled equations and should be solved simulta
ously. With this self-consistent way, a softer EOS w
an acceptable compression modulusK in dealing with
realistic nuclear matter can be obtained [13,17].
the spirit of mean field theory, the exchanged mes
in determining nucleon propagator are not free
medium dependent. Their masses should be d
mined together with the nucleon mass through Dys
Schwinger equations self-consistently, as indicated
Fig. 1.

It would be very interesting to analyze the i
medium effect of mesons on the superfluidity of n
clear matter in the framework of relativistic nucle
theory. In superfluidity state and with QHD-like La
grangian, Dyson–Schwinger equations for the nucl
and meson propagators as indicated in Fig. 1 and
energy gap equation as indicated in Fig. 2 form a n
Fig. 1. Diagrammatic representations for the propagators
in-medium nucleons (a) and mesons (b).

Fig. 2. Diagrammatic representations for the gap equation and
interaction kernel in instantaneous approximation withscreened
meson propagator.

closed set of coupled equations. The in-medium m
son propagatorsD instead of the normally used ba
onesD(0) will affect the kernel in the BCS gap equ
tion. We will see below that the gap behavior with i
medium meson propagators is quite different from t
with bare ones. We found that the polarization effe
leading to screening have been widely discusse
the nonrelativistic framework of nuclear theory [1
23], this problem has not yet been addressed be
in terms of relativistic field theory. In this Letter, w
want to discuss the effects of in-medium effective p
tential for nucleon–nucleon interaction on the sup



J.-S. Chen et al. / Physics Letters B 585 (2004) 85–90 87

r-

ion
in

s as

ith
y

n

m
in-

tor

tors
nta-

ef-

um
ef-

m

e-
nd

self-

u-

y
. 1.
lf-
fluidity due to screening by using the original reno
malizable formalism ofσ–ω model.

Let us start with the four-dimensional gap equat
by using the standard Nambu–Gor’kov formalism
the ladder approximation of the meson exchange
indicated by Fig. 2 [23–25],

(1)∆∗(K) = i

∫
d4P

(2π)4 〈P |Γ |K〉F+(P ),

whereK is the four momentumK = (k0,k), 〈P |Γ |K〉
is the interaction kernel and

F+(K)

= −∆∗(K)

[k0 − ε(K) + iη][k0 − ε(−K) − iη] − |∆(K)|2
is the Nambu–Gor’kov anomalous propagator w
ε(K) = Ek − Ekf being the quasi-particle energ
above Fermi-surface. For1S0 pairing, the gap equatio
can be reduced to [8,10]

∆(p) = − 1

8π2

∞∫
0

v̄pp(p, k)

(2)× ∆(k)√
(Ek − Ekf )

2 + ∆2(k)
k2dk,

with Ek = E∗
k +λ andE∗

k =
√

M∗2
N + k2. The quantity

λ related with the baryon current is obtained fro
the tadpole self-energy of nucleon propagator with
medium vector meson in Fig. 1

(3)λ = g2
ω

m̄2
ω

γ

2π2

∞∫
0

v2
kk

2dk,

where γ = 4 is the spin–isospin degeneracy fac
for symmetric nuclear matter, andv2

k is the BCS
occupation number

(4)v2
k = 1

2

(
1− Ek − Ekf√

(Ek − Ekf )
2 + ∆2(k)

)
.

The interaction kernel〈P |Γ |K〉 in our treatment
is approximated by the in-medium meson propaga
instead of the bare ones. We use the static (insta
neous) approximation by neglecting the retarding
fects [8]. Since the meson propagatorsDσ,ω(0,k) with
the vanishing temporal component of four-moment
are now medium dependent, the Debye screening
fects will play an important role in the in-mediu
particle–particle interaction potential

v̄(p,k) = 〈ps′, p̃s′|V |ks, k̃s〉 − 〈ps′, p̃s′|V |k̃s,ks〉

= ∓ M∗2
N

2E∗(k)E∗(p)

(5)× Tr[Λ+(k)Γ Λ+(p)γ 0T +Γ +T γ 0]
(k − p)2 + m∗2

D

,

whereΛ+(k) = (/k + M∗
N)/(2M∗

N) is the projection
operator of the positive energy solution andT =
iγ 1γ 3 is the time reversal operator. The tilde typ
script “˜” means the Gor’kov time reversal state a
Γ is the corresponding interaction vertex ofσ/ω with
nucleons. The assymetrized matrix elementsv̄pp(p, k)

in the gap equation Eq. (2) for1S0 pairing is obtained
through the integration of̄v(p,k) over the angleθ be-
tween the three-momentak andp

(6)v̄pp(p, k) =
∫

v̄(p,k) d cosθ.

The effective nucleon massM∗
N is determined by

the relevant mass gap equation through tadpole
energy of nucleon propagator with scalar meson

(7)

M∗
N = MN − g2

σ

m̄2
σ

γ

2π2

∞∫
0

M∗
N

E∗
p

v2
pp

2dp + ∆M∗
N,vac,

with ∆M∗
N,vac being the vacuum fluctuation contrib

tion

∆M∗
N,vac

= g2
σ

m̄2
σ

1

π2

[
M∗3

N ln

(
M∗

N

MN

)
− M2

N(M∗
N − MN)

(8)− 5

2
MN(M∗

N − MN)2 − 11

6
(M∗

N − MN)3
]
.

The polarization tensorsΠσ,ω(k0,k) determining
the in-mediumσ andω propagators are calculated b
using Dyson–Schwinger equation as shown in Fig
For brevity, here we list only the sigma meson se
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Table 1
The parameters determined at normal nuclear density withk0

f
= 1.42 fm−1 in MFT, RHA and our self-consistent approach (labeled as SA) w

MN = 939 MeV,mω = 783 MeV andmσ = 550 MeV. We show also the compression modulusK (in MeV), themedium dependent coupling
constants (determining EOS)C2

s = g2
σM2

N/m̄2
σ andC2

v = g2
ωM2

N/m̄2
ω , the maximum of gap value∆m

f (MeV), the peak positionkm
f (fm−1)

and the “gap value”∆(0) (MeV) at kf = 0

g2
σ g2

ω C2
s C2

v K M∗
N

/MN ∆m
f

km
f

∆(0)

MFT 91.64 136.2 267.11 195.87 545.43 0.556 9.4 1.0 1
RHA 62.89 79.78 183.31 114.73 468.24 0.718 8.3 1.0 0
SA 48.90 53.40 123.17 66.078 338.00 0.794 1.9 0.5 0
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Πσ (k)

= 3g2
σ

2π2

[
3M∗2

N − 4M∗
NMN + M2

N

− (
M∗2

N − M2
N

) 1∫
0

ln
M∗2

N − x(1− x)k2

M2
N

dx

−
1∫

0

(
M2

N − x(1− x)k2)
× ln

M∗2
N − x(1− x)k2

M2
N − x(1− x)k2

dx

]

(9)

+ g2
σ

π2

∞∫
0

v2
pp

2 dp

E∗
p

[
2+ k2 − 4M∗2

N

4p|k| (a + b)

]
,

with

a = ln
k2 − 2p|k| − 2k0E

∗
p

k2 + 2p|k| − 2k0E∗
p

,

b = a(E∗
p → −E∗

p).

The effective masses̄mσ and m̄ω in Eqs. (3)
and (7) are determined by the corresponding polar
tion tensors with vanishing four-momentum transf
and the Debye screening massesm∗

σ and m∗
ω in as-

symetrized matrix elements̄vpp(p, k) are determined
by the pole positions of corresponding spacelike pr
agatorsDσ,ω(0,k) due to taking the static approxim
tion [16]. For example, the transverse mode screen
massm∗

ω is determined self-consistently by

(10)m∗2
ω = m2

ω + ΠT
ω (0, im∗

ω),

whereΠT
ω is the transverse part of polarization te

sor Π
µν
ω (k0,k). In principle, the longitudinal mod
screening mass is different from the transverse m
one for in-medium vector meson due to the brok
Lorentz invariance. However, neglecting this little d
ference does not affect the qualitative result in reali
numerical calculation.

Considering the in-medium meson effects on
property of nuclear matter, one should refix the pa
meters in the model. Noting that the effect of sup
fluidity on the bulk property is negligible, we fix th
parameters by normal nuclear matter with satura
condition of binding energyen = −15.75 MeV at the
normal nuclear density withk0

f = 1.42 fm−1. The rel-
evant parameters are listed in Table 1.

The remaining task will be the numerical soluti
of the coupled equations indicated by Figs. 1 and 2
should be noted that the relativistic kinematic fact
guarantee the convergence of the gap equations
as Eq. (2) for the relativistic nuclear theory and lead
a definite result for the gap. In principle, the mome
tum integration upper bound in relevant equations s
as Eq. (2) is infinity. However, a concrete upper bou
must be used to give a numerical result by solving
gap integral equation. Strictly speaking, the gap va
should not be sensitive to the adopted momentum
per bound and the sensitivity of momentum cut-off
the gap has been analyzed in such as in Refs. [8
which can be also reflected by the gap function in
cated by Fig. 3(b). A concrete and large enough m
mentum upper boundΛp = 20 fm−1 has been used i
this Letter for the description of screening effects.
focus on the characteristic due to polarization effe
theσ–ω mixing effects has been neglected, which w
not affect the result qualitatively although it deserv
further study.

The numerical results of the superfluidity gap eq
tions are shown in Fig. 3. In the upper panel (a), we
dicate the gap curves∆(kf ) versus Fermi momentum
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Fig. 3. (a) The pairing gap∆f at the Fermi surface as a functio
of density characterized by the Fermi momentumkf . (b) The
gap function∆(k) as a function of momentumk for fixed Fermi
momentumkf = 0.5 fm−1. The dot-dashed lines correspond to t
result obtained by MFT and dashed lines correspond to RHA [
while the solid lines correspond to our self-consistent resumma
approach.

kf , and the gap functions∆(k) at given Fermi surface
momentumkf = 0.5 fm−1 are shown in Fig. 3(b).

Compared with the previous superfluidity resu
of relativistic nuclear theory in the literature, the g
value we obtained is very small and the peak po
tion is shifted to the low density region remarkably.
mentioned in the introduction, this interesting resul
not due to the softener EOS but much attributed to
screened effective particle–particle interaction pot
tial as indicated by Fig. 4. The key point is that theσ

andω propagators in the gap equations are not b
but in-medium ones determined self-consistently
Dyson–Schwinger equations. The effective nucleo
nucleon interaction potential with Debye screen
of in-medium mesons leads to the change in the
teraction force range. Different from the scenario
bare meson propagators used in the gap equation
particle–particle potential is more sensitive to dens
Fig. 4. Assymetrized matrix elements̄vpp(k, kf ) in momentum

space at the Fermi momentumkf = 0.8 fm−1. The line-styles are
similar to those in Fig. 3.

which can be understood from the corresponding
tractive and repulsive force range changes for differ
densities characterized by Fermi momentumkf (not
displayed obviously in Fig. 4).

It is clearly demonstrated in Fig. 3 that our se
consistent approach reduces the difference betw
the nonrelativistic and relativistic theories about
maximum gap value and the peak position of1S0 pair-
ing correlation. The significant improvement by t
self-consistent resummation approach for the partic
particle interaction leading to pairing is reflected
two aspects: one is at the saturation density withk0

f =
1.42 fm−1, the other is atkf = 0. The improvement a
kf = 0 is crucial by noting that the MFT and RHA a
proaches with frozen meson propagators give unr
istic nonzero gap values∼ 1.94 MeV/0.36 MeV [10].

Summarizing, with a set of more self-consiste
equations for the resummed in-medium nucleon
meson propagators and superfluidity gap by Dys
Schwinger Green function approach, we have inve
gated the1S0 pairing correlation in symmetric nuclea
matter and compared our results with those obtai
by MFT and RHA approaches. The Debye screen
effects of in-medium meson propagators can red
significantly the superfluidity gap value, while the g
peak position is shifted remarkably to low density
gion.
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