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Abstract

An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are
inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie
symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden
symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden
symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We
indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in
ordinary differential equations (ODEs).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Partial differential equations are widely used in science and engineering. Analytic solutions can be determined for
nonlinear PDEs that support solitons by inverse scattering or are solved by the method of characteristics but this leaves
a vast number of nonlinear PDEs that cannot be solved by these methods. However, PDEs and as well ODEs have been
solved or simplified with the aide of Lie point group symmetries. The traditional approach has been to analyze the Lie
algebra associated with the Lie group symmetry of the original differential equation and then to devise a reduction
path (reduction in order for ODEs and reduction in the number of variables for PDEs). For both ODEs and PDEs the
Lie algebra of the original differential equation does not give all the information when Lie point group symmetries
are used in the reduction path. Here we present analysis of Type II hidden symmetries of PDEs that further illustrate
this phenomenon. Type II hidden point symmetries of a PDE are Lie point symmetries that appear when the number
of independent and dependent variables is reduced that are in addition to the Lie point symmetries inherited from the
original PDE [1–3] for the reported cases. Additional Lie symmetries of reduced (target) PDEs had been reported
[4–6] but their origin had not been explained until recently. These Type II hidden symmetries of PDEs should not be
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confused with other hidden symmetries of PDEs [7,8]. The provenance of these Type II hidden symmetries has been
shown [1–3]. They are inherited symmetries of other PDEs that reduce to the target PDE. Type II hidden symmetries
of ODEs have a different provenance where they arise from the reduction of the order of an ODE that has contact or
nonlocal symmetries [9–11]. Type II hidden symmetries of PDEs may arise in the reduction by Lie point symmetries
of the number of variables of a PDE from contact or potential symmetries. That possibility is not discussed here.

The aim here is to determine a wide class of PDEs or master PDEs that reduce to the target PDE and from which
is inherited the Type II hidden symmetry of the original PDE. The reduction is restricted to reduction by Lie point
symmetries where the Type II point hidden symmetry is a Lie point symmetry of another PDE. This is a complicated
problem so that we start with a model nonlinear PDE with three Lie point symmetries that upon reduction is shown
to have one Type II hidden symmetry. Our approach will be limited to those master PDEs which result when we deal
with a fixed reduction operator (and so the reduction variables are fixed). In addition, we require the combination of
symmetries for the master PDE to form a Lie algebra.

2. Type II point hidden symmetries of a model PDE

We start with

uxxx + u(ut + cux) + uxuxx = 0, (1)

where the subscripts denote differentiation with respect to that variable. The Lie point symmetries found by the
symbolic computer program LIE [12] are

U1 = ∂

∂t
, U2 = ∂

∂x
, U3 = 3t

∂

∂t
+ (x + 2ct)

∂

∂x
. (2)

If we let y = x − ct , w = u obtained with the variable transformation found from the Lie symmetry represented by
Xc = U1 + cU2, then the target PDE is

wyyy + wywyy = 0. (3)

The Lie point symmetries of (3) are represented by the group generators

V1 = ∂

∂y
, V2 = y

∂

∂y
, V3 = ∂

∂w
. (4)

The group generators V1 and V2 are inherited from the Lie symmetries of (1) as represented by (2) but V3 represents
a Type II hidden symmetry, i.e. a symmetry not inherited from (1).

3. Reverse method for PDEs with Type II hidden symmetries

We aim to determine other PDEs that reduce to the target PDE (3) but this time we shall require those PDEs to
possess the Type II hidden symmetry of the original PDE (1), i.e. V3 in (4). There are several possible approaches.
First, one can guess the other PDEs but this ad hoc method may miss many possibilities. Second, one may find
Lie point group generators by the reverse method for determining PDEs from which only the symmetries in (4) are
inherited (this will ensure that the Type II hidden symmetry is also inherited). From these Lie point generators the
differential invariants may be computed and then the general form of the PDE given. Third, one can apply the reverse
method to determine additional (non-inherited) symmetries of the PDEs found in the second approach. We start with
the second approach and illustrate the procedure by an example. In the reverse method we assume that the reduction
of the number of variables of the PDE is by a Lie point symmetry. Then we assume that the Type II hidden symmetry
originates from a point symmetry of another PDE as has been found for the examples referenced.

We assume a group generator Xa of a PDE that is a function of the independent variables (x, t) and the dependent
variable u(x, t) and its derivatives up to third order. We could consider higher-order derivatives but this should suffice
for the demonstration. We introduce the group generator Xa that represents the symmetry that reduces to the Type II
hidden symmetry represented by V3 in (4) as

Xa = ξta(x, t, u)
∂ + ξxa(x, t, u)

∂ + ηa(x, t, u)
∂

, (5)

∂t ∂x ∂u
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where subscripts here and in what follows are indices and do not denote differentiation. Then we require that Xa

reduces to V3 when y = x − ct , w = u where this variable transformation follows from the invariants of Xc. The Lie
symmetry that reduces the number of variables of the other PDEs is restricted here to the same Lie symmetry that
reduced the model nonlinear PDE (1) to the target PDE (3). This leads to the conditions

Xa(x − ct) = 0, Xa(u) = Ca (6)

for Ca a constant that is often set equal to one. Next, we require that the Lie point symmetry used to reduce (1) to (3)
obeys

[Xc,Xa] = AaXc (7)

for Aa a constant. This commutation relation usually ensures that the symmetry represented by Xa is inherited (see
later for a qualifier of this statement). The solution of (6) and (7) leads to the infinite or pseudo Lie algebra

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = 3t

∂

∂t
+ (x + 2ct)

∂

∂x
, X4 = ∂

∂u
, X5 = t

(
∂

∂t
+ c

∂

∂x

)
,

X6 = f (x − ct)

(
∂

∂t
+ c

∂

∂x

)
. (8)

(Note that f is an arbitrary function of its argument except that the linear part is excluded as it can be obtained by
linear combinations of the other symmetries and we have assumed that ξta is independent of u for ease of calculation.)
The group generator Xa splits into three group generators X4 to X6. To understand this result we note that (6) yields

cξta − ξxa = 0, ηa = Ca. (9)

Then (7) gives

∂ξta

∂t
+ c

∂ξta

∂x
= Aa. (10)

From (10) we have that

ξta = (Aa − bc)t + bx + f (x − ct). (11)

The constant b will be taken as zero here for ease of calculation. (We note that other values of b will result in different
forms for X5, for example, when b = Aa/c we find a form of ξta that reduces Xa to xXc.) We assume that the forms
of the arbitrary function f (x − ct) exclude the linear part of its argument in order to prevent an ‘overcounting’ of
symmetries.

The possible PDEs can be constructed from the Lie algebra in (8) by computing the invariants. We compute the
differential invariants for each group generator separately. The usual procedure computes the differential invariants
for one group generator, constrains its differential invariants by the symmetries of a second group generator and then
the others in succession. We do not do that since we are interested in the subalgebras of symmetries (and indeed, in
the context of our problem, a rather specific subalgebra). The differential invariants for each of the symmetries in (8)
are, to third order

X1: (x,u,ux,ut , uxx, uxt , utt , uxxx, uxxt , uxtt , uttt ),

X2: (t, u,ux,ut , uxx, uxt , utt , uxxx, uxxt , uxtt , uttt ),

X3:
(

x − ct

t1/3
, u,

ut + cux

u3
x

,
uxx

u2
x

,
utt + cuxt

u3
xx

,
uxt + cuxx

u2
xx

,
uxxx

u3
x

,
uxxt + cuxxx

u
5/3
xxx

,
uxtt + 2cuxxt + c2uxxx

u
7/3
xxx

,

uttt + 3cuxtt + 3c2uxxt + c3uxxx

u3
xxx

)
,

X4: (t, x,ux,ut , uxx, uxt , utt , uxxx, uxxt , uxtt , uttt ),

X5:
[
x − ct, u,ux, t (ut + cux), uxx, t (uxt + cuxx), t

2(utt + 2cuxt + c2uxx

)
, uxxx, t (uxxt + cuxxx),

t2(uxtt + 2cuxxt + c2uxxx

)
, t3(uttt + 3cuxtt + 4c2uxxt + 2c3uxxx

)]
,

X6:
(
x − ct, u,ut + cux,utt + 2cuxt + c2uxx,uttt + 3cuxtt + 3c2uxxt + c3uxxx

)
. (12)
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A set of differential invariants of X6 above will not reduce to (3) by the transformation y = x − ct , w = u. (We ignore
the symmetries of X6 where the linear part of the characteristic function ξta is covered by the differential invariants
of X5 or an alternative form of X5.)

The master PDEs that reduce to the target nonlinear PDE (3) from which the Type II hidden symmetry is inherited
must include at least the symmetries Xc, X3 and X4. Other symmetries may be added but these extra symmetries
restrict the general form of a master equation as can be seen from (12). The general form of a PDE which admits Xc,
X3 and X4 is

F

(
ut + cux

u3
x

,
uxx

u2
x

,
utt + cuxt

u3
xx

,
uxt + cuxx

u2
xx

,
uxxx

u3
x

,
uxxt + cuxxx

u
5/3
xxx

,
uxtt + 2cuxxt + c2uxxx

u
7/3
xxx

,

uttt + 3cuxtt + 3c2uxxt + c3uxxx

u3
xxx

)
= 0. (13)

In order to ensure that we obtain (3) via Xc we restrict the form of (13) as follows:

uxxx + uxuxx = u3
xF

(
ut + cux

u3
x

,
uxx

u2
x

,
utt + cuxt

u3
xx

,
uxt + cuxx

u2
xx

,
uxxx

u3
x

,
uxxt + cuxxx

u
5/3
xxx

,

uxtt + 2cuxxt + c2uxxx

u
7/3
xxx

,
uttt + 3cuxtt + 3c2uxxt + c3uxxx

u3
xxx

)

× G

(
ut + cux

u3
x

,
utt + cuxt

u3
xx

,
uxt + cuxx

u2
xx

,
uxxt + cuxxx

u
5/3
xxx

,
uxtt + 2cuxxt + c2uxxx

u
7/3
xxx

,

uttt + 3cuxtt + 3c2uxxt + c3uxxx

u3
xxx

)
(14)

such that G(0,0,0,0,0,0) = 0. In addition singularities of G must also be avoided. As a result (14) is the general
form of a master PDE that reduces to the target equation (3) via Xc and supplies the inherited Lie symmetry that is
the Type II hidden symmetry in (3).

4. Reverse method for non-inherited Lie symmetries

We require that Ca equals zero in (6) and that the commutator below holds

[Xc,Xa] = Xb, (15)

where Xb cannot be equal to AaXc. Then we have that

Xa = ξtaXc, Xb = (Xcξta)Xc. (16)

These conditions indicate that Xb cannot be equal to Xd = U1 − cU2, X3, X4. However, we can have

Xb = Xa. (17)

This leads to

ξta = exp(t)g(x − ct, u). (18)

If we let the arbitrary function g be a constant, then the master PDE is

uxxx + uxuxx = F
{
x − ct, u,ux,uxxuxxx, e

t (ut + cux), e
t (utx + cuxx),

e2t
[(

utt + 2cuxt + c2uxx

) + (ut + cux)
]}

, (19)

where we do not include all third-order terms here. It is evident that if we add Xb to the two in (13) and (14), then all
the factors with exponentials in t must be combined to eliminate these factors. This restricts (14) further. If g(x−ct, u)

is a function of its arguments, more complicated invariants are found that restrict (14) also. The most general form of
Xb is not obvious but ξta = h(t)g(x − ct, u) is possible where h(t) is an arbitrary function. The examples indicated
here further restrict the master equation (14). We have not found an Xa that increases the possible forms of (13).
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5. Discussion

In the above we have illustrated how the reverse method could be used to obtain master PDEs that reduce to the
target PDE in which Type II hidden symmetries were observed. One could argue that a more “systematic” approach
should be adopted. The obvious direct route (a more general approach would be to look at all appropriate dimensioned
Lie algebras) is as follows: Eq. (3) possesses the three symmetries given in (4). The sole non-zero Lie bracket relation
for these symmetries is

[V1,V2] = V1 (20)

so that these symmetries form the Lie algebra A2,1 ⊕A1, where we use the notation of Mubarakzyanov [13] as quoted
in [14]. In order to determine the master PDE which reduced to Eq. (3), all we need to do is look for a Lie algebra
which contains four elements, three of which are given in (4). Simply determining the PDE invariant under these four
symmetries will yield the equation from which Eq. (3) has inherited symmetries not contained in Eq. (1). However, as
we show below, this approach has some rather large pitfalls for the problem we consider.

For simplicity, we insist that the (new) fourth element of our required four-dimensional Lie algebra commutes with
the other three. In other words, the Lie algebra we require is A2,1 ⊕ 2A1. Looking at Table 3 of [14], we find four
options. The possibilities for the fourth symmetry are

V 1
4 = ∂

∂t
, V 2

4 = t
∂

∂y

(
with V2 = y

∂

∂y
+ t

∂

∂t

)
, V 3

4 = t
∂

∂w

(
with V2 = y

∂

∂y
+ φ(t)

∂

∂w

)
and

V 4
4 = t

∂

∂y

(
with V2 = y

∂

∂y
+ w

∂

∂w
+ t

∂

∂t
, V3 = w

∂

∂y

)
.

The first case works, but corresponds to the rather trivial case of merely forcing w = w(y) to become w = w(y, t)

which is obvious by inspection—there is thus little need for this approach as this case is more easily obtained. Using
any of the symmetries of the other four-dimensional Lie algebras will not reduce that Lie algebra to the one in (4)! This
is due to the fact that the Lie algebra of symmetries for PDEs does not always provide us with the relevant information
to determine which symmetries remain after a reduction of variables (see also [15] in this regard). Specifically, if we
look at the Lie algebra A2,1 ⊕ 2A1, we would expect that, if we “use up” one of the symmetries forming part of the
2A1 subalgebra, we would be left with A2,1 ⊕ A1. This certainly holds if the symmetries are symmetries of ODEs.
However, in the case of PDEs, this is not the case. In fact except for the case mentioned above, all the other cases
reduce to 2-dimensional or 1-dimensional Lie algebras.

In the case of ODEs, if two point symmetries commute, then reduction via either one of the symmetries would
result in the other (suitably transformed) being a point symmetry of the reduced equation. That this is not always the
case for PDEs was observed in [15] and can be illustrated via a simple example. Take a PDE in which u = u(x, t) and
which admits the symmetries

G1 = ∂

∂x
, G2 = θ(t, u)

∂

∂x
. (21)

These symmetries clearly commute. The symmetry G1 defines p = t and q = u as reduction variables for the PDE.
However, these variables mean that the remaining symmetry, G2, does not have any relevance for the reduced equation
(which is now in the new variables p and q). As a result, the only methods thus far available must entail the rather
intricate approach of determining the possible “original” symmetries via reversal of transformations and a calculation
of the necessary invariants.

6. Conclusion

A procedure for determining a wide class of master partial differential equations has been presented. The master
partial differential equations possess Lie point symmetries that are inherited by a target PDE but are Type II hidden
symmetries of the original PDE. The hidden symmetry reverse method has been used to determine the master PDE
for a model nonlinear PDE. This original PDE has three Lie point symmetries. A Type II hidden symmetry is found
when this PDE is reduced to the target PDE. The wide class of master PDEs is found by assuming these PDEs possess
the Lie symmetry used to reduce the original PDE and the Lie symmetry that is inherited as the Type II hidden
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symmetry. Two approximations are made in the form of the characteristic function ξta but these are not expected to
alter the conclusions. The differential invariants of the two symmetries give the general form for the PDEs. A further
restriction on the form is that many invariants vanish in the reduction. The class of possible Lie point symmetries of
the master PDEs has been expanded to include Lie symmetries not inherited. These symmetries appear to restrict the
class of the master PDEs.
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