
JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 10, 183-199 (1975)

On the Density of Honest Subrecursive Classes

MICHAEL MACHTEY *'t

Purdue University, Department of Mathematics and Computer Sciences,
Lafayette, .Indiana 47907

Received April 11, 1973

The relation of honest subrecursive classes to the computational complexity of the
functions they contain Is briefly reviewed. It is shown that the honest subrecursive
classes are dense under the partial ordering of set inclusion. In fact, any countable
partial ordering can be embedded in the gap between an effective increasing sequence
of honest subrecursive classes and an honest subrecursive class which is properly
above the sequence (or in the gap between an effective decreasing sequence and a class
which is properly below the sequence). Information is obtained about the possible
existence of least upper bounds (greatest lower bounds) of increasing (decreasing)
sequences of honest suhrecursive classes. Finally it is shown that for any two honest
subrecursive classes, one properly containing the other, there exists a pair of incom-
parable honest subrecursive classes such that the greatest lower bound of the pair is the
smaller of the first two classes, and the least upper bound of the pair is the larger of
the first two classes.

1. INTRODUCTION

There has been much work on classifying computable functions into hierarchies.

A noted example is the Grzegorczyk hierarchy [5]. The fact that these hierarchies

do not classify all of the computable functions has led to work on classifying com-

putable functions in subrecursive classes [7, 8, 9] with the same closure properties

as the classes in the hierarchies. These systems of subrecursive classes include those

of the elementary classes and the primitive recursive classes of computable functions.

The classes in many hierarchies bear a close relation to the computational com-

plexity of the functions they contain. This has led to study of honest subrecursive

classes which enjoy the same relation to the computational complexity of the functions

they contain.

* Supported in part by Air Force Office of Scientific Research, Grant No. 71-2205A, and
National Science Foundation, Grant No. GJ27172A1.

* The author wishes to thank the referee for several helpful suggestions for improving the
exposition of this paper.

183
Copyright �9 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.

184 MICHAEL MACHTEY

The main result of this paper is a strong density theorem for the honest sub-
recursive classes. It is shown that any countable partial ordering can be embedded
in the gap between an effective increasing sequence of classes and a class which is
properly above it. As a corollary, we deduce that no effective properly increasing
sequence of classes has a least upper bound. I t is further shown that a slightly non-
effective properly increasing sequence of honest classes may have a least upper bound
among the honest classes. These results settle two conjectures and an open problem
of Meyer and Ritchie [9] raised in the context of elementary-honest classes. Finally,
it is shown that for any two honest classes, one properly containing the other, there
exists a pair of incomparable honest classes such that the greatest lower bound
(intersection) of the pair is the smaller of the first two classes, and the least upper
bound of the pair is the larger of the first two classes.

2. PRELIMINARIES

We shall be studying several systems of subrecursive classes of computable func-
tions. One such system is that of the primitive recursive classes [7], and another
is that of the elementary classes of Meyer and Ritchie [9]. Other systems to which
the work of this paper applies are those of the doubly recursive, triply recursive, . . . ,
or multiply recursive classes defined analogously (see [11]). Since the work below
could be referring equally well to any of these systems of subrecursive classes, C(f)
will be used to denote the subrecursive class generated by the computable function f.
Also, for each of the systems considered there is an effective (in fact, elementary)
list C O , C 1 , C 2 , of recursive operators such that

c (f) = {c~(f): i~ n) ,

where N stands for the natural numbers. The reader is referred to Rogers [13] for
the terminology and notation of recursive function theory.

The significance of the honest subrecursive classes lies in their relation to the
computational complexity of the functions they contain. Although this relation
is invariant over a wide range of "natural" computational complexity measures,
for the sake of concreteness and simplicity a specific measure will be used in this
paper. The measure is that of Turing machine space based on the definitions and
conventions for Turing machines introduced in Davis [4] along with the G6del
numbering used there. Specifically, if i is the G6del number of a Turing machine
then the ith Turing machine M i will be that Turing machine, and if i is not the G6del
number of a Turing machine then M i will be the Turing machine {q0 1 L q o , q o B L q o }

(i.e., a Turing machine which computes the totally undefined function). I f x denotes
an arbitrary string x 1 , x 2 , . . . , x n of natural number arguments then ~0i(x) will denote

HONEST SUBRECURSIVE CLASSES 185

the result of running the ith Turing machine M i on inputs x; goi(x) will be undefined
(or divergent) if this computation fails to halt. The space functions are defined as
follows. S,(x) is the number of squares of tape needed for the input and computation
of go,(x) by M, on input x if go,(x) is convergent, and Si(x) is divergent if goi(x) is
divergent. It is well known that this G6del numbering is an acceptable G6del
numbering in the sense of Rogers [14], and that the space functions give a com-
putational complexity measure in the sense of Blum [2]. It will be assumed that
the reader is familiar with many of the standard "programming" techniques for
Turing machines such as the use of special markers and the use of large alphabets
to simulate multitrack tapes in no additional space. Hoperoft and Ullman [6] is
one source of such techniques.

We now proceed to sketch some fairly well-known material on Turing machines,
space functions, and subrecursive classes, which will be needed later in the paper.
Proofs appear in [8].

DEFINITION 2.1. A partial computable function ~b is tape constructible if there
is a Turing machine M i such that

PROPOSITION 2.2. For all i, S~ is tape constructible; thus the tape constructible
functions are exactly the space functions.

PROPOSITION 2.3. The tape constructible functions are closed under the operations
of summation, minimalization, maximalization, and summation and maximalization
of a single function up to the given argument. That is, i f S i and Sj are tape constructible
functions then so are S i + Sj , min(Si, S~.), max(Si, S~), as well as go and r such that

go(x) = ~, S , (y) and ~h(x) = max Si(y).
y < x

~Ioreover, there are elementary functions rain, max, etc., such that min(Si, S~.)
Sm-i~li,~) , max(Si, S~) : S ~ , . ~ , etc.

PROPOSITION 2.4. I f goi = goj then there is a k such that goi = go~ = gok and Sk -~
min(Si, Sj). This is sometimes called the parallel computation property.

The following two propositions represent key insights into the relation between
subreeursive classes and computational complexity, insights which appear to have
been arrived at independently by several authors, notably Ritchie [12] and Cobham
[3]. First, though, we introduce some useful notation.

186 MICHAEL MACHTEY

DEFINITION 2.5. I f f a n d g are total functions thenf < g will mean thatf(x) < g(x)
for all x, a n d f < g a.e. will mean thatf(x) < g(x) for all but finitely many x ; f < C(g)
will mean that f < Ci(g) for some i. Similarly for ~ .

PROPOSITION 2.6. I f St < C(g) then 9i ~ C(g).

PROPOSITION 2.7. Let f and g be total computable functions with f E C(g). For
each i such that ~ ~- g there is a j such that q~j ---- f and S~ ~ C(Si). That is for example,
i f f is primitive recursive in g then for every running space for g there is a running space
for f which is primitive recursive in it.

DEFINITION 2.8. I f f is a total function then let Gf(x, y) = 1 if f (x) = y and
let G1(x , y) = 0 otherwise; (7 I is the graph of the function f. Let C(0) be the sub-
recursive class generated by the zero function (i.e., C(0) is the class of elementary
functions, or the class of primitive recursive functions, etc.). Let g be a total com-
putable function, then C(g) is honest if C(g) = C(f) for some function f such that
Gf ~ C(0); g is honest if C(g) is honest. C(g) and g are dishonest if they are not honest.

Note that if C(g) is the class of functions elementary in g then the honest C-classes
are the elementary-honest classes studied by Meyer and Ritchie [9]; if C(g) is the
class of functions primitive recursive in g then the honest C-classes are the honest
Pr-classes studied in [7].

PROPOSITION 2.9. For all i, i f Si is total then S~ is honest.

PROPOSITION 2.10. Let g be a total computable function. The following are equivalent.

(a) g is honest;
(b) there is an i such that 9i --- g and S, ~ C(g);
(c) there is a j such that cp~ is total and C(g) = C(Sj-).

I f t is a total computable function then the computational complexity class determined
by t is defined as follows.

Ct = {9,: 9~i is total and S i < t a.e.).

C, is the class of functions which can be computed in space t.

PROPOSITION 2.11. Let g be a total computable function. C(g) is a computational
complexity class if and only if g is honest.

The following proposition is a slight extension of one proved by Axt [1] for the
notion of relative primitive recursiveness, but it holds and the same proof techniques
work for all of the subrecursive reducibilities beings studied here.

HONEST SUBRECURSIVE CLASSES 187

PROPOSITION 2.12. There is an elementary function k such that if f and g are total
computable functions such that f < g then for all j, Cj(f) < Ck(j)(g).

Note that i f f is honest a n d f ~< g then there is an i such that C(f) ---- C(Si). By
Proposition 2.12, Si < C(g); thus by Propositions 2.2 and 2.6, Si ~ C(g). Therefore
C(f) _C C(g).

At this point a comment about the simulation of Turing machines by other Turing
machines is in order. I f we wish to build a Turing machine to simulate another
Turing machine (or a fixed finite set of other Turing machines), then we may do
so with the machine we build using no more space for the simulation than the original
machine used for its computation. On the other hand, suppose we are building a
Turing machine to perform simulations of computations by some infinite set of
Turing machines. Then because some of the machines being simulated may have
much larger alphabets than the machine being built, the simulations cannot always
be performed in the same amount of space as the original computations. However,
for each Turing machine in the set being simulated there will be a constant such
that simulations of computations by that machine can be performed by the built
machine in space at most equal to that constant times the space of the original com-
putation. Moreover, the constant is an elementary function of the G6del number
of the machine being simulated, and in any case is no greater than the G6del number
of the machine being simulated. This observation will be used later in the paper.

3. DENSITY

The purpose of this section is to prove the strong density results for the honest
C-classes. These will establish Conjectures 2 and 3 of Meyer and Ritchie [9, p. 81]
made in the context of elementary-honest classes. We begin with a simple density
theorem. This theorem is a special case of Theorem 3.2, and therefore its proof
will only be sketched as a helpful warm-up enabling the introduction in a simpler
context of some of the techniques to be used in the proofs of the stronger density
results.

THEOREM 3.1. Let f and g be honest functions such that C(f) CO(g) (where C
stands for proper containment). Then there is an honest function h such that C(f) C
C(h) c C(g).

Proof. Without loss of generality we may assume tha t f and g are tape constructible
functions of one argument such tha t f < g and such that for all x, f (x) + 1 < f (x + 1)
and g(x) + 1 .< g(x + 1). We shall produce a tape constructible (hence, honest)
function h such that f ~< h ~< g yielding C(f) _C C(h) _C C(g). I t remains to build h
subject to these constraints in a manner which will make the containments proper.

]88 MICHAEL MACHTEY

The basic idea is for h to alternate between following f and following g, doing each
for enough arguments each time to guarantee that Ci(h) ~ g or C,(f) va h, respec-
tively, for one new i. The only problem is that in order to keep h honest we may
not have enough space to discover such a diagonalization as soon as it has occurred.
Since f and g are increasing, eventually there will be enough space to discover that
the diagonalization took place at a previous argument and our patience will be amply
rewarded.

Let M I be a Turing machine which computes f such that S s = f, and let Mg
be a Turing machine which computes g such that Sg ~ g. We use a multitrack
Turing machine M to compute h. On input x + 1, M recapitulates its computations
on inputs 0 x to find h(x) plus a current index n and a current mode (f, g, or c).
In the mode f, h follows f until it is discovered that C~(h) ~ g. M simulates M I
on input x + 1 and marks off f (x + 1) tape squares (on all tracks). M then uses
this space to compute as many as possible of the values g(0), g(1), g(2),..., h(0), h(1),
h(2),..., and C~(h)(O), C~(h)(1), C~(h)(2) I f this computation discloses a y such
that Cn(h)(y) ~ g(y) then the new mode is g. If no such y is found then the mode
is not changed. In either ease h(x + 1) = f (x + 1) and the index is not changed.
In the mode g, h follows g until it is discovered that Cn(f) v ~ h. M marks offg(x + 1)
tape squares and uses this space to look for a y such that Cn(f)(y) ~ h(y). I f such
a y is found, the new mode is c; if no such y is found the mode is not changed. In
either case h(x + 1) = g(x + 1) and the index is not changed. In the mode c, h is
coasting from g down to f to keep h increasing and honest. I f h(x) < f (x + 1) then
h(x + 1) = f (x + 1), the new mode is f and the new index is n + 1; otherwise
h(x + 1) = h(x) + 1 and the mode and index are not changed.

The function h is strictly increasing and can be seen by induction on the argument x
to be tape constructible; since h is increasing the recapitulation can be done without
interfering with tape constructibility. Also f ~ h ~ g as required. I f M stays in
mode f for infinitely many consecutive arguments then h = f a.e. Therefore C(h) =
C (/) C C(g) and hence for the appropriate index n, C,(h)(y) ~ g(y) for some y.
Since f is increasing, for sufficiently large arguments there is enough space to discover
this fact in the computation of h(x). Thus M can stay in mode f for only finitely
many consecutive arguments. Similarly, M can stay in mode g for only finitely many
consecutive arguments. Clearly, M can stay in mode c for only finitely many con-
secutive arguments, and while the index does not change, M cannot return to a
mode once it has left that mode. Therefore the index increases without bound as
the argument x increases. Once the index is greater than i, Ci(f) :# h and Ci(h) ~ g,
yielding C (f) C C(h) C C(g).

In the next theorem we shall prove that in fact any countable partial ordering
can be embedded in the honest C-classes between C (f) and C(g). It was shown
in [8] that there is a primitive recursive partial ordering of the natural numbers
in which every countable partial ordering can be embedded. The same techniques

HONEST SUBRECURSIVE CLASSES 189

can be used to get an elementary partial ordering of the natural numbers in which
every countable partial ordering can be embedded, but for the sake of completeness
the construction of such an ordering will be sketched here. Mostowski [10] has
given a recursive partial ordering R in which every countable partial ordering can
be embedded; we shall show how to embed R in an elementary partial ordering
of the natural numbers.

Let M be a Turing machine which computes the partial ordering R; that is on
inputs x and y, M gives output 1 if x ~<R Y and M gives output 0 if x ~R Y. Let
S be the space function for M and let

s(x) = max S(y , z);
y,z<~x

that is, s(x) is the space required for M to compute R on {0 x}. Then let i be such
that s ~ S i and S i is strictly increasing.

We now define the elementary partial ordering P of the natural numbers in which R
(and hence every countable partial ordering) can be embedded. If x and y are both
not in the range of S~ then x ~p y if and only if x ~ y; if x is not in the range of
Si and y is in the range of Si then x ~ e Y and y ~p x; if Si(j) = x and Si(k) -~ y
then x ~l, Y if and only if j ~R k. Note that a Turing machine can, on input x,
determine whether x is in the range of S i , and if x is in the range of Si can find j
such that S,(j) = x, using only the space needed for the input x; this is because
Si is strictly increasing and tape constructible. Therefore a Turing machine can,
on inputs x and y, compute the partial ordering P on x and y using only the space
required for the inputs, and so the partial ordering P is certainly elementary. Note
that Si gives an effective embedding of the ordering R into the ordering P. There are
elementary functions s and t such that for all i, s(i) ~ e t(i) and such that if x and y
are such that x ~p y then there are infinitely many i such that s(i) = x and t(1) = y.
Finally, for convenience we shall assume that i ~<p 0 for all i.

THEOREM 3.2. Let f and g be honest functions such that C(f) C C(g). Then any
countable partial ordering can be isomorphically embedded in the honest C-classes between

C (f) and C(g).

Proof. Without loss of generality we may assume tha t f and g are tape constructible
functions of one argument such that f < g and such that for all x, f (x) + 1 <
f (x + 1) and g (x) + 1 < g (x + 1). Moreover we shall assume that S s , S ~ < f
where S, and S, are space functions for computing the elementary functions s and t.
Let M I be a Turing machine which computes f such that S I = f, and let Mg be a
Turing machine which computes g such that Sg = g. We shall construct an embedding
h of the partial ordering P into the honest C-classes between C(f) and C(g); the
construction will give multitrack Turing machines Mh(0 such that C(~o~(i)) is the
image of i. For notational convenience we shall use M, to denote Mn(,) and h, to

190 MICHAEL MACHTEY

denote 9~h(i). The computation of Mi uses an index n and a mode c, d, f , g, or o;
for any argument x, the index and mode will actually be independent of i. As in
the proof of Theorem 3.1, on input x + 1, Ms first recapitulates its computations
on inputs 0,-.., x in order to find h~(x) and the current index and mode. The index
is used to insure that the construction deals properly with all of the operators C~ ;
the purpose of the modes will be explained in the following cases.

Case 1

The mode is f . "/'his mode guarantees that C(hi)C C(g) by having hi follow f
until it is discovered that C~(hi) 4 = g. M~ simulates M I on input x + 1 using end
markers, and when this is done marks o f f f (x + 1) tape squares on all tracks (this
portion will eventually be filled with "l"s to give Mt 's output). Mi then uses the
space that has been marked off to compute as many as possible of the values g(0), g(1),
g(2),..., h~(0), ha(l), h~(2) and C,~(h~)(O), C,,(h~)(1), C,(hi)(2) I f this computation
disclos~, a y such that C,(hi)(y) ~ g(y) then the new mode is g. I f no such y is
found, the mode is not changed. In either case hi(x + 1) = f (x + 1) and the index
is not changed.

Case 2

The mode is g. This mode guarantees that C (f) C C(hi) by having hi follow g.
Similarly to Case 1, Mi marks off g(x + I) tape squares and uses that space to look
for a y such that f (y) ~ Cn(hi)(y). I f such a y is discovered, the new mode is c;
otherwise the mode is not changed. In either case h~(x + 1) = g(x + 1) and the
index is not changed.

Case 3

The mode is c. In this mode hi is coasting from g down to f. Mi simulates M I
on input x + 1 to obtain f (x + 1). I f h~(x) < f (x + 1) then h,(x + 1) = f (x + l)
and the new mode is o. Otherwise h~(x + 1) : hi(x) -{- 1 and the mode is not changed.
In either case the index is not changed.

Case 4

The mode is o. This mode is to get C(hi) to occupy its proper place in the ordering.
This case has two subcases.

Subcase A. s(n) <~p i. Mt marks off f (x + 1) tape squares and in that space
looks for a y such that hs(,)(y) > Cj(ht(,))(y) for a l l j ~< n. I f such a y is discovered,
the new mode is d; otherwise the mode is not changed. In either case hi(x + 1) =
g(x + 1) and the index is not changed.

HONEST SUBRECURSIVE CLASSES 191

Subcase B. Otherwise, Ms behaves the same as in Subcase A except that
hi(x + 1) = y(x + 1).

Case 5

The mode is d. This is another coasting mode to get the ht's together and down
tof. If hi(x) < f (x + l) t h e n hi(x + 1) ----f(x + 1); otherwise hi(x + l) ---- hi(x) + 1.
I f f (x + 1) -< ho(x) + 1 then the mode and index are not changed; otherwise the
new mode is f and the new index is n + 1.

This completes the description of the computation of hi . Clearly hi is strictly
increasing a n d f ~ hi ~< g for all L The rest of the demonstration that this construction
accomplishes the required embedding will be broken down into the demonstration
of the following four facts.

Fact 1. For any argument x, the index n and the mode (i.e., case) are inde-
pendent of i, and n ~ x.

The independence is seen by induction on x; assume independence through
argument x. I f the computation on argument x + 1 is in modes f, g, or c (Cases 1,
2, or 3) then the index and mode will clearly be independent of i at the end of the
computation. I f the computation on argument x -~ 1 is in mode o then an examination
of the two subcases of Case 4 shows that in each subcase the same space-bounded
computation determines what the next index and mode will be; therefore the index
and mode will be independent of i at the end of the computation. I f the computation
on argument x + 1 is in mode d then an examination of Case 5 shows that the deter-
mination of whether to change the index and mode is independent of i. Tha t n ~ x
is obvious.

Fact 2. As the argument x increases, the index n increases without bound. There-
fore C (f) C C(h;) C C(g) for all i.

Assume for the sake of a contradiction that the index attains a maximum. Then
from the nature of the construction it follows that the index n and the mode remain
fixed for all sufficiently large arguments. Assume that the final mode is f . Then
hi = f a.e. and so C(hi) ~ C (f) C C(g). Therefore there is a y such that Cn(hi)(y) --A
g(y), and since f is strictly increasing, at some sufficiently large argument the com-
putation in Case 1 will have enough space to find such a y and the mode will be
changed. I f the final mode is g the argument for a contradiction is similar to that
for mode l . I f the final mode is c, s incef(x) -? 1 < f (x + 1) for all x, for a sufficiently
large argument the computation of Case 3 will change the mode. Assume the final
mode is o. By Fact I we have that h~n) ----- g a.e. and high) -~ fa .e . But since C (f) C C(g)
there is a y such that hs(n)(y) ~ C~(ht~,,))(y) for a l l j ~ n. S ince f is strictly increasing,
at some sufficiently large argument the computation in Case 4 will have enough
space to find such a y and the mode will be changed. I f the final mode is d, then as
with mode c, there will eventually be a change of mode. Therefore, in any case our

192 MICHAEL MACHTEY

assumption that the index attains a maximum leads to a contradiction. Once the index
is larger than j the construction guarantees that C:(f) ~ h, and Cj(hi) =A g yielding
C (f) C C(hi) C C(g) for all i.

Fact 3. For all i, h i is honest.
The functions h, are not quite tape constructible, but Sh(,) ~ h~ + i. Since h,

is strictly incre.qsing, the recapitulation of earlier computations can be done without
interfering with this inequality. Cases 1, 2, and 3 pose no problems. Since whether

J ~ e k can be determined in space j q- k and since S~ < f , the determination of
which subcase of Case 4 to use can be done in space bounded by f (x + 1) + L
For Case 5, note that whether f (x + 1) < ho(x) + 1 can be determined in space
f (x + 1). Therefore in any case, the inequality Sh(i) ~ hi + i is preserved.

Fact 4. For any i and j, C(h,) __C_ C(hj) if and only if i ~<e J.
Assume that i ~ j ; we shall show that hi ~ hj.. I f the computation is in mode f ,

g, or c then the two functions are equal, and if the inequality holds on entering mode
d then it will be preserved while in that mode. For the case of mode o, assume that
hi(x + 1) is computed in mode o and that hi(x) ~-~ h~(x). I f s(n) 41" i then s(n) <~ej;
thus if hi(x + 1) is computed by Subcase A then so is h~(x + 1), and they are equal.
I f hi(x + 1) is computed by Subcase B then whichever subcase is used to compute
h~(x + 1) it is clear that hi(x + 1) ~ h~(x + 1).

Assume that i ~ e J. To see that C(h,) ~ C(hj) we shall show that for each h there
is a y such that hi(y) > Ck(h~)(y). Let x be large enough such that n ~ k, s(n) = i,
t(n) = j , and such that during the computation of hi(x + 1) the mode changes
from o to d. Then h,(x + 1) is computed by Subcase A of Case 4, and an examination
of that subcase shows that there is a y such that h,(y) > Ck(hj)(y) as claimed. This
completes the proof of the theorem.

The following naming lemma will be needed for the proof of the next density
theorem; it is proved in [8, Lemma 3.5].

LEMMA 3.3. There is an elementary function r such that if ~o i is a total function
of one argument then 9r(i) is total, and if 9i is also honest then 9i ~ q~r(i) a.e. and
St(i) e C(~3.

We now introduce some terminology needed to state the next density theorem.
O ' is the Turing j ump of the empty set (i.e., the Turing degree of the diagonal set K) ,
and a sequence of computable functions f0 , f l , f2 is said to be recursive in O '
if there is a function k recursive in O ' such that f~ ~ ~k(i) for all i. I t is a routine
exercise to construct an elementary function k of two arguments such that for all i,
lim~ h(i, n) = k(i) and such that for all i and n, ~k(i.~) is total. For example a Turing
machine to compute k(i, n) might use the space for the inputs to compute as much
as possible of the diagonal set K and to try to compute k(i) from that. Let j be the

HONEST SUBRECURSIVE CLASSES 193

approximation to k(i) produced by this; if no approximation to k(i) is produced the
machine uses the G6del number of some fixed total Turing machine for j. In either
case the machine gives as output the G6del number of a Turing machine which
simulates M i in parallel with searching for a change in the approximation to k(i),
and which halts when either the simulation halts or the approximation changes.

THEOaEM 3.4. Let fo , f l ,f2 be a sequence of honest functions recursive in O"
and let g be an honest function such that for all i, C(f,) C C(fi+l) and C(f/) C C(g).
Then there is an honest function h such that C(f~) C C(h) C C(g) for all i.

Proof. Without loss of generality we may assume that g is a tape constructible
function of one argument such that for all x, g(x) + 1 < g(x + 1); let Mg be a Turing
machine which computes g such that Sg = g. We begin the proof with a technical
lemma on the naming of the classes C(fi).

LEMMA 3.5. There exists an elementary function p of two arguments such that
for all i, t im. p(i, n) ~-- p(i) exists and C(S.ti)) = C(f~), and such that i f j <~ i then for
aU n and x, Sp(~,.)(x) <~ Sp,,.)(x) <~ Sg(x) a .d S~(,,.)(x) + 1 < S~(~,.)(x + 1).

Proof of lemma. Let p'(i, n) be such that

Sv.(i..)(x) -~ max 2 Z (Sr(k(j,n))(y) + 1),
y<~x

and let p(i, n) = min(p'(i, n), g), where r is from Lemma 3.3, k is from the discussion
following Lemma 3.3, and min is from Proposition 2.3.

Since for all i, lim n k(i, n) = k(i), we have that limn p'(i, n) exists and therefore
that lim~p(i, n) exists. Also since for all i, ~ 3r(k(i)) EC(fi), and for all i and j,
C(max(S; , Sj)) = lub(C(Si) , C(Sj)) and C(min(S~, Sj)) = glb(C(S,), C(S~)) if S i
and S~. are increasing (as was shown in [8]), it follows that C(S~(o) ~ C(f~) for all i.
The inequalities are clear from the definition of the function p.

We now return to the proof of the theorem. We shall give a multitrack Turing
machine M to compute h; M will use an index n, modes f, g, and c, and an e-value e.
On input x + 1, M first recapitulates its computations on inputs 0,..., x in order
to find h(x) and the current mode, index, and e-value. The index is used to insure
that the construction deals properly with all of the functionsf~, and all of the operators
Cj , and the e-value is used as a guess at a point at which the function p may have
become constant for the given index. The purpose of the modes will be explained
in the following cases.

Case 1

The mode is f. This mode guarantees that C(h) C C(g) by having h follow S~(~.e) �9
I f p(n, e) ~ p(n, x -r 1) then the mode and index are not changed but x + 1 is the

194 MICHAEL MACHTEY

new e-value and h(x + 1) is determined as follows. I f h(x) < S,(n.~+i)(x + 1) then
h(x + 1) = S~(n.x+l)(x + 1); otherwiseh(x + 1) = h(x)+ 1. Ifp(n, e) =p(n, x + 1)
then M marks off S,(n,,)(x + 1) tape squares and in that space looks for a y such
that Cn(h)(y) :/: g(y). I f such a y is discovered then the new mode is g, the new
e-value is x + 1, and the index is not changed. I f no such y is discovered then the
mode, index, and e-value are not changed. In either case h(x + l) = S~(n,e)(x + 1).

Case 2

The mode is g. This mode guarantees that C(fj) C C(h) for all j by having h follow g.
I f p(h, e) :~ p(k, x + 1) for some k ~< n then the mode and index are not changed
but x + 1 is the new e-value and h(x + 1) = g (x + 1). I fp(h , e) =p(k , x + 1) for
all k ~< n then M marks offg(x + 1) tape squares and uses that space to look for a y
such that Cj(S~<k.o)(y) < h(y) for all j, k <~ n. I f such a y is discovered then the
new mode is c and the index and e-value are not changed; if no such y is found then
the mode, index, and e-value are not changed. In either case h(x + 1) = g(x + 1).

Case 3

The mode is c. This is a coasting mode. I f S~(,~+l.~+l)(x + 1) < h(x) + 1 then
h(x + 1) = h(x) + 1 and the mode, index, and e-value are not changed. Otherwise
h(x + 1) = S~(~+l.~+x)(x + 1), the new mode is f , the new index is n + 1, and
the new e-value is x + 1.

This completes the description of the computation of h. Clearly h is strictly in-
creasing and h ~< g. Note also that the index is always less than or equal to the
argument. The rest of the proof is broken down into the demonstration of the following
three facts.

Fact 1. As the argument x increases, the index n and the e-value e increase without
bound.

Assume for the sake of a contradiction that the index attains a maximum. Then
from the nature of the construction it follows that the index n and the mode remain
fixed for all sufficiently large arguments. Assume the final mode is f . Since
l imkp(n,k) = p (n) it follows that h -~ S~(n) a.e. and so C (h) = C (f n) C C (g) .
Therefore there is a y such that C,,(h)(y) ~ g(y) and since S~(~) is strictly increasing,
at some sufficiently large argument the computation in Case 1 will have enough
space to discover such a y and the mode will be changed. Assume that the final mode
is g; then h = g a.e. From the first computation in Case 2 it follows that the e-value e
will eventually be large enough so that p(k, e) ~- p(k) for all k ~ n, Since C(S~k)) C
C(g) = C(h) for all k, there will be a y such that Cs(Sj,(k))(y) < h(y) for all j, k ~ n.
Since g is increasing this will eventually be discovered and the mode will be changed.
Assume the final mode is c. Since S~(n)(x) + 1 < S~(n}(X + l) for all n and x it
follows that the computation can stay in mode c for only finitely consecutive arguments.

HONEST SUBRECURSIVE CLASSES 195

Thus in any case we have a contradiction. That the e-value increases without bound
is now clear.

Fact 2. The function h is honest.
The function h is not quite tape constructible, but the space in which it is computed

is elementary in h. In fact there is an elementary function E such that for all x,
Sly(x) <~ E(x) �9 h(x) where Sn is the space function for h. Let E be an increasing
elementary function such that the computations of p in the computation of h can
be done in space E and such that p(x, x) < E(x) for all x; E exists by Lemma 2.7.
That S h satisfies the inequality follows by induction on the argument x. Assume
that Sh(y) ~ E(y) �9 h(y) for ally ~ x. Since h and E are increasing, the recapitulation
in the computation of h(x + I) can be done in space E(x + I) �9 h(x + 1). The com-
putations o f p can certainly be done in space E(x + 1). The remaining computation
may require the computation of some S~(,.e)(X + 1). Since M must be able to simulate
infinitely many machines Mg(n.,), this simulation could take as much as p(n, e) �9 S~(n.,~
space. Since n, e ~ x + 1 and S~(n.,)(x + 1) ~ h(x + 1), the computation can be
completed in space E(x q- 1) �9 h(x q- I).

Fact 3. For all i, C(f~) C C(h) C C(g).
Since h is honest and h <~ g we have C(h) C C(g). Once the index is greater than i,

Ci(h) ~ g. Therefore from Fact 1, C(h)C C(g). I f x is large enough so that the
index n is greater than i and the e-value e is large enough so that p(i, e) has attained
its limit p(i), the inequalities in Lemma 3.5 and the construction give that S~(~)(x)
h(x). Therefore S~t 0 ~ h a.e. Also, Case 2 of the construction yields that C~(S~(~)) ~ h
for all j ~ n. Therefore C(f,) = C(S~(i)) C C(h). This completes the proof of the
theorem.

A completely symmetric version of the proof of Theorem 3.3 yields the following
theorem.

THEOREM 3.6. Let f be an honest function and let go, gt , gz ,..., be a sequence of
honest functions recursive in O' such that for all i, C(f) C C(gi) and C(gi+l) C C(g~).
Then there is an honest function h such that C(f) C C(h) C C(gi) for all i.

Meyer and Ritchie [9, p. 81, open problem 7] raise the question of the existence
of least upper bounds for increasing sequences of elementary honest classes. Theo-
rem 3.4 gives a partial solution to this problem. I f fo , f l ,fz is a sequence of
honest functions recursive in O' such that for all i, C(fi) C C(ft+x), then the sequence
C(f0), C(fl), C(f2),..., has no minimal upper bounds among the honest C-classes.
Symmetrically, Theorem 3.6 yields that a properly decreasing sequence of honest
subrecursive classes recursive in O ' has no maximal lower bounds among the honest
subrecursive classes.

A simple combination of Theorems 3.2 and 3.4 (3.6) yields that any countable

57x/Iolz-3

196 MICHAEL MACHTEY

partial ordering can be embedded in the gap between an increasing (decreasing)
sequence of honest subrecursive classes recursive in O ' and an honest subrecursive
class properly above (below) the sequence. Moreover, an examination of the proof
of Theorem 3.4 shows that the construction gives a G6del number of the function h
as an elementary function of the G6del numbers of the function k (recursive in O')
which defines the sequence f0 , f l ,f2 ,-.., and of the function g. A like observation
holds for the proof of Theorem 3.2; the nonconstructive assumption that f and g
are tape constructible can be eliminated by an application of Lemma 3.3.

4. FURTHER RESULTS

In this section we present some further results related to Theorem 3.4. The first
theorem will show that the effectiveness restriction on the sequences in Theorem 3.4
cannot be appreciably relaxed, and it will also give additional information on the
least upper bounds question raised by Meyer and Ritchie. In [8] it was shown that
the honest subrecursive classes are a lattice, and that every honest subrecursive
class is the meet (glb) of a pair of incomparable honest subrecursive classes. The
second theorem of this section will show that for every pair of honest subrecursive
classes, one containing the other, there is a pair of incomparable honest subrecursive
classes with the larger as their join and the smaller as their meet.

A sequence of functions f0 , f l ,f2 , is said to be recursive in O" if there is a
function h recursive in the Turing degree O" such that for all i, f i = 9h(,) ; a set
of functions is said to be recursively enumerable (r.e.) if there is an r.e. set A such
that {~oi; i~ A} is the given set of functions. The zero (honest) C-class, C(0), is
the C-class of zero flmction; C(0) is the minimum (honest) C-class.

THEOREM 4.1. Every nonzero honest C-class is the least upper bound of the set
of honest C-classes properly contained in it. Therefore, every nonzero C-class is the
least upper bound of an increasing sequence of honest C-classes recursive in 0" .

Proof. I t is clear that every nonzero honest C-class is a minimal upper bound
of the set of honest C-classes properly contained in it. Since the honest C-classes
are a lattice, the meet of two upper bounds is also an upper bound, and therefore
any minimal upper bound is actually a least upper bound.

If q)i is total, C(9i) is uniformly r.e.; thus there is a ~1 predicate C(i,j) such that
i f~i is total, {%.: C(i,j)} -~ C(~vi). Let T(i, x , y) be a Z 1 predicate such that T(i, x , y)
iff ~v,(x) = y; let S(i, x, y) be a ~1 predicate such that S(i, x, y) iff S,(x) = y; let
U(i) be a I-[2 predicate such that ~oi is total iff U(i). Define D(i,j) to be the following
~2 predicate;

3k[C(i, k) ^ Vx, y, z[((T(j, x , y) h T(k, x, z)) =~ y = z)]];

HONEST SUBRECURSIVE CLASSES 197

if ~i and ~oj. are total, then D(i,j) iff ~0~ eC(~i) . Define E(j) to be the following 1-I1
predicate.

vx, y, z[(s(j , x, y) ^ T(j, x, z)) ~ y = z];

if ~j is total, then E(j) iff q~ = S s . Finally define F(i , j) to be the following predicate.

U(j) A D(i, j) A ~ D(j, i) ^ E(j);

note that F(i , j) is both a ~3 and 1-[a predicate; if ~o i is total, then

{%: F(i,j)} ----- {~oj: 9, ~ C(~o~), q~ ~ C(~o~), and ~o~ = Ss}.

Suppose that ~o i is honest and define

.fk(x) = ma~{9,(x): F(i, j)}

(max ;g = 0); then the sequence of functions)Co ,fa ,f2 ,-.-, is recursive in O". I f
g is an honest function such that g e C(9~) and 9~ 6 C(g) then there is some k such
thatg e C(fk). Also, for all k , f k is an honest function such thatfk e C(9i) and 9~ 6 C(fk).
Therefore C(cp,) is the least upper bound among the honest C-classes of the increasing
sequence C(fo), C(fa), C(f2),..., of honest C-classes, a sequence recursive in O".

The proof of Theorem 4.1 is complete. Note that a completely analogous proof
yields the dual theorem about greatest lower bounds of decreasing sequences of
honest subrecursive classes.

In [8] it was shown that the honest subrecursive classes are a distributive lattice,
and that every honest subrecursive class is the greatest lower bound (intersection)
of two incomparable honest subrecursive classes. We now give a stronger "splitt ing"
property.

THEOREM 4.2. Let f and g be honest functions such that C (f) C C(g). There are
honest functions h o and h 1 such that C(ho) and C(hl) are incomparable, and such that
C (f) is the greatest lower bound of C(h0) and C(hl) and C(g) is the least upper bound
of C(h0) and C(ha).

Proof. In [8] it was shown that if h 0 and h a are strictly increasing tape constructible
functions of one argument, then

C(min(ho, hi)) = glb(C(ho), C(ha))
and

C(max(h0, ha)) = lub(C(h0), C(hl)).

Therefore we could set our goal to be the construction of h 0 and h~ such that f =
min(ho, hi) and g = max(ho, ha). However, this might not be possible to do, keeping

198 MtCHAEL MACHTEY

h 0 and h x increasing. Thus we shall settle for constructing h o and h I such that f =
min(h0, hi) and g ~ C(max(ho, hi)). Since this proof uses the same techniques that
were used in the proofs of Theorems 3.2 and 3.4, this proof will only be sketched.

Without loss of generality, we may assume that f and g are tape constructible
functions of one argument such that for all x, f(x) < g(x) a n d f (x) + 1 < f (x + 1).
For i = 0, 1, we describe a Tur ing machine Mi to compute hi �9 On input x + 1,
Mi first recapitulates its computations on inputs 0,..., x to find h~(x) and the current
index (n) and mode (f, g, c, d). Note that M o and M x will have the same mode and
index at each argument. The rest of the computation is given in cases.

Case 1

The current mode is f . Then ho(x + 1) = f (x + 1) and hl(x + 1) = g(x + 1).
In space f (x + 1), each machine Mi looks for a y ~ x + 1 such that hx(y) C=
C,~(ho)(y). I f no such y is found then the mode and index are unchanged. I f such a y
is found then the new mode is c and the index is unchanged.

Case 2

The current mode is c. Then ho(x + 1) = f (x + 1) and hl(X + 1) =
max(f (x + 1), hi(x) + 1). I f f (x + 1) < h~(x + 1) then the mode and index are
unchanged. I f f (x + 1) = hl(x + 1) then the new mode is g and the index is
unchanged.

Case 3

The current mode is g. Then hl(X 2 7 l) = f (x 2 7 1) and ho(x + 1) =g(x + 1).
In space f (x + 1), each machine M, looks for a y ~ x + 1 such that ho(y) =/=
C,,(hl)(y). I f no such y is found then the mode and index are unchanged. I f such
a y is found then the new mode in d and the index is unchanged.

Case 4

The current mode is d. Then hl(x + 1) ----- f (x + 1) and ho(x + 1) =
m ax(f (x + 1), ho(x) + 1). I f f (x + 1) < ho(x + 1) then the mode and index are
unchanged. I f f (x + 1) = ho(x + 1) then the new mode is f and the new index
i s n + l .

From this construction we have that each h~ is a strictly increasing tape constructible
function of one argument, and that f = min(h0, hi). The construction will stay
in any given mode for only finitely many consecutive arguments, thus C(h0) and
C(h~) are incomparable. Le t M(x) = max(h0(x), hi(x)). For infinitely many arguments
x, M(x) = g(x); and M(x) :# g(x) only during the coasting modes c and d. Thus

HONEST SUBRECURSIVE CLASSES 199

for any x, let y ~ x be largest such that M (y) • g(y). Then there is a z, x < z

g(y) < M(x) such that g(x) <~ g(z) ~ M(z) . Therefore, for all x, g(x) < M(M(x)) .
Thus g E C(max(h0, hi)), and the proof of the theorem is complete.

REFERENCES

1. PAUL AXT, On a subrecursive hierarchy and primitive recursive degrees, Trans. Amer. Math.
Soc. 92 (1959), 85-105.

2. MANUEL BLUM, Machine-independent theory of the complexity of recursive functions,
J. Assoc. Comput. Mach. 14 (1967), 322-336.

3. ALAN COBHAM, The intr/nsic computational difficulty of functions, in "Proc. 1964 Intern.
Cong. Logic, Methodology, and Phil. Science" (Y. Bar-Hillel, Ed.) 1964, pp. 24--30.

4. MARTIN DAVIS, "Computability and Unsolvability," McGraw-H/U, New York, 1958.
5. A. GRZECORCZYK, Some classes of recursive functions, Rozprawy Matematcyzne (1953),

1-45.
6. HOPCROFT AND ULLMAN, "Formal Languages and Their Relation to Automata," Addison-

Wesley, Reading, MA, 1969.
7. MICHAEL MACHTEY, Augmented loop languages and classes of computable functions, J.

Comput. System Sci. 6 (1972), 603-624.
8. MICHAEL MACHTEY, The honest subrecursive classes are a lattice, Information and Control

24 (1974), 24%263.
9. ALBERT MEYER AND DENNIS RITCHIE, A classification of the recursive functions, Z. Math.

Logik Grundlagen Math. 18 (1972), 71-82.
10. A. MOSTOWSKI, Crber gewisse universelle Relationen, Polskiego Tow. Matematycznego

17 (1938), 117-118.
11. R6ZSA PI~TER, "Recursive Functions," Academic Press, New York, 1967.
12. ROBERT W. RITCHIE, Classes of predictably computable functions, Trans. Amer. Math. Soc.

106 (1963), 139-173.
13. HARTLEY ROGERS, JR., "Theory of Recursive Functions and Effective Computability,"

McGraw-Hill, New York, 1967.
14. HARTLEY ROGERS JR., GSdel numberings of partial recursive functions, J. Symbolic Logic

23 (1958), 331-341.

