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SUMMARY

Cancers may arise from rare self-renewing
tumor-initiating cells (T-IC). However, how T-IC
self renewal, multipotent differentiation, and
tumorigenicity are maintained remains obscure.
Because miRNAs can regulate cell-fate deci-
sions, we compared miRNA expression in self-
renewing and differentiated cells from breast
cancer lines and in breast T-IC (BT-IC) and
non-BT-IC from 1� breast cancers. let-7 miRNAs
were markedly reduced in BT-IC and increased
with differentiation. Infecting BT-IC with let-7-
lentivirus reduced proliferation, mammosphere
formation, and the proportion of undifferenti-
ated cells in vitro and tumor formation and me-
tastasis in NOD/SCID mice, while antagonizing
let-7 by antisense oligonucleotides enhanced
in vitro self renewal of non-T-IC. Increased
let-7 paralleled reduced H-RAS and HMGA2,
known let-7 targets. Silencing H-RAS in a BT-
IC-enriched cell line reduced self renewal but
had no effect on differentiation, while silencing
HMGA2 enhanced differentiation but did not af-
fect self renewal. Therefore let-7 regulates mul-
tiple BT-IC stem cell-like properties by silencing
more than one target.

INTRODUCTION

The cancer stem cell hypothesis suggests that many can-

cers are maintained in a hierarchical organization of rare,

slowly dividing ‘‘cancer stem cells’’ (or tumor-initiating

cells, T-IC), rapidly dividing amplifying cells (early precur-

sor cells, EPC) and differentiated tumor cells (Dalerba

et al., 2007). Tentatively defined T-IC have been identified

in hematologic, brain, breast, prostate, liver, pancreas,

and colon cancers. T-IC, which are self renewing and

can differentiate into multiple lineages, are highly tumori-
Cell 1
genic in immunodeficient mice. According to the hypoth-

esis, T-IC are not only the source of the tumor but also

may be responsible for tumor progression (Dalerba

et al., 2007), metastasis (Wicha, 2006), resistance to ther-

apy, and subsequent tumor recurrence (Al-Hajj, 2007).

Breast T-IC (BT-IC) can be enriched by sorting for

CD44+CD24�/low cells (Al-Hajj et al., 2003), by selecting

for side-population (SP) cells that efflux Hoechst dyes

(Patrawala et al., 2005), or by isolating spherical clusters

of self-replicating cells (‘‘mammospheres’’) from suspen-

sion cultures (Ponti et al., 2005). However, these methods

purify both T-IC and some EPC (Al-Hajj et al., 2003; Ponti

et al., 2005).

Since miRNAs regulate differentiation and can function

as either tumor suppressors or oncogenes to regulate

tumor development and prognosis (Lu et al., 2005), we

looked at whether differences in miRNA expression might

distinguish BT-IC/EPC from their more differentiated

progeny. miRNAs are known to contribute to preserving

stemness of embryonic stem (ES) cells, because ES cells

deficient in miRNA processing cannot be maintained

(Shcherbata et al., 2006). Previous studies have shown

an overall reduction in miRNA expression in embryonic

or tissue stem cells (Croce and Calin, 2005), and changes

in specific miRNAs have been associated with ES cell self

renewal and differentiation (Shcherbata et al., 2006).

Moreover, miRNA-expression profiling can help charac-

terize the stage, subtype, and prognosis of some cancers

(Lu et al., 2005).

Because BT-IC are relatively resistant to chemotherapy,

we are able to generate large numbers of BT-IC-

enriched cells by in vivo passage of breast cancer cells

in NOD/SCID mice treated with chemotherapy. We find

that miRNA expression is globally reduced in BT-IC com-

pared with more differentiated cancer cells. In particular,

the let-7 family is not expressed by BT-IC generated

from cell lines or 1� patient tumors and increases with dif-

ferentiation. By expressing let-7 but not other differentially

expressed oncomirs, in BT-IC or antagonizing let-7 in

more differentiated cells, we find that let-7 regulates the

key features of breast cancer stem cells—self renewal

in vitro, multipotent differentiation, and the ability to form
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Figure 1. Breast Cancer Cells under Pressure of Chemotherapy Are Enriched for BT-IC

(A and B) 1� breast cancers from patients who received neoadjuvant chemotherapy are substantially enriched for self-renewing cells with the

expected properties of BT-IC, compared to untreated patients. Representative images show increased numbers of mammospheres after 15 days

of culture (A) and a higher percentage of CD44+CD24� cells in freshly isolated tumors (B) from a patient who received chemotherapy. (Tumors re-

sected from eight patients who did not receive chemotherapy and five patients who received neoadjuvant chemotherapy were analyzed [Table S1A]).

(C) Similarly, passaging the human breast cancer line SKBR3 in epirubicin-treated NOD/SCID mice enriches for cells with BT-IC properties. SK-3rd

cells from the third passage xenograft form more mammospheres than the parent line, and the mammospheres can be repetitively passaged in vitro

and are larger. Shown are numbers of 1�, 2� (generated from dissociated 1� spheres), and 3� (generated from dissociated 2� spheres) mammospheres

on day 15 from 1000 cells. *, p < 0.001 compared with SKBR3. Error bars correspond to mean ± SD.

(D) Mammospheres generated from single-cell cultures of SK-3rd and SKBR3, imaged on indicated day of suspension culture. Shown are the mean ±

SD number of cells/sphere for each time. *, p < 0.001 compared with SKBR3. Error bars correspond to mean ± SD.

(E) The majority of freshly isolated SK-3rd cells are CD44+CD24�, as expected for BT-IC, while cells with this phenotype are rare in SKBR3 (repre-

sentative data of five experiments shown).

(F) SK-3rd and SKBR3 cells cultured as spheres are CD44+CD24-. When they differentiate in adherent cultures, they gradually assume the parental

SBKR3 phenotype, but somewhat more rapidly for SKBR3 mammospheres.
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tumors that can be serially transplanted and metastasize

in NOD/SCID mice. Protein expression of the let-7 targets

RAS (Johnson et al., 2005) and HMGA2 (Mayr et al., 2007)

is high in BT-IC and silenced during differentiation. RAS

silencing contributes to loss of self renewal but does not

affect multipotent differentiation, while silencing HMGA2

enhances multilineage differentiation but has no effect

on self renewal.

RESULTS

Chemotherapy Selectively Enriches
for Self-Renewing Breast Cancer Cells
Resistance to chemotherapy distinguishes T-IC from

other cancer cells (Al-Hajj, 2007). To examine whether

chemotherapy might enrich for BT-IC, we compared the

proportion of in vitro self-renewing cancer cells in 1�

breast cancers from patients who received neoadjuvant

chemotherapy with tumors resected from chemother-

apy-naive patients (Table S1A). Freshly isolated cells

were cultured in suspension to generate mammospheres,

a method for culturing both mammary gland progenitor

cells (Dontu et al., 2003) and BT-IC (Ponti et al., 2005).

Mammosphere generation is an in vitro assay of self-

renewal potential (Ponti et al., 2005). After 15 days, 5.8% ±

2.6% of tumor cells from 5 neoadjuvant chemotherapy pa-

tients formed mammospheres as compared with 0.4% ±

0.3% from 8 chemotherapy-naive patients, a 14-fold

increase (p < 0.001, Figure 1A). Furthermore, 1� mammo-

spheres from chemotherapy patients could be passaged

for at least eight to ten generations (endpoint of the study),

while those from patients without chemotherapy vanished

within two to three generations. In the 1� breast cancers;

74% ± 7% of tumor cells from chemotherapy-treated pa-

tients, but only 9% ± 4% of cells from untreated patients,

were CD44+CD24�/low, the phenotype ascribed to BT-IC

(Al-Hajj et al., 2003; Ponti et al., 2005) (p < 0.001,

Figure 1B). Enrichment of BT-IC by chemotherapy was

confirmed by studying paired specimens from seven

patients obtained by biopsy prior to chemotherapy and

at surgery following neoadjuvant chemotherapy. Only

0.5% ± 0.3% of tumor cells before chemotherapy, but

5.9% ± 1.7% of cells obtained after chemotherapy,

formed mammospheres after 15 days of suspension cul-

ture (p < 0.001, Figure S1A). Similarly, the proportion of

CD44+CD24�/low cells was 9.5-fold higher in samples after

chemotherapy (p < 0.001, Table 1B). In another patient

group with metastatic pleural effusions who had received

chemotherapy 2–6 years before, pleural cancer cells were

highly enriched (31% ± 10%) for CD44+CD24�/low cells

(Table S1C). These data from three cohorts suggest that

chemotherapy selectively enhances the proportionate

survival of BT-IC.
Cell
We took advantage of this finding to see if we could en-

rich for BT-IC by consecutively passaging breast cancer

cells in NOD/SCID mice treated with chemotherapy.

Mice injected in the mammary fat pad with SKBR3 cells

were treated with epirubicin weekly for 10–12 weeks until

xenografts reached �2 cm diameter. Cells from the third

passage (SK-3rd) were cultured in suspension to generate

mammospheres. The number of mammospheres reflects

the quantity of cells capable of in vitro self renewal, while

the number of cells/sphere measures the self-renewal

capacity of each sphere-generating cell (Dontu et al.,

2003; Dontu et al., 2004). SK-3rd formed �20-fold more

spheres than SKBR3 (16.3% versus 0.8%, p < 0.001;

Figure 1C). Moreover, dissociated SK-3rd cells from 1�

mammospheres generated an equivalent proportion of

2� and 3� spheres (Figure 1C), demonstrating their in vitro

self-renewing potential. SK-3rd mammosphere cultures

could be maintained for >50 passages, while within three

to four passages, SKBR3 mammospheres failed to gener-

ate 2� spheres, became adherent, and differentiated.

These findings were confirmed by single-cell cloning

(Figure S2). SK-3rd mammospheres were observed

beginning at day 5 and increased in size and cell number

until day 15 (Figure 1D). Mammospheres could be pas-

saged >40 times from single-cell SK-3rd clones. However,

mammospheres did not appear until day 15 in parental

SKBR3 cells and were about 18-fold fewer in number

and much smaller (Figure 1D). In addition, freshly isolated

SK-3rd formed 4-fold more colonies than SKBR3 in a col-

ony-forming assay that correlates with self renewal (Patra-

wala et al., 2005) (Figure S3).

Seventy-two percent of freshly isolated SK-3rd cells,

compared to 0.5% of SKBR3 cells, were CD44+CD24�lin�

(Figure 1E). Moreover, 93% of SK-3rd sphere cells were

CD44+CD24�lin�. When cells were plated on collagen un-

der differentiating conditions in serum, only 2% remained

CD44+CD24� by day 10 (Figure 1F). Similarly, 93% of

freshly isolated mammospheric cells from SKBR3 were

CD44+CD24�lin�, while after 10 days of differentiating

conditions, <1% maintained this phenotype (Figure 1F).

Furthermore, sphere-derived SK-3rd and SKBR3 cells,

but not parental SKBR3 cells, highly expressed stem

cell-associated OCT4 (Ponti et al., 2005), which declined

with in vitro differentiation (Figure S4). Therefore, SK-3rd

and SKBR3 mammospheric cells not only have self-

renewing and differentiating capability in vitro but also

have the phenotype expected of BT-IC. SKBR3 mammo-

sphere cells, however, may be subtly different from SK-

3rd mammospheres; although they initially had similar

proportions of CD44+CD24�lin� cells, the SKBR3-derived

mammospheres lost this phenotype more rapidly—on day

3 of differentiation, 15% of SKBR3 mammospheric cells

versus 32% of SK-3rd cells were CD44+CD24�lin�,
(G) When SK-3rd spheres are dissociated, removed from growth factors, and plated on collagen for 8 hr (top), they do not express luminal (Muc1 and

CK-18) or myoepithelial (CK-14 and a-SMA) differentiation markers, while after further differentiation (bottom), they develop into elongated cells with

subpopulations staining for either differentiated subtype.

(H) Freshly isolated SK-3rd cells are enriched for Hoechstlow SP cells compared with SKBR3 cells.
131, 1109–1123, December 14, 2007 ª2007 Elsevier Inc. 1111



Table 1A. Incidence of Tumors and Metastasis by Mammospheric SK-3rd Cells and SKBR3 Cells in NOD/SCID Mice

Number of Cells Inoculated

2 3 103 2 3 104 2 3 105

Tumors
Lung
Metastasis

Liver
Metastasis Tumors

Lung
Metastasis

Liver
Metastasis Tumors

Lung
Metastasis

Liver
Metastasis

Mammospheric
SK-3rd cells

untransduced 8/10 6/10 3/10 10/10 7/10 4/10 10/10 8/10 6/10

lentivector 8/10 5/10 3/10 10/10 8/10 5/10 10/10 8/10 5/10

lenti-let-7 2/10* 1/10 0/10 5/10* 3/10 1/10 7/10 4/10 3/10

RAS-shRNA 3/10* 2/10 1/10 7/10 5/10 3/10 10/10 7/10 4/10

parent SKBR3 0/10$ 0/10* 0/10 0/10# 0/10$ 0/10 3/10$ 0/10# 0/10*

*, p % 0.05; $, p % 0.01; #, p % 0.001 compared with untransduced mammospheric SK-3rd cells.
CD24 staining was brighter on differentiated SKBR3 cells,

and a larger proportion of SKBR3 cells were CD44� (Fig-

ure 1F). Taken together with the slower growth and smaller

size of SKBR3 mammospheres and our inability to pas-

sage them as spheres, these data suggest that SKBR3

mammospheres may have undergone a first step toward

losing self-renewing capacity.

A key property of T-IC is multipotency. Mammospheric

SK-3rd cells were round and did not stain for cytokeratins

(CK) or other differentiation markers, such as mucin 1

(MUC1) and a-smooth-muscle actin (a-SMA), even after

they adhered to collagen for 8 hr (Figure 1G). However, af-

ter further differentiation, they developed into elongated

cells with subpopulations staining for either myoepithelial

(CK14, a-SMA) or luminal epithelial (CK18, MUC1)

markers (Figure 1G). As expected, the differentiated cells

also lost self-renewal potential since only 1.5% ± 0.5% of

cells maintained under differentiating conditions for

10 days formed spheres, an 11-fold reduction compared

to cells grown as spheres.

T-IC are also believed to be resistant to chemotherapy,

in part from overexpressing an ATP-binding cassette half-

transporter ABCG2 (Patrawala et al., 2005). This property

correlates with the ability to expel dyes, defined as a flow

cytometry side population (SP). Freshly isolated SK-3rd

cells contained 26-fold more SP cells than SKBR3

(15.7% ± 4.2% versus 0.6% ± 0.4%, n = 5, p < 0.001;

Figure 1H). In line with this, mammospheric SK-3rd, but
1112 Cell 131, 1109–1123, December 14, 2007 ª2007 Elsevier
not differentiated SK-3rd or SKBR3, stained for ABCG2

by immunoblot (Figure S4). Reduced ABCG2 was not a di-

rect consequence of chemotherapy, as a similar reduction

was observed in mammospheric SK-3rd and chemother-

apy-unexposed mammospheric SKBR3. ABCG2 mRNA

paralleled differences in protein (not shown). Moreover,

mammospheric SK-3rd and SKBR3 cells were relatively

resistant to epirubicin, compared to differentiated SK-

3rd or SKBR3 (not shown).

An important T-IC feature is efficient xenograft forma-

tion (Clarke et al., 2006). When 2 3 103 mammospheric

SK-3rd cells were inoculated into NOD/SCID mice, eight

out of ten mice generated tumors (Table 1A). All animals

injected with 10- or 100-fold more cells developed tumors.

By contrast, no mice inoculated with 2 3 103 or 2 3 104

SKBR3 cells developed tumors, while tumors developed

in only three out of ten animals inoculated with 2 3 105

SKBR3 cells. Therefore, mammospheric SK-3rd cells

were at least 100-fold more tumorigenic than SKBR3.

Importantly, mammospheric tumor cells from SK-3rd

xenografts could be serially passaged into 2� and 3� recip-

ients, while the unselected cells could not (Table S2). The

potent tumorigenic capability of mammospheric SK-3rd

cells upon serial xenotransplantation suggests in vivo

self-renewing capacity (Clarke et al., 2006).

It has been hypothesized that only cancer cells with T-IC

properties can initiate metastases (Dalerba et al., 2007).

We therefore compared lung and liver metastases of
Table 1B. Incidence of Tumors from 1� Breast Cancer Cells Serially Transplanted in NOD/SCID Mice

2 3103 cells 5 3103 cells

1� Tumor Cells Passage 1 Passage 2 1
�

Tumor Cells Passage 1 Passage 2

lin�CD44+CD24�/low untransduced 6/8 8/8 8/8 8/8 8/8 8/8

lentivector 6/8 8/8 8/8 7/8 8/8 8/8

lenti-let-7 2/8* 2/8$ 2/8$ 4/8$ 4/8$ 5/8*

lin� NotCD44+CD24�/low 0/8# 0/8# 0/8# 0/8# 0/8# 0/8#

*, p < 0.05; $, p <0.01; #, p <0.001 compared with untransduced lin�CD44+CD24�/low cells.

For the initial inoculation, each mouse was inoculated with sorted cells, transduced or not, from a different chemotherapy-naı̈ve

patient. The clinical features of these eight patients are described in Table S1A. For subsequent passages, cells were isolated,

sorted, and transduced from mice injected with tumor cells from the two patients whose lenti-let-7 transduced cells established
xenografts.
Inc.



SK-3rd and SKBR3 xenografts. Five weeks after inocula-

tion with 2 3 105 mammospheric SK-3rd cells, massive

lung metastases were visualized by microscopy in eight

out of ten mice, but no mice injected with the same num-

ber of SKBR3 developed microscopic lung metastases,

analyzed when 1� SKBR3 tumors reached the same size

(�2 cm diameter) as SK-3rd xenografts (Table 1A). Simi-

larly, 2 3 105 mammospheric SK-3rd cells generated liver

micrometastases in six out of ten mice, but SKBR3 cells

produced none.

To determine whether chemotherapy is needed to

maintain a stable percentage of self-renewing cells, we

compared mammospheric SK-3rd-generated tumors

further passaged in NOD/SCID mice treated or not with

chemotherapy (SK-4th[+] and SK-4th[�], respectively).

SK-4th(+) contained an equal percentage of sphere-form-

ing cells as SK-3rd (Table S3 and Figure 1), suggesting

that the proportion of BT-IC had already plateaued by

the third passage. In contrast, SK-4th(�) cells generated

8-fold fewer spheres, implying that selective pressure

from chemotherapy is required to maintain the proportion

of self-renewing cells in vivo. When 2 3 103 or 2 3 104

mammosphere-selected SK-4th(+) or SK-4th(�) cells

were injected into NOD/SCID mice, tumors developed in

virtually all animals and the majority of these metastasized

(Table S3). There was no significant difference in tumor

formation or metastasis by mammospheric SK-3rd,

SK-4th(+) or SK-4th(�) cells, while unselected SK-4th

cells, whether from chemotherapy-exposed mice or not,

generally did not generate tumors from this number of

cells. Therefore, chemotherapy selects for self-renewing

BT-IC and prevents their differentiation in xenografts but

is not responsible for BT-IC tumor-forming capacity.

Collectively, these data show that in vivo passaging of

breast cancer lines under chemotherapy pressure enriches

for BT-IC. At least 16% of SK-3rd cells displayed all the ex-

pected properties of T-IC: in vitro stable mammosphere

formation, growth under nonadherent conditions, multipo-

tent differentiation, lin-CD44+CD24� phenotype and drug-

expelling SP, and a high rate of forming tumors capable of

serial transplantation as xenografts (Clarke et al., 2006).

Mammospheric Cells Have Reduced let-7

Because miRNA help regulate cell differentiation, we took

advantage of our ability to obtain large numbers of self-

renewing cells to compare miRNA expression in mammo-

spheric SK-3rd with their in vitro differentiated progeny

and SKBR3. Most of the 52 miRNAs expressed above

background in any of the lines had reduced expression in

mammospheric SK-3rd cells either freshly dissociated

(Figure 2A, lane 1) or briefly adhered (8 hr, lane 2) compared

with cells differentiated under adherent conditions (1 day,

lane 3; 10 days, lane 4) or SKBR3 (lane 5). During differen-

tiation most reduced miRNAs gradually increased to the

level in SKBR3. Cluster analysis of multiple samples

showed a clear distinction between mammospheric versus

differentiated cells and SKBR3 (not shown). Using ANOVA

analysis on normalized chip data, we identified a number of
Cell 1
miRNAs whose expression in mammospheres was signifi-

cantly different from the differentiated and parent cells.

Among them, the let-7 family emerged as the most consis-

tently and significantly reduced miRNAs. Some other

miRNAs, including miR-16, miR-107, miR-128a, and miR-

20b, showed the same expression pattern as let-7. let-7

was initially identified as a miRNA that regulates C. elegans

development (Pasquinelli et al., 2000), where it targets key

genes including lin-41, hbl, daf-12, pha-4, and let-60, a RAS

homolog (Grosshans et al., 2005). There are 11 human let-7

family members, differentially expressed in different tis-

sues, that are believed to have redundant targets and func-

tions (Johnson et al., 2005). let-7, which is downregulated in

some human cancers and associated with poor lung can-

cer prognosis (Takamizawa et al., 2004), targets RAS

(Johnson et al., 2005) and HMGA2 (Mayr et al., 2007), which

encodes a DNA-binding protein implicated in mesenchy-

mal cell differentiation and tumor formation. This paper

focused on let-7 because it is a known tumor suppressor.

To verify the reduction of let-7 in mammospheric cells,

we performed northern blot using a probe that recognizes

all let-7 homologs (Johnson et al., 2005) (Figure 2B) and

qRT-PCR using let-7a-specific primers (Figure 2C). By

both assays, let-7 was barely detected in mammospheric

SK-3rd, did not change after 8 hr of adherence, but began

to increase within 1 day and increased further over 10 days

of differentiation. let-7 also was not expressed in SKBR3

mammospheres and was upregulated upon in vitro differ-

entiation with similar kinetics. Therefore, although we

cannot rule out the possibility that chemotherapy expo-

sure alters properties of pre-existing self-renewing cells,

reduced let-7 is not a consequence of chemotherapy or

anchorage-independent growth but rather a corollary of

self-renewal capacity. After 10 days, let-7 expression in

the differentiated cells increased �10-fold and was not

significantly different from let-7 expression in SKBR3. Re-

duction of some other tumor-related miRNAs (miR-15a,

miR-16, miR-21) in SK-3rd spheres was also verified by

qRT-PCR using specific miRNA primers (Figure S6).

miR-15a was reduced �3-fold (p < 0.05) and miR-16

�4-fold (p < 0.01) in mammospheric SK-3rd as compared

with SKBR3 or differentiated SK-3rd. miR-21 was reduced

by �50%, but not significantly (p � 0.05).

To investigate let-7 function, we transfected a luciferase

reporter containing a let-7 target 30UTR sequence into

mammospheric or differentiated SK-3rd and SKBR3. Lu-

ciferase activity was suppressed by 52% in differentiated

SK-3rd (p < 0.001) and by 78% in SKBR3 (p < 0.001), while

there was no suppression in SK-3rd (Figure 2D). Infection

of SK-3rd with a lentivirus expressing let-7a enhanced

miRNA expression and function comparably to that of

the differentiated cells (Figures S7 and 2D). Cotransfection

of differentiated SK-3rd cells, SKBR3, or lenti-let-7a-in-

fected SK-3rd with a let-7a antisense oligonucleotide

(ASO) significantly reduced the suppression in luciferase

activity by endogenous or exogenous let-7 (p < 0.01,

Figure 2D). Transfection of let-7a ASO in SKBR3 reduced

not only let-7a but also let-7b, let-7e, and let-7i,
31, 1109–1123, December 14, 2007 ª2007 Elsevier Inc. 1113
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expression by qRT-PCR analyzed using specific primers

(p < 0.001, Figure S8). Because of the close homology

within the let-7 family, a single ASO may be able to inhibit

the entire family or many of its members.

Since RAS and HMGA2 are known let-7 targets, we

compared their expression in the three cell lines. H-RAS

and HMGA2 proteins were highly expressed in mammo-

spheric SK-3rd cells but greatly reduced in differentiated

SK-3rd cells and SKBR3 (Figures 2E and 2F). (Other

RAS proteins were not detected in these cells [not

shown].) Expressing lenti-let-7a or shRNA against either

gene in mammospheric SK-3rd reduced H-RAS and/or

HMGA2 to the level in differentiated cells, while let-7

ASO in SKBR3 upregulated both proteins substantially.

However, H-RAS and HMGA2 mRNA, measured by

qRT-PCR, did not differ significantly among the three

cell lines (not shown). Therefore, let-7 silences RAS and

HMGA2 expression by inhibiting translation as previously

reported (Johnson et al., 2005; Mayr et al., 2007), rather

than by cleaving mRNA (Lee and Dutta, 2007). Moreover,

reduced let-7 in mammospheric cells leads to RAS and

HMGA2 overexpression.

let-7 Is Reduced in BT-IC from Clinical Cancer
Specimens
Reduced let-7 in SK-3rd or SKBR3 mammospheres sug-

gested that let-7 might be reduced in 1� BT-IC. We there-

fore examined let-7 expression by northern blot and

qRT-PCR in BT-IC selected from the three groups of

patient specimens. BT-IC were enriched by culture as

mammospheres or by sorting freshly isolated cells for

lin�CD44+CD24� cells (Figure 2G). Both the mammo-

spheres and sorted cells, composed mostly of BT-IC

and EPC (Al-Hajj et al., 2003; Ponti et al., 2005), from

patients in Table S1A, had reduced let-7 as compared

with either adherent cells or tumor cells that were not

CD44+CD24� (p < 0.01). Figure 2H shows northern blots

from a representative patient who received chemotherapy

and one who did not, while Figures 2I and S9A depict the
Cell 1
mean ± standard deviation (SD) and individual patient

data, respectively, of qRT-PCR analysis of let-7a/U6

expression. let-7 expression in normal adjacent breast tis-

sue was �35% higher than in 1� cancer cells depleted of

BT-IC, consistent with a prior report that breast cancers

express less let-7 than normal breast tissue (Iorio et al.,

2005). Transduction with lenti-let-7, but not with lentivec-

tor, enhanced let-7 expression comparably to that of

the 1� cancers depleted of BT-IC (p > 0.05).

Although there were more BT-IC in the patients who re-

ceived chemotherapy (Figures 1A and 1B and Table S1),

let-7 reduction in mammospheres or sorted lin-

CD44+CD24� cells was comparable whether or not pa-

tients received preoperative chemotherapy. Reduced

let-7 in 1� cancer cells enriched for BT-IC, either by growth

as mammospheres or by sorting for BT-IC phenotype,

was also confirmed and shown to be independent of che-

motherapy exposure or whether the tumors were 1� or

metastatic in samples from the other two patient groups

(Figures S9B and S9C). Therefore, reduced let-7 is an

intrinsic property of BT-IC/EPC.

Reduced let-7 Is Required to Maintain
Mammospheres
To test whether low let-7 is important for self renewal, we

studied the effect of enforced let-7a expression by mam-

mosphere assay. SK-3rd cells infected with lenti-let-7a

formed 5.3-fold fewer mammospheres than uninfected

SK-3rd or SK-3rd cells infected with empty or eGFP-

shRNA lentiviruses (Figure 3A). Mammosphere formation

was also delayed, and the mammospheres that formed

were 2- to 3-fold smaller in let-7a-expressing SK-3rd cells

than control SK-3rd cells (Figure 3B). Importantly, let-7a-

transduced mammospheres could only be passaged for

eight to ten generations, whereas the untransduced

spheres could by passaged for at least 50 generations

(>1 year). Therefore let-7a weakened self-renewal capac-

ity under nonadherent conditions. Conversely, transfect-

ing let-7 ASO into parental SKBR3 or differentiated
Figure 2. let-7 miRNA Is Reduced in Mammospheric SK-3rd Cells and 1� Tumor BT-IC

(A–C) miRNA array analysis shows miRNAs differentially expressed in SK-3rd cells cultured in mammospheres (1) or adhered for 8 hr (2), 24 hr (3), or 10

days (4) and parent SKBR3 (5). Most miRNAs, including all let-7 homologs, are reduced in SK-3rd cultured in mammospheres or just adhered for 8 hr,

and increase during differentiation to similar levels as SKBR3. Northern blot probed for let-7 (B) and qRT-PCR amplified for let-7a (C, mean ± SD

relative to U6) verify the microarray results. Spheres derived from either SK-3rd or SKBR3 show similar low expression of let-7 that increases gradually

beginning 1 days following induction of differentiation and plateaus within 6 days. #, p < 0.01; *, p < 0.001 as compared with cells cultured in spheres.

Error bars correspond to mean ± SD.

(D) let-7 function, assayed by luciferase assay, is negligible in SK-3rd, but increases upon differentiation or infection with lenti-let-7 (*, p < 0.001 com-

pared with mammospheric SK-3rd). Transfection with let-7 ASO reduces endogenous or exogenous let-7 activity (#, p < 0.01 compared to untrans-

fected cells). Error bars correspond to mean ± SD.

(E and F) H-RAS (E) and HMGA2 (F), targets of let-7, are highly expressed in mammospheric SK-3rd but not in differentiated adherent SK-3rd or

SKBR3 (protein assayed by immunoblot relative to b-actin). Infection with lenti-let-7 or lentivirus encoding RAS- or HMGA2-shRNA, but not GFP-

shRNA or vector, suppresses H-RAS or HMGA2 expression, respectively, in mammospheric SK-3rd cells, while transfection of SKBR3 with let-7

ASO augments H-RAS and HMGA2 protein.

(G–I) In addition, tumors from eight untreated patients and five patients treated with neoadjuvant chemotherapy were enriched for BT-IC by sorting for

lin�CD44+CD24� cells or by growth as mammospheres. Tumors depleted of BT-IC by adherent growth or by excluding CD44+CD24� cells also have

reduced let-7 compared to adjacent normal breast tissue. FACS analysis and northern blots probed for let-7 and U6 are shown in (G) and (H), respec-

tively, for representative untreated (#7, Table S1) and neoadjuvant chemotherapy treated (#5) patients. Mean ± SD of relative let-7 expression for all

samples analyzed by qRT-PCR (I); data for each patient are in Figure S9A. Infection with lenti-let-7 increases let-7 in BT-IC-enriched 1� cells. #, p <

0.05; *, p < 0.01 compared with samples depleted of CD44+CD24� cells.
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Figure 3. SK-3rd Cells Engineered to Express let-7a Lose Ability to Form Mammospheres and Proliferate Less under Differentiat-

ing Conditions

(A and B) Single-cell cultures of dissociated SK-3rd cells, infected with lenti-let-7 or lentivirus-expressing RAS-shRNA but not GFP-shRNA or empty

vector, form fewer mammospheres (A), and mammospheres that do form develop more slowly and are reduced in cell number (B) (*, p < 0.0001 com-

pared to untransduced cells). Error bars correspond to mean ± SD.

(C) Conversely, SKBR3 and differentiated SK-3rd cells transfected with let-7a, but not control lin-4, ASO, generate 10-fold more mammospheres.

Error bars correspond to mean ± SD.

(D) BT-IC-enriched cells, sorted for lin�CD44+CD24�/low phenotype from 1� chemotherapy-naive breast tumors, have a markedly higher capacity to

form mammospheres compared with CD44+CD24�-depleted cells. Transduction with lenti-let-7, but not lentivector, reduces mammosphere gener-

ation. *, p < 0.001 compared with untransduced cells. Mammosphere formation by let-7-transduced BT-IC is also significantly reduced on serial pas-

sage but is stable in untransduced cells.

(E) SK-3rd cells infected with lenti-let-7, and to a lesser extent RAS-shRNA lentivirus, proliferate less during in vitro differentiation than untransduced

or control cells as measured by [3H]-incorporation *, p < 0.01; #, p < 0.05 compared with untransduced SK-3rd.
SK-3rd cells enhanced mammosphere formation �6-fold

(Figure 3C). let-7 ASO also greatly increased the percent-

age of SP and CD44+CD24� cells in differentiated SK-3rd

and SKBR3 (Figure S10).

Enforced let-7 expression also reduced mammo-

spheres formed by 1� patient BT-IC. When sorted

lin�CD44+CD24� cancer cells from chemotherapy-naive

patients were infected with lenti-let-7, the percentage of

1� mammospheres from single-cell cultures declined

>3-fold (Figure 3D, p < 0.001). Moreover, although the

untransduced lin-CD44+CD24- cells maintained stable

sphere-forming capacity upon in vitro passage, the num-

ber of 2� and 3� spheres formed by the corresponding

let-7-expressing cells declined with each passage

(Figure 3D, p < 0.05).
1116 Cell 131, 1109–1123, December 14, 2007 ª2007 Elsevier
Although other tumor-related miRNAs (i.e., miR-15a

and miR-16) were reduced in mammospheric SK-3rd (Fig-

ures 2A and S6), exogenously expressing these miRNAs

to SKBR3 levels did not alter mammosphere formation

(p > 0.05, Figure S6). Moreover, although BCL-2 has

been identified as a target of miR-15a/16 (Cimmino

et al., 2005), transduction of miR-15a or miR-16 in mam-

mospheric SK-3rd did not reduce BCL-2 protein in these

cells, suggesting that effective targeting may vary with

the cellular context (Figure S6).

Reduced let-7 Maintains Proliferation but Inhibits
Differentiation
Another property of self-renewing cells is the potential to

expand under differentiating conditions. Mammospheric
Inc.



Figure 4. Silencing HMGA2 Reduces the

Undifferentiated Subpopulation and

Proliferation of SK-3rd Cells but Does

Not Significantly Alter Mammosphere

Formation

(A) Single-cell cultures of dissociated SK-3rd

cells, infected with lenti-HMGA2-shRNA, form

a comparable number of mammospheres as

uninfected cells or cells infected with lenti-

GFP-shRNA or lentivector. Lenti-let-7 was

used a positive control. *, p < 0.01 as com-

pared with untransduced SK-3rd.

(B) Silencing HMGA2 with lenti-HMGA2-

shRNA reduces proliferation of SK-3rd cells

on day 4 of in vitro differentiation in adherent

cultures (peak of proliferation), but not as

much as lenti-let-7 transduction. Cell prolifera-

tion was measured by [3H]-incorporation *, p <

0.01; #, p < 0.05 compared with untransduced

SK-3rd.

(C and D) Transduction with lenti-HMGA2-shRNA or lenti-let-7, but not with lenti-GFP-shRNA or vector, similarly reduces the proportion of lin� cells in

SK-3rd cells cultured in mammospheres (C) or under adherent differentiating conditions for 10 days (D). *, p < 0.01 compared with vector transduced

cells. Error bars correspond to mean ± SD.
SK-3rd proliferated at half the rate of SKBR3 as measured

by [3H] incorporation (Figure 3E). Under differentiating

conditions, SK-3rd proliferation increased �7-fold from

baseline to a peak on day 4 and then fell by day 8 to a level

somewhat higher than that of SKBR3 (p < 0.01). When

SK-3rd cells were transduced to express let-7, peak [3H]-

incorporation declined by 58%, demonstrating that let-7

reduces the proliferative potential of differentiating pre-

cursor cells.

Another T-IC hallmark is their undifferentiated state and

potential for multilineage differentiation. Mammospheric

SK-3rd expressed neither myoepithelial CK14 nor luminal

epithelial CK18, while SKBR3 was 70% CK14+CK18�

and 30% CK14�CK18+ (Figures S11A and S11B). After

10 days of differentiation, most SK-3rd cells expressed dif-

ferentiation markers (44% ± 4% CK14+CK18�, 28% ± 7%

CK14�CK18+), but 15% ± 3% remained lin�. let-7a over-

expression significantly (p < 0.001) reduced the proportion

of lin� cells to 78% ± 6% in mammospheric SK-3rd and to

6% ± 2% in differentiated SK-3rd. Control lentiviruses, in-

cluding a lentivirus expressing RAS-shRNA (see below),

had no effect on maintaining the lin� population under dif-

ferentiating conditions. Conversely, let-7 ASO greatly

increased the percentage of residual CK14�CK18� cells

in both differentiated SK-3rd and SKBR3 (p < 0.001, Fig-

ure S11C). Similarly, let-7 transduction of lin�CD44+

CD24� cells, isolated from patient cancers, reduced the

proportion of CK14�CK18� cells 2-fold (p < 0.001, Fig-

ure S11D). Therefore, low let-7 helped maintain the undif-

ferentiated status and proliferative potential of mammo-

spheric cells from a cell line and of 1� tumor BT-IC.

Silencing RAS or HMGA2 Partially Recapitulates
the Effect of let-7

We next examined whether the effects of reduced let-7 on

promoting self renewal and multilineage differentiation

could be attributed to RAS or HMGA2. RAS-shRNA or
Cell
HMGA2-shRNA reduced H-RAS or HMGA2, respectively,

in SK-3rd to the level in SKBR3 or differentiated SK-3rd

and comparably to that by let-7a-lentivirus (Figures 2E

and 2F). SK-3rd with silenced H-RAS formed about half

as many mammospheres as untransduced or vector-

transduced SK-3rd but about three times more than cells

infected with lenti-let-7a (Figure 3A). Moreover, the mam-

mospheres were intermediate in size (465 ± 94 cells ver-

sus 745 ± 155 cells for untransduced SK-3rd and 277 ±

82 cells for let-7a-transduced SK-3rd on day 20, Fig-

ure 3B). Silencing RAS also reduced SK-3rd proliferation

under differentiating conditions, but much less than

expressing let-7a (Figure 3E; p < 0.001 on day 4 of differ-

entiation, the peak of proliferation). Silencing RAS, unlike

overexpressing let-7a, in either mammospheric or differ-

entiated SK-3rd did not reduce the proportion of undiffer-

entiated cells lacking CK (Figure S11).

By contrast, silencing HMGA2 did not alter 2� mammo-

sphere formation by mammospheric SK-3rd cells (p > 0.05

versus control vector, Figure 4A), but slightly reduced SK-

3rd proliferation (p < 0.05, Figure 4B), although not as

much as let-7a transduction. However, HMGA2-shRNA

reduced the proportion of undifferentiated lin� cells in

SK-3rd, grown either as spheres or under adherent condi-

tions (p < 0.001, Figures 4C and 4D). Moreover, the reduc-

tion in lin� cells by HMGA2-shRNA in both mammospheric

and differentiated SK-3rd was comparable to that medi-

ated by expressing let-7a (p > 0.05, Figures 4C and 4D).

Therefore, reduced let-7 regulates different aspects of

‘‘stemness’’ by silencing multiple genes. let-7 inhibits

self renewal in part by regulating RAS, while it causes

BT-IC differentiation by silencing HMGA2.

let-7 Expression Inhibits Tumor Formation
in NOD/SCID Mice
We next assessed the effect of enforced let-7 expression

on tumor formation. Although eight out of ten mice
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Figure 5. Mammospheric SK-3rd Cells Are More Tumorigenic Than SKBR3 in NOD/SCID Mice, and let-7 Expression by SK-3rd

Cells Suppresses Tumor Outgrowth

(A) Tumor volume was measured after mammary fat pad inoculation of 2 3 103 (left), 2 3 104 (middle) or 2 3 105 (right) SKBR3 cells or mammospheric

SK-3rd cells that were untransduced or transduced with vector or to express let-7 or RAS-shRNA. The number in the legend indicates the number of

mice who developed tumors. Mammospheric SK-3rd cells are more tumorigenic than SKBR3 cells. Overexpression of let-7a, and to a lesser extent

RAS-shRNA, led to fewer tumors, and the tumors that arose grew more slowly. Error bars correspond to mean ± SD.

(B) Tumors that grew in mice inoculated with 2 3 105 cells had similar histology by hematoxylin and eosin staining (HE, magnification 2003), but

the SK-3rd tumors, either untransduced or transduced with vector, had higher expression of H-RAS (4003, and C) and a higher proliferative index

by PCNA staining (4003, and D), than SKBR3 tumors. Infection of SK-3rd with lenti-let-7 reduced RAS expression almost as much as silencing

RAS, but let-7 more effectively reduced proliferation. #, p < 0.05; *, p < 0.001 compared with untransduced tumors. Error bars correspond to

mean ± SD.
inoculated with 2 3 103 SK-3rd cells and all mice injected

with greater numbers of SK-3rd cells formed tumors, sig-

nificantly fewer tumors developed from let-7-expressing

mammospheric SK-3rd cells (Table 1A). Moreover, the

let-7a-expressing tumors grew more slowly than the

untransduced or control SK-3rd tumors; the let-7+ tumors

reached 2 cm in diameter 25–33 days after they became

palpable, while the control SK-3rd tumors reached that

size in �12 days (Figure 5A). Similarly, let-7-expressing

mammospheric cells gave rise to fewer tumors when

they were serially passaged in vivo (Table S2), suggesting

that let-7 inhibits self-renewing capacity in vivo, as well as
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in vitro. RAS-shRNA slightly reduced tumorigenesis, but

not as much as let-7a (Table 1A and Figure 5A).

The tissue structure and cell morphology of tumors gen-

erated from SKBR3, mammospheric SK-3rd or SK-3rd

expressing let-7a or RAS-shRNA were not grossly differ-

ent (Figure 5B). However, H-RAS was more highly ex-

pressed in mammospheric SK-3rd xenografts than in

SKBR3 tumors. Transduction of SK-3rd with lenti-let-7a

or RAS-shRNA, but not lentivector, significantly reduced

H-RAS in the tumors, to the level of SKBR3-derived tu-

mors (Figures 5B and 5C). In keeping with their faster

growth, a higher proportion of SK-3rd-derived than
Inc.



Figure 6. Mammospheric SK-3rd Cells Metastasize to the Lung and Liver (unlike SKBR3), and Infection with Lenti-let-7 Inhibits

Their Metastasis

(A) HE staining of the lung (3200) and liver (3400) of mice implanted with 2 3 105 SK-3rd cells (either untransduced or transduced with lentivector,

lenti-let-7, or lenti-RAS-shRNA) or SKBR3. Arrows indicate focal metastasis.

(B) Mean ± SD wet lung weight in tumor-bearing mice (n = 10/group).

(C) Expression of hHPRT mRNA relative to mouse GAPDH, by qRT-PCR. The numbers indicate the number of animals in each group of ten with lung or

liver metastasis. The analysis for (B) and (C) excludes animals without metastases to the relevant organ. ND, not detected. #, p < 0.05; *, p < 0.001

compared with untransduced tumors.
SKBR3-derived tumor cells stained for proliferating cell-

associated antigen PCNA (Figures 5B and 5D). Transduc-

tion of SK-3rd with let-7a-lentivirus also significantly re-

duced PCNA staining in the xenografts (p < 0.01), although

not to that of the SKBR3-derived tumor. RAS-shRNA also

significantly reduced the PCNA index (p < 0.05), but not as

effectively as lenti-let-7. Thus, lack of let-7 enhanced SK-

3rd cell tumorigenicity, in part by modulating HRAS.

let-7 Expression Inhibits Tumorigenesis
by lin�CD44+CD24� 1� Breast Cancer Cells
To assess whether let-7 reduction is also important for tu-

morigenesis by 1� cancer cells, sorted lin�CD44+CD24�

cells from eight chemotherapy-naive patient cancers

were evaluated for xenograft formation. Injection of 2 3

103 1� lin�CD44+CD24� cells generated tumors in six

out of eight mice, while no tumors developed in mice in-

jected with the cells that were not CD44+CD24� from

the same patients (Table 1B). Increasing the number of in-

jected CD44+CD24� cells to 5 3 103 resulted in tumors in

eight out of eight mice but still no tumors in mice that re-

ceived cells lacking this phenotype. Moreover, when can-

cer cells passaged in NOD/SCID mice were FACS-sorted

again for CD44+CD24� cells they could be serially trans-

planted for two further passages without reduced tumori-

genicity (Table 1B). Lenti-let-7 transduction not only signif-

icantly reduced tumorigenicity but also reduced tumor

formation upon serial transplantation (Table 1B). There-
Cell
fore, enforced let-7 expression in 1� BT-IC interferes

with both tumor initiation and in vivo self renewal.

let-7-Expressing Tumors Are Less Likely
to Metastasize
We also evaluated whether enforced let-7 or RAS-shRNA

expression in SK-3rd affected metastasis by examining

the lungs and livers when xenografts reached �2 cm in

diameter, the same size used to assess metastasis of un-

transduced xenografts. Lenti-let-7 infection of SK-3rd re-

duced both the numbers of mice with lung metastases to

two out of ten mice (Table 1A) and the average lung weight

by 44% (p < 0.01, Figure 6B). Metastases were not only

smaller but also dispersed among alveoli (Figure 6A), sug-

gesting reduced clinical severity. The number of lung

tumor cells, quantified by qRT-PCR for hHPRT in mice

with metastases, was also 30% less in animals injected

with let-7a-expressing SK-3rd compared with mice inocu-

lated with vector-transduced cells (p < 0.05, Figure 6C).

Expressing RAS-shRNA in SK-3rd modestly, but signifi-

cantly, reduced lung metastasis, but was less effective

than let-7 (Table 1A and Figure 6).

Similarly in the liver, let-7 expression or RAS silencing

reduced the numbers of mice with liver metastasis by

50% and 33%, respectively (Table 1A and Figure 6A).

This was confirmed by measuring 72% less hHPRT mRNA

in the livers of mice inoculated with let-7-transduced cells

who had micrometastases (three out of ten mice) and
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a 30% reduction in mice injected with RAS-shRNA-trans-

duced cells (four out of ten mice), respectively, as com-

pared with those implanted with vector-transduced cells

(5/10 mice, p < 0.01; Figure 6C). Therefore, let-7 reduced

mammospheric SK-3rd cell metastasis to both lung and

liver. This reduction was only partially due to changes in

RAS. Reduced metastasis by let-7-transduced cells was

not due to a difference in 1� tumor size because all tumor-

bearing animals were sacrificed when the tumor diameter

reached �2 cm but could result from the slower growth of

the 1� tumor or altered metastatic potential of let-7-ex-

pressing cells. This study cannot distinguish between

these possibilities.

DISCUSSION

Evidence for the cancer stem cell hypothesis has grown as

T-IC have been identified in an increasing number of

malignancies. However, because T-IC are rare within

tumors, they are difficult to study, and little is known about

what regulates their critical ability to self renew and initiate

tumors. We found that breast tumors from chemotherapy-

treated patients are highly enriched for cells with the

properties of BT-IC. We took advantage of BT-IC chemo-

therapeutic resistance (Al-Hajj, 2007) to generate a highly

malignant breast cancer cell line (SK-3rd) by sequential

in vivo passage in epirubicin-treated NOD/SCID mice.

SK-3rd is enriched for cells that display all the tentatively

defined properties of BT-IC, including enhanced mammo-

sphere formation, multipotent differentiation, chemother-

apy resistance, and BT-IC phenotype (OCT4+CD44+

CD24�lin�) (Clarke et al., 2006). Based on in vitro mammo-

sphere forming assays and the proportion of SP cells, we

estimate that �16% of SK-3rd cells are T-IC and that the

remaining cells, which are also CD44+CD24�, are largely

EPC. Mammospheric SK-3rd cells are�100-fold more tu-

morigenic in NOD/SCID mice than the parent line, metas-

tasize, and are capable of serial xenotransplantation. The

key properties of mammospheres from SK-3rd coincide

with those of BT-IC obtained by sorting lin-CD44+CD24�

cells from 1� breast cancers. SK-3rd cells could provide

virtually unlimited numbers of cells for studying BT-IC. A

similar approach of in vivo chemotherapy might also be

used to select T-IC from other breast cancer lines or pos-

sibly for other tumors. Because of the potential for accu-

mulating specific idiosyncratic mutations in any line, the

relevance of any results obtained with such BT-IC en-

riched cells would, however, need to be confirmed using

sorted 1� cancer cells.

Chemotherapy-exposed patients should provide a

means for isolating large numbers of 1� BT-IC to study

what regulates stemness. Our finding that neoadjuvant

chemotherapy treatment selects for the survival of

CD44+CD24� BT-IC and EPC, although not surprising in

light of their known resistance to chemotherapy, is some-

what disturbing. The selective outgrowth of less differenti-

ated cells may be one reason that neoadjuvant or adjuvant
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chemotherapy is not always effective at preventing late

tumor recurrence.

One contributing factor for chemotherapy selection of

BT-IC, whether in neoadjuvant chemotherapy patients or

epirubicin-treated xenotransplanted mice, is increased

expression by BT-IC of the drug efflux transporter

ABCG2, which provides BT-IC with a selective survival

advantage. Increased ABCG2 expression in BT-IC sup-

ports earlier studies that took advantage of drug efflux to

enrich for BT-IC in SP cells (Patrawala et al., 2005). Multi-

ple mechanisms likely influence selective survival under

chemotherapy, including preferential activation of DNA re-

pair pathways in T-IC, as was shown for glioma (Bao et al.,

2006).

We took advantage of our ability to obtain large num-

bers of self-renewing cells to study changes in miRNA

expression during in vitro differentiation. Mammospheric

SK-3rd cells express substantially less miRNA than differ-

entiated SK-3rd or the parent cells. A global reduction of

miRNA expression has previously been noted for both

ES and cancer cells relative to normal tissue (Shcherbata

et al., 2006). We did not investigate the mechanism for the

global reduction in miRNAs in BT-IC. One possible con-

tributing factor might be reduced miRNA processing, as

has been described in mouse embryonic development

(Thomson et al., 2006). Differences in miRNA expression

are not an immediate consequence of anchorage-inde-

pendent growth, since adherence for 8 hr does not sub-

stantially alter miRNA expression. Within a day of being

placed under differentiating conditions, however, most

miRNAs expressed in the parental line are induced,

although some take longer to be expressed. Virtually

absent expression of let-7 distinguishes the tumor-initiat-

ing SK-3rd cells from their differentiated progeny and the

parent line. Moreover, lack of let-7 is required for self

renewal in vitro and tumorigenicity in vivo. Overexpression

of let-7a in SK-3rd reduces self renewal and proliferative

capacity and converts highly malignant and metastasizing

T-IC into less malignant cells. Conversely, antagonizing

let-7 with ASO in differentiated SK-3rd or SKBR3 en-

hances sphere formation. In contrast, overexpressing

other oncomirs differentially underexpressed in SK-3rd

mammospheres (miR-15a, miR-16, and miR-21) has no

effect on in vitro self renewal. Although let-7 appears to

play a major role in regulating stemness, regulated

expression of other differentially expressed oncomirs,

including those listed above as well as miR-17 and miR-

222, will undoubtedly contribute to regulating the distinct

pathways required for tumor initiation, transformation,

proliferation, invasion, metastasis, apoptosis, and

chemo/radiotherapy resistance. This will be a good sys-

tem to study the role of other oncomirs in breast cancer

initiation.

These results with SK-3rd and SKBR3 suggested that

reduced let-7 might regulate the fate of BT-IC more gener-

ally. Because cell lines expanded in vitro and/or in vivo

might accumulate mutations that might make them differ-

ent from 1� tumors, we tested the importance of let-7
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reduction in enriched BT-IC obtained from 1� breast can-

cers by sorting or mammosphere culture. Regardless of

how BT-IC are isolated, 1� BT-IC express substantially

less let-7 than corresponding populations of cells de-

pleted of BT-IC. Moreover, expressing let-7 in lin�CD44+

CD24� cells from 1� breast cancers reduces mammo-

sphere formation and proliferation in vitro and tumor

xenograft formation. Because mammospheres and

lin�CD44+CD24� cells contain both BT-IC and EPC, we

are unable to define the exact point at which let-7 begins

to be expressed. Our results suggest that let-7 expression

begins at a very early stage of differentiation. Reduced let-

7 is an intrinsic property of BT-IC (and possibly EPC) and

not a consequence of exposure to chemotherapy or an-

chorage-independent growth. Both unexposed SKBR3

mammospheres and enriched BT-IC from chemother-

apy-naive patients, generated either by sorting or growth

under sphere-forming conditions, had similarly reduced

let-7 as comparably derived cells that had been exposed

to chemotherapy.

let-7 has been postulated to work as a tumor suppres-

sor by silencing RAS (Johnson et al., 2005) and HMGA2

(Mayr et al., 2007). We confirmed these findings in SK-

3rd and SKBR3 cells, where H-RAS (other RAS homologs

were not expressed) and HMGA2 protein, but not mRNA,

correlated inversely with let-7 expression. HRAS and

HMGA2 were high in SK-3rd but low in differentiated

SK-3rd and SKBR3. Moreover, exogenous let-7a signifi-

cantly knocked down H-RAS and HMGA2. Increased

H-RAS (Downward, 2003) and HMGA2 (Langelotz et al.,

2003) have been reported in breast cancer and correlate

with poor prognosis. H-RAS is increased in �60% of

human breast cancers, but mutations are rare (Downward,

2003), suggesting the possibility of posttranscriptional

regulation. HMGA2 overexpression in tumors was thought

to be primarily secondary to chromosomal translocations

that delete the HMGA2 30UTR with its multiple let-7 recog-

nition sites (Mayr et al., 2007). Our study suggests that

HMGA2 overexpression can also be secondary to re-

duced let-7 expression.

RAS and HMGA2 each regulate different aspects of

stemness. RAS appears to be important for self renewal,

since silencing RAS reduces mammosphere formation,

clonal expansion, and tumorigenicity but has no effect

on cell differentiation. HMGA2 on the other hand appears

to help maintain multipotency, since silencing HMGA2

reduces the proportion of undifferentiated cells but does

not affect in vitro self renewal. In support of this, HMGA2

is overexpressed in embryos (Rogalla et al., 1996) and

poorly differentiated tumors (Shell et al., 2007). let-7 thus

acts as a master regulator of multiple aspects of stem-

ness, presumably by silencing multiple targets, some of

which remain to be identified. Other direct let-7 targets

include genes implicated in cell-cycle regulation, including

CDC25a, CDK6, and cyclin D (Johnson et al., 2007).

Comparing miRNA and mRNA expression by CD44+

CD24� and non-CD44+CD24� cells may help define

miRNA networks and additional let-7 targets in BT-IC.
Cell
The mRNA comparison was recently reported (Shipitsin

et al., 2007).

Because let-7 regulates multiple oncogenes and more

than one T-IC pathway, therapeutic use of let-7 mimics

might be attractive for differentiating resistant T-IC within

breast cancer and possibly other tumors. Mimicking let-7

could be more potent than specifically silencing one or

a few oncogenes with siRNA drugs. let-7 mimics could

potentially be used as single agents or combined with

conventional chemo/radiotherapy. Since let-7 is ex-

pressed in normal breast tissue and other differentiated

cells, introducing it exogenously should not trigger unin-

tended toxicity to noncancerous cells.

A corollary of the cancer stem cell hypothesis is that me-

tastases may also arise from T-IC. In support, we found

that cells with the BT-IC phenotype (lin�CD44+CD24�)

are prevalent in metastatic pleural effusions. Moreover,

xenograft metastases are reduced by let-7 expression in

parallel with other BT-IC properties. An alternate hypothe-

sis is that metastatic tumors originate when cells in a 1�

tumor undergo an epithelial-mesenchymal transition

(EMT) (Mani et al., 2007). Our results suggest that these

two seemingly contrary ideas are not mutually exclusive.

In fact, let-7 is poorly expressed in mesenchymal, but

highly expressed in epithelial, tumors (Shell et al., 2007).

The opposite is true of the let-7 target HMGA2, which is

highly expressed in embryos, mesenchymal cells, and

mesenchymal tumors (Lee and Dutta, 2007). Therefore,

reduced let-7 may link T-IC and EMT.

let-7 genes map to sites with frequent chromosomal in-

stability in cancer (Calin et al., 2004), and let-7 is poorly ex-

pressed in lung (Takamizawa et al., 2004) and colon can-

cer (Akao et al., 2006). Downregulation of let-7 in breast

tumors compared to normal breast has been reported in

a previous microarray analysis (Iorio et al., 2005). This is

confirmed by our present study where let-7 was reduced

by �35% in 1� cancers compared with adjacent normal

breast. However, this difference is small when compared

to the �4-fold reduction in let-7 in BT-IC compared to

BT-IC-depleted 1� cancer cells. T-IC and EPC within

tumors might contribute to the moderate reduction of

let-7 in the bulk of breast cancer cells. Measuring let-7

reduction in breast tumors might serve as a surrogate

for the frequency of BT-IC or other poorly differentiated

cells in the tumor and provide useful prognostic informa-

tion about the likelihood of chemotherapy response or

relapse. In fact, low let-7 and high HMGA2 expression

strongly correlates with poor prognosis in advanced ovar-

ian cancer (Shell et al., 2007).

Despite evidence for T-IC in an increasing array of can-

cers, the cancer stem cell hypothesis remains a hypothe-

sis. Our results need to be considered in light of evidence

for possible phenotypic heterogeneity of T-IC, as recently

suggested for glioma (Beier et al., 2007) and of the hetero-

geneity of breast tumor cells that develop after tumor ini-

tiation secondary to additional mutations or epigenetic

changes (Shipitsin et al., 2007). An alternate possibility

to the cancer stem cell hypothesis also needs to be kept
131, 1109–1123, December 14, 2007 ª2007 Elsevier Inc. 1121



in mind. A recent study suggests that T-IC might be an

artifact of xenotransplantation, consisting of the minority

of cells capable of surviving with the support of mouse,

rather than human, growth factors supplied by the xeno-

geneic tumor microenvironment. In fact, when mouse lym-

phoma cells generated in Em-c-myc transgenic mice are

transplanted into congenic mice, lymphoma cells lacking

stem cell markers also form tumors (Kelly et al., 2007).

However, the stronger adaptability of the tentatively de-

fined T-IC to a xenogeneic microenvironment may also

be an indicator of their ability to seed congenic tumor

sites. It may be that the multipotency of the T-IC provides

a means to generate not only the tumor but the supporting

niche cells necessary to sustain it, as has recently been

shown for human ES cells (Bendall et al., 2007).

EXPERIMENTAL PROCEDURES

Detailed procedures are provided in the Supplemental Data.

1� Tumors

Tumors were obtained from 25 female patients with biopsy-diagnosed

breast carcinomas, including 20 cases of 5� cancer and 5 cases of

recurrent breast cancer with pleural metastasis (Table S1). Twelve 1�

breast cancer patients received neoadjuvant chemotherapy followed

by modified radical mastectomy, and eight 1� cancer cases were

treated with resection without chemotherapy. Specimens were

obtained by ultrasound-guided vacuum-assisted Vacora biopsy

(Bard Biopsy System, Tempe, AZ) in seven patients before neoadju-

vant chemotherapy. Pleural fluid was obtained by pleural puncture

from five cases of recurrent cancer with pleural metastasis. All samples

were immediately mechanically disaggregated, digested with collage-

nase as described (Al-Hajj et al., 2003) and filtered through a 30 m filter.

Tumor cells were sorted after staining with FITC-anti-CD44, PE-anti-

CD24 and nontumor cells were depleted with a cocktail of lineage

marker antibodies.

Generation of SK-3rd and SK-4th Cell Lines

SKBR3 cells (ATCC) were passaged in NOD/SCID mice by injecting

2 3 106 cells into the mammary fat pad of 5-week-old mice. Epirubicin

(8 mg/kg, Pharmacia and Upjohn) was injected into the tail vein weekly.

Single-cell suspensions of tumor xenografts, removed when tumors

reached �2 cm in diameter, were isolated as described (Ponti et al.,

2005). Dissociated cells were passaged in epirubicin-treated NOD/

SCID mice as above.

Mammosphere Culture

Cells (1000 cells/mL) were cultured in suspension in serum-free

DMEM-F12 (BioWhittaker), supplemented with B27 (1:50, Invitrogen),

20 ng/mL EGF (BD Biosciences), 0.4% bovine serum albumin (Sigma),

and 4 mg/mL insulin (Sigma) (Dontu et al., 2003). To propagate spheres

in vitro, spheres were collected by gentle centrifugation, dissociated to

single cells as described (Dontu et al., 2003), and then cultured to

generate mammospheres of the next generation.

Differentiation

Cells dissociated from spheres were plated at 1 3 105 cells/mL on

6-well plates precoated with Collagen IV (BD BioScience) in DMEM

supplemented with 10% FCS without growth factors and passaged

when they reached �95% confluence.

Supplemental Data

Supplemental Data include 11 figures, 3 tables, Supplemental Exper-

imental Procedures, and Supplemental References and can be found
1122 Cell 131, 1109–1123, December 14, 2007 ª2007 Elsevie
with this article online at http://www.cell.com/cgi/content/full/131/6/

1109/DC1/.
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