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Abstract

We introduce a new combinatorial game between two players: Magnus and Derek. Initially, a token is placed at position 0 on a
round table with n positions. In each round of the game Magnus chooses the number of positions for the token to move, and Derek
decides in which direction, + (clockwise) or − (counterclockwise), the token will be moved. Magnus aims to maximize the total
number of positions visited during the course of the game, while Derek aims to minimize this quantity.

We define f ∗(n) to be the eventual size of the set of visited positions when both players play optimally. We prove a closed form
expression for f ∗(n) in terms of the prime factorization of n, and provide algorithmic strategies for Magnus and Derek to meet
this bound.

We note the relevance of the game for a mobile agent exploring a ring network with faulty sense of direction, and we pose
variants of the game for future study.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We will introduce a new class of combinatorial games that we call the Magnus–Derek games, and we will study in
detail the basic version of the game.

The game is played on a circular table with n positions labelled consecutively from 0 to n − 1, and with a token
initially placed at position 0. The two players are called Magnus (from magnitude) and Derek (from direction).
Suppose that the token’s current position is i . A round consists of Magnus calling a magnitude ` with 0 < ` ≤ n

2
followed by Derek calling a direction + (clockwise) or − (counterclockwise). The token is then moved to position
i+` mod n or i−` mod n according to Derek’s choice of direction. Thus, Magnus must choose a set N = {i+`, i−`}
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of two possibilities for the next position, and Derek chooses which of these positions is realized. (In our explanations
of the algorithms, rather than stating “the token moves” we will often say “the next position will be” or even say
“Magnus moves” identifying Magnus with the token.) Magnus’s goal is to maximize the cardinality of the set of all
positions visited by the token in the course of the game. Derek’s goal is to minimize the cardinality of this set. Note
that revisiting a position does not affect the cardinality.

The current token position, the size of the table (n), and the set of already visited positions are known to both players
at all times. The algorithmic strategies we present for both players are adaptive: that is, a player’s move depends both
on the set of already visited positions and on the current token position. We will assume that both players know the
factorization of n at the beginning of the game.

We define f ∗(n) to be the eventual cardinality of the set of positions visited when both players play optimally. We
will show that f ∗(n) is well defined: Magnus has a strategy to ensure that at least f ∗(n) positions are visited, and
Derek has a strategy to ensure that at most f ∗(n) positions are visited, irrespective of each others’ strategies.

Thus we examine three problems:

1. What is f ∗(n) for a given n? Clearly f ∗(n) ≤ n.
2. What algorithm for Magnus will ensure that at least f ∗(n) positions are visited? We prefer an algorithm that

minimizes the number of moves required to achieve this goal. Less importantly, we want to minimize the time
required for Magnus to compute a magnitude in each round.

3. What algorithm for Derek will ensure that no more than f ∗(n) positions are visited? Again, we want to minimize
the time required for Derek to compute a direction in each round. We are also interested in a lower bound on the
number of moves until f ∗(n) positions are visited.

2. The main result

In this section we state the main result of our paper. Proofs of the result are in Sections 4–6.

Theorem 1.

• If n = 2k for some k, then f ∗(n) = n. In this case Magnus has a strategy for visiting all positions in exactly n − 1
moves; the strategy can be formulated as a sequence of n − 1 magnitudes at the start of the game, and calculating
the sequence requires O(n) time.
• If n = pm where p is the smallest odd prime factor of n, then f ∗(n) =

(p−1)n
p and there exists a strategy for Derek

to ensure at most f ∗(n) positions are visited. Derek’s calculations require O(1) time in each round. Furthermore
there exists a strategy for Magnus to visit at least f ∗(n) positions in g(n) moves where:
– If m = 1, g(n) = O(n2) moves.
– If m = 2k , g(n) = O(p2

+ n) moves.
– Otherwise, if m = 2km1 where m1 is bigger than two and odd, g(n) = O( n2

p ) moves.
Magnus’s computations require O(1) time in each round.

As n increases from 1 to ∞, f ∗(n) is 1, 2, 2, 4, 4, 4, 6, 8, 6, 8, 10, 8, 12, 12, 10, 16, . . . . This sequence has not
previously appeared in the Encyclopedia of Integer Sequences [3].

3. Motivation

A mobile agent (MA) is an autonomous computer program that can move itself from host to host in an MA-
enabled network. Mobile agents have been proposed as efficient solutions for many distributed computing and network
maintenance tasks; one example is intrusion detection in computer networks [7]. A common task for an MA is to visit
as many as possible of the hosts or nodes in a network.

The notion of a network with a sense of direction is defined in [4,6]. In [5], the following informal definition is
given for a sense of direction in a network with a ring architecture:

“Sense of direction refers to the capability of a processor to distinguish between its adjacent communication
lines, according to some globally consistent scheme. In a ring network this property is usually referred to as
orientation, which expresses the processor’s ability to distinguish between left and right, where ‘left’ means the
same to all processors.”
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A network may be without a sense of direction due to a hardware or software fault, or due to malicious activity by
an intruder. We consider a ring network of n hosts in which there is inconsistent global sense of direction. That is, if
H0, H1, . . . , Hn−1 are our n hosts, Hi is connected to (and can communicate only with) Hi+1(mod n) and Hi−1(mod n).
Furthermore, although each host can distinguish between its two adjacent neighbours, the labelling “left” and “right”
is not consistent across hosts and may not be consistent over time. The game is designed to model an MA attempting
to explore or visit all hosts in such a network.

In our model we assume that each time the MA moves it has no control over the initial direction (“left” or “right”)
of its movement. However, the MA may predetermine how many hosts to pass through before stopping (the magnitude
of its movement), and is able to keep moving in the same direction on the ring until it stops. The MA can only explore
hosts at which it stops; it is unable to explore the hosts through which it passes while moving.

In this paper we give an algorithmic strategy for an MA exploring such a network. The strategy ensures that the
MA explores as many hosts as possible, even when its directions of movement are maliciously chosen to force the MA
to visit a minimal number of hosts. Secondary goals of the MA are to (1) minimize the number of moves necessary,
and (2) efficiently compute the magnitude of each move.

We formulate the problem as an adversarial game between two players: Magnus, representing the MA, attempts to
visit as many hosts as possible. Derek, representing a malicious adversary, attempts to prevent Magnus from achieving
this goal.

4. When n = 2k

In this section, we consider the case when n = 2k . We use C(`, d, s) to denote {s + i · d | 0 ≤ i < `}; that is, the
set of ` positions beginning at s that are successively d apart.

Lemma 2. If n = 2k , there is a strategy for Magnus forcing the token to visit all positions, and Magnus does not need
to adapt as the game progresses. Rather, Magnus’s strategy (a sequence of n − 1 magnitudes) can be determined at
the start of the game.

Proof. The strategy (and the proof) can be described inductively on the power k. Let k = 1 so that n = 2. Magnus
calls the magnitude 1 and irrespective of Derek’s chosen direction, the token moves to the unvisited position. Hence
f ∗(2) = 2 and only a single move is required.

Now let k > 1. We assume that f ∗(2k−1) = 2k−1 and that there exists a sequence d1, d2, . . . , d2k−1−1 of
magnitudes to achieve visiting all positions irrespective of Derek’s choice of directions.

Let n = 2k . We partition the set C(n, 1, 0) into C( n
2 , 2, 0) and C( n

2 , 2, 1). Magnus first uses 2d1, 2d2, . . . , 2d n
2−1

to visit all positions in C( n
2 , 2, 0). Then, regardless of the resultant position, Magnus calls 1 forcing the token to move

to some position j in C( n
2 , 2, 1). Thereafter, Magnus’s choices would be 2d1, 2d2, . . . , 2d n

2−1 to visit all positions in
C( n

2 , 2, 1). Therefore, all n positions are visited and the total number of moves is n − 1.
The proof is constructive and Magnus’s strategy is easy to generate in O(n) time at the start of the game. If n = 2k

for some k, then Magnus can declare the following sequence of moves:( n

21 ;
n

22 ;
n

21

)
;

n

23 ;

( n

21 ;
n

22 ;
n

21

)
;

n

24 ; (:::); ...;
n

2k ; (:::);

Here (:::) means a repetition of all the moves starting from the beginning of the sequence until, but not including, the
move before the current (:::). �

Notice that the sequence as a whole is a palindrome, that its first and second halves are each palindromes, and so
forth.

Example. For n = 16, Magnus’s choices are (in order and with brackets for clarifications):

((8; 4; 8; )2; (8; 4; 8; ))1; ((8; 4; 8; )2; (8; 4; 8; )).

Henceforth, we will consider values of n that are not exact powers of two.
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5. Derek’s strategy and proof of f ∗(n) ≤
( p−1)n

p

This is the easier part of Theorem 1.

Lemma 3. Let n = pm where p is the smallest odd prime factor of n (p > 2). Then f ∗(n) ≤
(p−1)n

p and there exists
a strategy for Derek with O(1) running time in each round ensuring that at most f ∗(n) positions are visited.

Proof. Consider the following strategy for Derek. At the beginning of the game, he chooses a position k where
1 ≤ k ≤ p − 1. We claim that Derek can prevent any position congruent to k mod p from being visited. The token
starts at position i = 0, which is not congruent to k mod p. In each round Derek must choose the next position from
the set {i + `, i − `} where i denotes the current position (not congruent to k mod p) and ` denotes the magnitude
chosen by Magnus. At least one of i + ` and i − ` is not congruent to k mod p, for, otherwise, both i + ` = k mod p
and i − ` = k mod p and by adding the two equations we obtain the contradiction 2i = 2k mod p, or i = k mod p.

Derek’s algorithm insures that the token never visits any position in C( n
p , p, k), the set of positions congruent to

k mod p. This set has cardinality n
p and this immediately implies that

f ∗(n) ≤

(
n −

n

p

)
=

(p − 1)n

p
.

Derek’s strategy does not depend on the entire set of previously visited positions, but only on the currently visited
position and Magnus’s choice of `. In each turn, the calculations for Derek’s choice run in O(1) time. �

Thus, we have proved the Derek’s part in Theorem 1. In fact, we have proved a stronger result. Derek can specify
in advance a set of positions (C( n

p , p, k) for a suitable k) and ensure that the token never visits those positions. It
may be of further interest to find a strategy for Derek that not only achieves at most f ∗(n) positions visited but also
prevents the token from visiting f ∗(n) positions before a certain minimum number of rounds are played in the game.

6. Magnus’s strategy and proof of f ∗(n) ≥
( p−1)n

p

For greater insight into the problem, we will show two quite different algorithmic strategies for Magnus to visit at
least f ∗(n) different positions. The two strategies share a common idea: although in many situations Magnus cannot
reach a given predetermined position, he can often reach at least one of two predetermined positions.

6.1. First strategy for magnus

To prove the general result for n 6= 2k , we will first state the above idea as a lemma, and then use it to derive an
algorithm for Magnus.

Lemma 4. Let n 6= 2k , and let the current position be K , and let I and J be two distinct positions such that J > I
and gcd(J − I, n) = 2 f for some non-negative integer f (gcd is the greatest common divisor). Then Magnus can find
a set of magnitudes with cardinality O(n) such that the token can be moved from K to one of I and J regardless of
Derek’s choices. These magnitudes can be found in time O(n2).

Proof. With respect to the pair of distinct positions I and J , we partition all positions 0, . . . , n − 1 into classes as
follows. Class C0 contains I and J . Class C1 contains every position p 6∈ C0 for which there exists a magnitude
d such that both p + d mod n ∈ C0 and p − d mod n ∈ C0. That is, if the current position is in C1, Magnus
can call a magnitude such that the token ends in a position in C0 irrespective of Derek’s choice. More generally,
class Cm contains every position p 6∈ C0 ∪ C1 ∪ · · · ∪ Cm−1 such that there exists a magnitude d for which both
p + d mod n ∈ C0 ∪ C1 ∪ · · · ∪ Cm−1 and p − d mod n ∈ C0 ∪ C1 ∪ · · · ∪ Cm−1.

We define C∗m = C0 ∪ C1 ∪ · · · ∪ Cm . We will prove that if |Cm+1| = 0 for any m, then C∗m = {0, . . . , n − 1}.
In other words, as we let i increase and construct Ci , if we cannot find at least one position for Cm , then we have
exhausted all positions. We prove this by contradiction.

Suppose that |Cm+1| = 0 for some m and that there exists a position α 6∈ C∗m . Since C1 contains at least 1 position
(see construction, below), (m + 1) ≥ 2 and we can always find at least three positions in C∗m . Consider all positions
in C∗m sorted in increasing order α1 < α2 < . . . < αt . In the next eleven lines, the index arithmetic is by mod t ; for
example, index t + 1 ≡ 1 (by mod t).
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• If αi − αi−1 is even for some i , then there is an odd number of positions between these positions. The position
equidistant from both, namely αi−1 +

αi+αi−1
2 , belongs to Cm+1, giving the contradiction.

• Suppose that αi − αi−1 is odd for all i . Consider any three consecutive positions α`−1, α`, α`+1 from C∗m . Then,
α`+1 − α`−1 must be even. If the midpoint α`−1 +

α`+1+α`−1
2 is not in C∗m , it must belong to Cm+1, giving the

contradiction. Otherwise, the midpoint equals α`. Repeating this argument for each consecutive triple from C∗m , we
obtain either a contradiction, or that α1, α2, . . . are arranged as vertices of a regular polygon of less than n vertices
(since α 6∈ C∗m) with sides αi − αi−1 = L for all i , where L ≥ 3 and L is odd. Therefore, n = aL for some
positive integer a. Furthermore, since I, J ∈ {α1, α2, . . .} they must be vertices of the polygon and, consequently,
J − I = bL for some positive integer b. This implies that gcd(J − I, n) = cL for some positive integer c. Then
gcd(J − I, n) 6= 2 f , contradicting the assumption in the lemma.

We have now proven that C∗l contains all positions 0, 1, . . . , n − 1 for some l ≤ n − 1. We now show how to
construct the classes by induction and find an algorithm for Magnus to reach I or J starting from K . For efficiency,
we consider each class to be stored as a list.

Trivially, C0 = {I, J }. For convenience, we call the elements of {0, 1
2 , 1, 1+ 1

2 , . . . , n−2, n−1− 1
2 , n−1, n− 1

2 }

points on the table. In other words, the set of all points on the the table is the union of the set of all positions and the
set of all (non-integer) midpoints between them.

To construct C1, there are only four candidates to consider: the two points diametrically opposite I and J , and
the two midpoints between I and J (namely, the two points equidistant from I and J ). From these four possible
points, we take only those that are integers, and therefore valid positions. If n is odd, C1 contains either I + J−I

2 or
I + J−I+n

2 mod n, depending on which is an integer. If n is even, C1 contains the two positions opposite to I and
J , respectively I + n/2 mod n and J + n/2 mod n. When n is even, the two midpoints are either both integers or
both non-integers; if they are integers, we also include them in C1. Notice that it is not possible for I and J to be
diametrically opposite to each other. If they were, gcd((J − I ), n) = gcd( n

2 , n) = n
2 and cannot be 2 f since n 6= 2k .

Therefore,
∣∣C∗1 ∣∣ ≥ 3 regardless of whether n is even or odd.

Now suppose that we have already constructed C0, C1, . . . , Cm−2, Cm−1 as lists. Notice that this defines an order
for each element in C∗m−1 (and, eventually, will define an order for {0, 1, . . . , n − 1}): first come the elements from
C0, in their order, then the elements from C1, in their order, and so forth.

For each p ∈ Cm−1, we consider its diametrically opposite point, p + n
2 mod n, and all midpoints between p and

any q ∈ C∗m−1 with q occurring before p in the order. We add to Cm whichever of these are integers and do not
already belong to C∗m−1 (or Cm). The construction requires O( j) time for a table position in the j th place in the order;
therefore, the entire process takes O(1)+ O(2)+ · · · + O(n) = O(n2) time.

Each position i = 0, . . . , n − 1 belongs to some class Ch(i). The construction also shows how to determine for
each initial position i a magnitude di such that Magnus can force the token to a position in class Ch(i)−1, irrespective
of Derek’s choice.

Now, suppose that K belongs to some class Ch(K ). Magnus can choose dK to move to a position in Ch(K )−1.
Iterating this process, the token finally moves to a position in C0, proving the lemma. �

Using Lemma 4, we can now prove that f ∗(n) ≥ (p − 1) n
p .

Lemma 5. Let n = pm 6= 2k where m, k are non-negative integers and p is the smallest odd prime factor of
n. Then there exists an O(n3) time algorithm for Magnus that produces a sequence of O(n2) moves such that
f ∗(n) ≥ (p − 1) n

p .

Proof. From any current position K , if there exist two unvisited positions I and J , J > I , such that gcd(J−I, n) = 2 f

for some integer f , Magnus employs the algorithm in Lemma 4 to reach either I or J . After Magnus reaches either
I or J , Magnus repeats this procedure until no pair of unvisited positions I and J satisfy gcd(J − I, n) = 2 f . We
claim that at most n

p positions remain unvisited.
Suppose otherwise. We partition all n positions into n

p consecutive groups of p positions as follows:
(0, 1, 2, . . . , p− 1), (p, p+ 1, p+ 2, . . . , 2p− 1), . . . , (n − p, n − p+ 1, . . . , n − 1). By the pigeonhole principle,
there will be at least one group containing two unvisited positions, say I and J . We have |J − I | ≤ p − 1 since they
both belong to the same group. Since p is the smallest odd prime factor of n, gcd(J − I, n) must be a power of 2
(including 20

= 1), which is a contradiction. �
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The above strategy for Magnus proves the main theorem and yields insight into the structure of the problem. We
will now give an alternative, more efficient strategy for Magnus.

6.2. Second strategy for magnus

First, we will provide a strategy for the simple case when n is prime and then use it as a tool for the general case
n = pm. Although the techniques of this strategy differ from the previous one, it is built on the same substrategy: in
many situations Magnus can reach at least one position from a set of two.

Lemma 6. If n > 2 is prime, then f ∗(n) ≥ n − 1 and there exists a corresponding strategy for Magnus that requires
O(n2) moves. At each move Magnus’s computations run in O(1) time.

Proof. First, we provide a O(n) steps procedure for Magnus to reach at least one position from a set of two different
positions α and β, β > α. Let d = β − α mod n and say Magnus is at position p0 currently. Then we can represent
po as

p0 = α + (p0 − α)1 = α +
[
(p0 − α)d−1

]
20d = α + µ020d

where d−1 is the inverse of d and µ0 =
[
(p0 − α)d−1

]
.

Let pi be the token’s position at the end of step i for i = 0, 1, . . . , n − 1. A step does not always correspond
to a round, so it is possible pi = pi−1, in which case only the formula for the current position changes. Consider
the following strategy for Magnus. At each step i , if µi−1 is even, let µi ← µi−1/2 and no move is performed;
only the current position changes its representation to pi−1 = pi = α + µi 2i d mod n. If µi−1 is odd, Magnus calls
` = 2i−1d mod n and moves to

pi =

[
α + µi−12i−1d

]
± 2i−1d = α +

[
µi−1 ± 1

]
2i−1d = α +

[
µi−1 ± 1

2

]
2i d

depending on whether Derek’s response is + or −. Setting µi =
µi−1+1

2 if Derek’s response is + or µi =
µi−1−1

2
otherwise, the position at the end of step i can be represented again as

pi = α + µi 2i d mod n.

After n − 1 iterations, µn−1 = 0 or 1 since µ0 ≤ n − 1 and µi < µi−1 unless µi−1 was 0 or 1. Hence,

pn−1 = α + 0× 2n−1d = α or pn−1 = α + 1× 2n−1d mod n.

By Fermat’s little theorem [2], we know that 2n−1
= 1 mod n for prime n. Hence, Magnus is in either α or α+d = β

after O(n) steps. Therefore, the procedure takes O(n) moves (since one step corresponds to zero or one round), and
each step takes O(1) time to calculate µi .

Now starting with any position, Magnus has a strategy to achieve f ∗(n) ≥ n − 1. Whenever there are two or more
unvisited positions, he applies the above substrategy of O(n) moves for a total of O(n2) moves, giving the lemma. �

The lemma holds regardless of the starting position. Also, the easiest way to calculate the new 2i d is to multiply
the old 2i−1d by 2 mod n. Combining Lemma 6 with Lemma 3 gives the value for f ∗(n) when n is prime. As an
aside, the study of the length of the µi sequence with adversarial sequence of + and − responses from Derek may be
of independent interest. Now we turn to the general case of n.

Lemma 7. Let n = 2k p1 p2 . . . ps where p1, p2, . . . , ps are prime numbers, 3 ≤ p1 ≤ p2 ≤ . . . ≤ ps and s ≥ 1
is an integer. Then there exists a strategy for Magnus such that f ∗(n) ≥

(p−1)n
p and the number of moves and the

running time for calculating the strategy is bounded as follows. If s = 1, that is, n = 2k p1, so (n/p1) = 2k , then the
upper bound is O(p2

1 + n). Otherwise, the upper bound is O(n2/p1).

Proof. For convenience let p = p1, that is, we denote with p the smallest odd prime factor of n. We partition the set
of all positions, C(n, 1, 0), into p sets, C(n/p = m, p, i), for i = 0, 1, . . . , p − 1.

As a preliminary, we show that with O(p) moves Magnus can visit a position from any two sets C(n/p, p, j1)
and C(n/p, p, j2), where j1 6= j2. Magnus uses an adaptation of the technique from Lemma 6. He calculates the



130 Z. Nedev, S. Muthukrishnan / Theoretical Computer Science 393 (2008) 124–132

magnitudes to call as if the table size was p; if his current position is k, he assumes that the current position is
k mod p; and he plays as if he wanted to visit one of the two positions j1 or j2 on that imaginary table. The positions
he visits will not be the same as if he were playing on a table with size p, but since the table size n = pm, they will
be congruent by (mod p) to the positions he would have visited if the table size was p. After O(p) moves, he will
be in a real position that is either congruent to j1 or j2, and, therefore, the position will belong to C(n/p, p, j1) or
C(n/p, p, j2).

Magnus proceeds in two phases and inductively uses the same two phase strategy on smaller problem instances.

Phase 1. Phase 1 consists of the repetition of two main steps: A and B. Magnus applies step A after the token comes
for the first time on a position from any set C(n/p = m, p, i). In step A, Magnus plays as if the table size were n/p:

• if n/p is a power of 2, he applies the strategy from Section 4. On each round, he calculates an intermediate
magnitude `, playing as if only the positions in C(n/p, p, i) existed, but then he calls p`.
• if n/p is not a power of 2, he applies recursively this two phase algorithm. On each round, he calculates an

intermediate magnitude `, playing as if only the positions in C(n/p, p, i) existed, but then he calls p`.

When he has visited at least f ∗(n/p) positions from C(n/p, p, i), we say that Magnus has explored the set
C(n/p, p, i) and then he performs step B. There may be some unvisited positions left from C(n/p, p, i).

In step B, Magnus chooses any two sets C(n/p, p, j1) and C(n/p, p, j2) never explored before and using the
adaptation of the technique from Lemma 6, Magnus comes to one of these sets in O(p) moves. Then he applies step
A again.

Phase 1 ends after p−1 of the C(n/p, p, i) sets have been thus explored and in each navigated set at least f ∗(n/p)

positions have been visited.
Let at the end of this phase, the unexplored set be C(n/p, p, γ ). There may also exist positions not in C(n/p, p, γ )

that Magnus has not visited; if no such positions exist, Phase 2 is not needed.

Phase 2. Consider any position α /∈ C(n/p, p, γ ). Then α ∈ C(n/p, p, β), with β 6= γ . Magnus can use the
following strategy to get with O(p) moves into either α or a position from C(n/p, p, γ ). First, using the adaptation of
the technique from Lemma 6 described above, in O(p) moves, Magnus comes into a position in either C(n/p, p, γ )

or C(n/p, p, (β + γ )/2) where the division / is performed on prime field [p]. Suppose that Magnus gets onto a
position δ in C(n/p, p, (β + γ )/2). Then Magnus’s next move is α − δ. If Derek responds +, Magnus reaches
δ + (α − δ) which is α. Else, if Derek responds −, then Magnus reaches δ + (δ − α) = 2δ − α which is a position
in C(n/p, p, γ ). This is because we have δ = (β + γ )/2+ p`1 and α = β + p`2 for some non-negative integers `1
and `2. Thus 2δ − α = γ + p(2`1 − `2).

Using the above strategy repeatedly with unvisited positions outside of the set C(n/p, p, γ ) Magnus can either
visit them all in which case the phases are complete or come onto a position in C(n/p, p, γ ). In this second case,
Magnus explores C(n/p, p, γ ) by using this two phase algorithm recursively as in step A of Phase 1. Thus, Magnus
visits f ∗(n/p) positions in C(n/p, p, γ ) and the phases are complete. �

We can now count the number of visited positions. There are two possibilities: either all positions in each set
C(n/p, p, i), where i 6= γ are visited, or all C(n/p, p, i)’s are visited and explored using the two phase strategy.
Hence, we have

f ∗(n) ≥ min{(p − 1)n/p, p f ∗(n/p)}.

Observe that inductively we can set f ∗(n/p) ≥
(p−1)(n/p)

p since either n/p is exact power of two in which case
f ∗(n/p) = n/p or otherwise because p is no larger than the smallest odd prime factor of n/p. That proves
f ∗(n) ≥

(p−1)n
p .

We can upper bound the number of moves, say g(n).
Case 1. If s = 1, that is, n = 2k p so (n/p) = 2k .
Then once Magnus reaches for the first time a set C(n/p, p, i 6= γ ), he can use the algorithm from Section 4 to

visit all positions in it for (n/p)− 1 moves. So g(n) ≤ p2
+ (p − 1)(2k

− 1) ≤ p2
+ n.

Case 2. If n has at least two odd prime factors, that is, s ≥ 2 and n = 2k p1 p2 . . . ps where p1, p2, . . . , ps are the
odd prime factors of n sorted in increasing order.
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Then Magnus needs at most p2
1 moves in total to get for the first time into each of the sets C(n/p1, p1, i 6= γ )’s.

Together for Phase 1 and Phase 2, the total number of moves for navigating within the various C(n/p1, p1, i)’s is
upper bounded by

(p1 − 1)g(n/p1)+ g(n/p1)+ (p1 − 1)(n/p1)(1/p1)(p1)

where the first summand is for navigating within the p1 − 1 sets C(n/p1, p1, i 6= γ )’s in Phase 1, and the second
summand is for navigating C(n/p1, p1, γ ) if Magnus reaches positions in it in Phase 2. The third summand is for
visiting all unvisited nodes left after Phase 1 in the p1 − 1 number of sets C(n/p1, p1, i 6= γ ). To visit each of these
unvisited nodes takes at most p1 moves and in each such set there are at most (1/p1)(n/p1) nodes left unvisited after
Phase 1. Hence,

g(n) ≤ p2
1 + p1 ∗ g(n/p1)+ n. (1)

Using the above inequality (1), we get that for j = 1, 2, . . . , s − 2 we have

g

(
n

p1 p2 . . . p j

)
≤ p2

j+1 +
n

p1 p2 . . . p j
+ p j+1 ∗ g

(
n

p1 p2 . . . p j+1

)
. (2)

From Case 1 it follows that

g

(
n

p1 p2 . . . ps−1

)
≤ p2

s +
n

p1 p2 . . . ps−1
. (3)

Applying recursively the inequalities from (2) and from (3) to the right-hand side of inequality (1), we get

g(n) ≤ n + p2
1 + p1 ∗ g(n/p1) ≤ 2n + p1 p2

2 + n + p1 p2g

(
n

p1 p2

)
≤ 4n + p1 p2 p2

3 + n + p1 p2 p3g

(
n

p1 p2 p3

)
≤ . . . ≤ 2n(s − 1)+ p1 p2 . . . ps−1g

(
n

p1 p2 . . . ps−1

)
≤ 2n(s − 1)+ p1 p2 . . . ps−1

(
p2

s +
n

p1 p2 . . . ps−1

)
≤ 2n(s − 1)+ nps + n ≤ nps + n(2s − 1).

(4)

Since obviously (2s − 1) ≤ p1 p2 . . . ps−1, we have the simpler g(n) ≤ nps + n2/ps ≤ 2n2/p1 = O(n2/p1).
Because, at each move, Magnus’s computations in Lemma 6 run in O(1) time, here, in the general case of n,

Magnus’s computations run also in O(1) time. �

Both the number of moves and the running time of the algorithm for Magnus are non-monotonic functions over n;
similarly, f ∗(n) is also non-monotonic with increasing n. These three factors depend on the factorization of n, and
especially on its smallest odd prime factor p.

7. Concluding remarks

We have initiated the study of two-person games that we call the Magnus–Derek games. We have proved tight
existential bounds and shown matching algorithmic strategies on the basic version of the problem. An immediate
open problem is if we can improve the number of moves (or the running time) of the algorithms.

The following variants for the game may be of further interest.

• Dual problems. Say the game stops after no more than m rounds, and let f ∗m(n) be the size of visited set if both
players play optimally. What is f ∗m(n) and what are associated strategies?
• Off-line strategy construction. Given a sequence d1, d2, . . . , dk of Magnus’s moves, design corresponding +’s or

–’s for Derek so that f ∗(n) is minimized.
• Non-adaptive strategies. Limit Magnus and/or Derek to use only non-adaptive strategies, that is, Magnus (resp.

Derek) prespecifies a sequence of moves without knowing Derek’s (resp. Magnus’s) responses, and evaluate the
sequence when Derek (resp. Magnus) later specifies responses in order to optimize their goal. What is f ∗(n) and
what are associated non-adaptive strategies?
• Limit revisits. Suppose that Magnus may not visit a position more than say k times. Then, what is f ∗k (n) and what

are associated strategies?
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• Random strategies. Suppose that Magnus or Derek used random strategies. The problem is to estimate the expected
f ∗(n). This is akin to random walks with random steps, but differs in having either one of the player being
deterministic or adversarial.
• Limiting information. Suppose that Magnus and/or Derek do not know n or they know n but do not have a way

to factorize it. This is similar to graph exploration problems studied in theoretical computer science with limited
number of tokens or memory [1].
• Making each player nag as well as move. The two players have asymmetrical roles. For each move, first, Magnus

chooses its magnitude, then Derek determines its direction. While Magnus wants to maximize the cardinality of
the set of visited positions, Derek wants to maximize the cardinality of the set of unvisited positions. In other two-
person games too, this type of asymmetry is seen (for example, the Pusher–Chooser games of [8]). We propose
a modified game in which Magnus and Derek alternate their roles each round. Positions visited by Magnus are
colored red, and those by Derek are colored blue. Derek is restricted to non-red positions and Magnus to non-blue.
What are suitable strategies and how many positions are visited by each player?
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