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The representable functors from a category A to the category of sets S 
have the f&owing basic properties: 

(1) Let [A, -1 : A-S, AEA, b e a representable functor and t : A -+ S 
be an arbitrary functor. Then there exists a bijection 

[[A, -I, t] z tA 

which is natural in A and t. 

(2) Each functor t : A +S is canonically a direct limit of representable 
functors. (In general the index category is not small.) In other words, the 
Yoneda embedding Y* : A”pp + (A, S), A + [A, -I, is dense (cf. [25] 1.3 
and [25] 1.10). 

In this paper we shall define a concept of “representable functor” in an 
arbitrary functor category (A, B) in such a way that properties similar to (1) 
and (2) hold. 

For this purpose we first consider the case where B is right complete and 
has a small dense ([2.5] 1.3) subcategory B. Let I : B -+ B denote the 
inclusion. Then by [25] 1.15 B is a left retract of (%p, S), i.e., the canonical 
embeddingS : B -+ (BgP, S),B ,- [I--, B],hasaleftadjoint T : (%‘p, S) + B 
and the end adjunction TS + idB is an equivalence. Therefore the induced 
functor (A, T) : (A, (B “Pp, S)) + (A, B) is also a left retraction. 

Let B be an object of B. Denote by B@ : S -+B the functor 

M-+&EM&, where B, = B. One readily verifies that B@ is left adjoint 
to [1B, -1 : B-S. 

* Part of this work was supported by: Fonds fiir akademische Nachwuchsfdrdenmg 
des Kantons Ziirich. 
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(3) In 1.33 we show that the composition 

(A x %‘p, S) g (A, (&rr, S)) (**=) l (A, B) 

assigns to a representable functor [A x 8, -1 : A X %‘r + S, A E A, 
B E B, the composed functorl 

(4) 
p U.-l l s m3 t B. 

(5) Since the representable functors are dense in (A X %p, S), the same 
holds for their images in (A, B) (cf. [25] 1.13), i.e. each functor t : A + B is 
canonically a direct limit of functors of the form B @ [A, -1 : A + B, 
B E B C B, A E A.2 As there exists moreover a bijection3 

(6) LB 0 14 -1, tl E LB, 4 

which is natural in i$ A and t, we call the functors B @ [A, -I, A E A, 
B E B, the (generalized) representable functors. They are in fact a generaliza- 
tion of the set valued representable functors. For let B be the category of sets 
S, and let {I} denote the dense subcategory of S whose only object (=I) is a 
one point set. From the preceeding definition of the tensorproduct, it follows 
easily that 10 : S +S coincides with the identity of S. Therefore the 
(generalized) representable functors agree in this case with the usual ones 
and (6) specializes to the Yoneda lemma (1). 

(7) The restrictions made before on B are not essential. Let A and B be 
categories and let A and B be objects of A and B respectively such that the 
functor B @ [A, -1 : A --+ B, X + @I:R+r B, , Bf = B, exists. Then for 
each functor t : A + B the generalized Yoneda lemma 

holds. 
[B 0 [A, -1, tl GE P, 4 

(8) If, moreover, the functors B @ [A, -1 exist for all pairs A E A, B E B, 
then each functor t : A -+ B is canonically a direct limit of functors B @ [A, -I. 
However, the canonical index category D*(t) in 2.12 (J = id) is very large 

1 These functors have also been used by Andre [I] p. 6. He showed that they are 
a generating family in (A, B), provided A is small. 

* In other words the Yoneda functor Y : A X BgP + (A, B), A X B * B 0 [A,-], 
is dense. If the inclusion B C B is not dense but each object B E B is in functorially 
a direct limit of objects of B (cf. 2.20), then each functor t : A + B is functorially 
a direct limit of functors B 0 [A, -1 : A + B, where A E A, B E B(2.21). However, 
the Yoneda functor Y : A x %‘ss + (A, B) need not be dense. 

s For A small, this was first observed by Mitchell [20]. 

481/W-7 
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and depends on t. The following is a smaller one and independent of t. Let 
the objects of Mm(A) be the morphisms of A. Let the morphism sets [cu, ,8] 
of Mar(A) consist of a single element if /3 = idder or /3 = id, (d = domain, 
r = range), otherwise let them be empty (cf. [25] 2.19). Then4 

(9) t = lim tdol @[ror, -1 
u&(A) 

holds. 

(IO) Unlike the usual representable functors (l), the generalized ones can 
be dualized. By composing a functor B @ [A, -1 : A -+ B with the dualiza- 
tion functors A”ng -+ A and B -+ BOPp, one obtains a corepresentable functor 
in (AOPP, B”PP) which is denoted by5 

In (11) A and B are regarded as objects of A O~P and B”sp respectively, therefore 
CL% Al, Bl = l-I f.X+A Bf , B, = B holds. By dualizing (7) and (9), one 
obtains 

(12) [t, C-, Bl * [-, 41 E PA, Bl 

(13) t = lim [-, tro] * [-, do;] 4 
&l?A ) * 

If B = S, then the symbolic horn-functor [ -, B] : S -+ S coincides with the 
horn-functor [-, B] : S +S. Hence by (13) each functor t : A +S is an 
inverse limit of “double” horn-functors [-, B] * [-, A], A E A, B E B. If 
there are no strongly inaccessible cardinals (in S), then any infinite set B, is 
codense in S, i.e. each set ME S is canonically an inverse limit of sets equal 
to B, (cf. Ulam). Hence by dualizing (3) - (5), it follows that each functor 
t’ : A -+ S is canonically an inverse limit of functors [-, B,] * [ -, A] : A -+ S, 
A E A; i.e. the fun&s [-, B,] . [-, A], A E A, are codense in (A, S).6 

4 Throughout the paper, when MOT(A) and Mor(A)Dp* appear in subscripts, we 
abbreviate them to M(A) and M(A)* respectively. 

6 [-, B] is the symbolic horn-functor of Freyd [5’j p. 87. 
6 F. W. Lawvere has remarked that this implies part of a recent result of Isbell [II]: 

If A is small, then (A, S) has a small codense subcategory. In particular, a primitive 
category of algebras with only tmary operations has a small codense (= right adequate, 
cf. [251 1.8) subcategory. 
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The functors B @ [A, -1 : A + B, A E A, B E B, are not additive if A 
and B are additive categories. This suggests changing the definition in the 
additive case. We assume for the moment that B is right complete. Then for 
each B E B the horn-functor [B, -1 from B to the category Ab.Gr. of abelian 
groups has a left adjoint which is denoted by B@, : Ab.Gr. --+ B. The 
additive representable functors are defined as compositions 

(14) A [A.--l Ab.Gr. s B 

where A E A and B E B.7 Then all aforementioned properties ((3) - (13)) of 
the representable functors carry over to the additive ones (14), provided all 
functors t : A --+ B under consideration are additive. 

Now let B be an additive category which has cokernels but not necessarily 
arbitrary direct limits. Then the additive representable functors can still be 
defined (and they keep the same properties), provided that in the domain 
category A, all morphism groups [A, A’], A, A’ E A, are finitely generated. 

(15) Assume furthermore that all the groups [A, A’], A’, A E A can be 
coherently equipped with a left A-module structure, in such a way that they 
are finitely presentable as Il-modu1es.s (If d is notherian, “finitely present- 
able” is equivalent to “finitely generated”) Then by modifying the definition 
of representable functors accordingly, their existence can be proved and the 
basic properties established only assuming cokernels in B. The details run 
as follows. 

Let (B, p) be a right d-object of B, i.e. an object BE B together with a 
ring homomorphism A”Pp + [B, B]. Then the functor [B, -1 : B + Ab.Gr. 
has a canonical lifting n[B, -1 : B + “M (nM = left A-modules). Since only 
cokernels are assumed in B, the left adjoint of ,,JB, -1 : B + AM can be 
defined in general only on the subcategory FPbM) of finitely presentable 
d-modules. This partial left adjoint is denoted by (B, p)@,, : FP(,,M) + B. 
(A detailed study of these partial or relative adjoints is given in [25] $2.) 
Representable functors from A to B are now defined as compositions 

(16) (B, P) 0~ PA, -1 : A + FWnW + B 

where A E A and (B, p) E B,, (= category of the right /l-objects of B). If the 
/l-modules [A, A’], A, A’ E A are not finitely presentable, but there exist 

’ For A small, these functors were 6rst introduced by Freyd [4] p. 18. He also 
proved (18) and (21) in the case A = Z. 

s A is then a d-enriched category in the sense of Kelly (unpublished). 
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arbitrary direct limits in B, then the representable functors are defined as 
compositions 

(17) (8~) Ch [A, -1: A--+,M-tB 

where A E A, (B, p) E B, . Hereafter we mean (B, p) @,, [A, -1 to be a 
functor (16) or (17). Since A is a cl-enriched category, the values ~4, A E A, 
of each functor t : A + B can be canonically equipped with ring homomor- 
phisms 7a : L’W’ + [t/l, tA] (cf. 3.11). The Yoneda lemma then generalizes to 

(18) [(B, P> al [A, -I,4 = UK PI, PA T.4)1 

This isomorphism is natural in (B, p), A and t. The representable functors 
(16) or (17) are dense in (A, B) (cf. 2.12). Furthermore, for each functor 
t : A + B the equation 

(19) t = lim (tdol, Ed,) On [rcr, -1 
DE&A) 

holds. 
Note that, as before (IO), by passing to the duals of A and B, the represent- 

able functors (16) or (17) of (A, B) h c an g e over to the corepresentable ones 
of (AOp*, B”pp). Viewed as functors from A”PP to BOpp, they are denoted by 

@Y /J-, (p, B)] . /,[-, A] : AOPP-+ B”r’p 

where A E Ao=p and (p, B) E n(BoPP) = (B,,)opp. By dualizing (18) and (19) 
one obtains for each functor t : A”pp + Bopp 

(21) P, AC-, (P, WI . d-3 41 s PA , 3 b, B)l 

and 

(22) t = lim ,J-, (7rcr, tra)] * ,J-, doll 
&i;AJ* 

The paper is divided into two sections and an appendix. A short summary is 
given at the beginning of each section. In order not to make the paper too 
long, we only treat the additive representable functors. The non-additive 
case, as discussed in the first part of the introduction, is left to the reader. But 
once he has understood the additive case, it should not be hard for him to 
carry out the non-additive one, whereas the converse would be much more 
difficult. 

Participants of the Moscow conference told me that a forthcoming paper 
of Pokazeeva contains the following: 
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Let A be a D-category in the sense of Linton [17]. Then each strong func- 
tor t : A + A (cf. [Z7]) is a direct limit of composite functors & * Qz : A + A, 
where Qz : A + A is the lifting of the horn-functor [X, -1 : A -+ S and 
& : A + A the left adjoint of 52,. 

This suggested the idea of investigating to what extent the results of the 
present paper can be generalized to the case of enriched categories (or cate- 
gories based on one of Linton’s autonomous categories, cf. [17]). It turns out 
that in the special case (1 = Z most of our results can be so generalized.QJO 
But in the setting of the present paper, where n is an arbitrary ring, it seems 
unlikely that this can be done. Apparently there is no concept of a strong 
functor, and it is hard to imagine how a Yoneda lemma generalizing 3.17 
would look. 

The generalized representable functors have many useful properties as 
will be shown in subsequent papers ([22] and [23]). For instance, let 
K : A + A be a functor. Then the right Kan K-extension (cf. [2.5] 2.9b) of 
B@[A,-]:A-+BisB@[KA,-]:A-+B.(ForthisAneednotbe 
small.) Using (9) and [2.5l 2.13 we will prove that for each functor t : A -+ B 
the right K-extension EK(t) : A+ B exists iff lim tda: @ [Km, -1 exists. 
Moreover C&Af 

(23) EK(t) = lim tdol 0 [Km, -1 
&M(A) 

is valid. The same holds in the additive case. 
Representable functors are used in [23] to prove that right satellites and 

derived functors -provided they exist-can be expressed by tensor 
products and Ext*(-, -). For this let A and B be abelian categories, A 
(I-enriched (3.7). Assume Extj(A, A) is a set for all A, A E A. Then the 
connected sequence of the right satellites of (B, p) @A [A, -1 : A + B is 
(& P)@A Ext*(A, -1. F or each additive functor t : A -+ B the right satellites 
S*t ([25] 2.9c) exist iff l&-r (~c,, tdar) @A Ext*(rar, -) exists. Moreover 

aeM 

(24) S*t = lim (~a,, tda) @h Ext*(m, -) 
&M(A) 

holds. Dually, the left satellites S*t agree with 

(25) lip AC-, (9, , tm)] . Ext*( -, dol). 
&M(A)* 

0 The set up of our proofs for 1.33 and 2.12 make it obvious how this can be done. 
We shall return to this in [22]. 

lo In particular this includes the above mentioned result of Pokazeeva. 
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We conclude with a few remarks about terminology and foundations. For the 
latter we refer the reader to the last section of the introduction of [24. The 
terms “small category” and “left (right) complete category” are used as in 
Mitchell [ZO]. Functor categories are indicated with parentheses (-, -). 

We use brackets [-, -1 to denote the morphisms between two objects or 
the natural transformations between functors. We only consider rings fl, I’, 
Z... which have a unit element. A ring homomorphism is assumed to preserve 
the unit element. By liM we denote the category of unitary left rl-modules. 
All categories and functors are assumed additive unless otherwise stated or 
unless it is clear from the context that they are not additive. All functors are 
assumed covariant unless otherwise stated or unless it is clear from the context 
that the functor under consideration is contravariant (as for instance the 
contravariant horn-functor [-, A] : A + Ab.Gr.). The category of contra- 
variant additive functors from A to B is denoted by (A”PP, B). But we do not 
adopt the notation t : A”Pp + B for a contravariant functor t because it does 
not apply to a composition t’ * t : A + B -+ B’ of contravariant functors. 
The morphism category of a category B is denoted by B2. 

1. THE TENSOR PRODUCT AND GENERALIZED REPRFSENTABLE FUNCTORS 

Let A be a ring and BA the category of right A-objects of an additive 
category B. We define the tensor product as a relative adjoint and construct 
the bifunctor 

&, : BA x FP6M) + B 

only assuming cokernels in B, where FP(“M) is the category of finitely 
presentable d-modules. The basic properties are established, in particular the 
right continuity in both variables. Our presentation is slightly more general 
than Epstein’s [3] p. 5-17 or Mitchell’s [20] p. 143. We only give an outline 
and refer the reader for the details to [3] or [ZO]. 

If B is right complete and has a small dense subcategory B, we will show 
that the functors 

3 @x [A, -1 : A -+ Ab.Gr. + B, 

where B E B and A E A, are dense in (A, B) (cf. [25l 1.3, 1.17). If U E B is a 
dense generator (cf. [251 1.19), then even the functors 

U @x [A, -I: A + Ab.Gr. + B, 

are dense in (A, B), where A runs through A. 

(1.1) Let d be a ring and AM the category of left &modules. By FP(,M) 
we denote the full subcategory of finitely presentable rl-modules (cf. Bourbaki 
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[2] p. 35). As we remarked in [25l l.O5c, the inclusion J : FP(,,M) -+ AM 
is dense. Let L(FPbM) opp, Ab.Gr.) denote the full subcategory of 
(FP(,M)“*p, Ab.Gr.) consisting of those functors which take right exact 
sequences into left exact ones. Then it is not too hard to verify that the 
functor nM + L(FP6M)Opp, Ab.Gr.), M - [I-, M], is an equivalence. 
For II noetherian this was first proved by P. Gabriel in his thesis (cf. Bull. 
Sot. Math. France 90, p. 356, 1962). 

1.2 DEFINITION. Let /l be a ring and B an additive category. The objects 
of the category BA are pairs (B, us) consisting of an object B E B and a ring 
homomorphism pB : (1“pp -+ [B, B]. A morphism (B, pB) + (B’, ps*) in Bn is 
a morphism /I : B + B’ with the property j3 * ps()o = ps,(X) . #I, h E 4. (The 
index B is dropped in ps if this does not give rise to misunderstanding). 

The category Bn is called the category of right cl-objects of B. 

(1.3) The category IIB of the left cl-objects of B is defined dually. (The 
objects are pairs (ps , B), where B is an object of B and ps : II + [B, B] a 
ring homomorphism). 

If (1 = Z then both B, and ,B are canonically isomorphic to B. Therefore 
we denote any of these categories simply by B. 

(1.4) The duality functor B + Bar* induces an equivalence B-,, + JBo”P), 
(B, p : AOPp + [B, B]) - (B, p : rl + [B, B]ODp). Hence B,, is dual to 
n(BOP”). 

1.5 LEMMA. Let H : D ---t Bn be a functor and V : B* + B the forgetful 

functm (B, P) ,=+ B. Assume that H admits a universal ([251 2.9a) natural trans- 
formation CD’ : VH -+ consts , where B E B. Then there exists a ring homomor- 

phism P : (lOpP -+ [B, B] and a universal natural transformation CD : H + 
constm,p) with the property V@ = W. There is a similar statement if H admits 
a co-universal transformation constBp -+ H, B’ E B. 

1.6 Remark. If B is right (left) complete, this lemma implies that BA 
is right (left) complete and that V : Bn + B preserves small direct (inverse) 
limits. 

However we do not know whether V is right (left) continuous (cf. [2512.15), 
unless we further assume that B is complete. Then by 1.29 V has both a right 
and a left adjoint. Hence by [251 2.13 both right and left limits are preserved. 

Roof of 1.5. Since the values of H are right n-objects, each h E A099 
induces a natural transformation #(A) : V * H + V * Hand hence a morphism 
lim #(h) : B + B. Define p(h) = lirn #(A). Then one readily checks that 

p: /lopp --+ [B, B] is a ring homomorphism and that the morphisms 
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Q’(D) : V * H(D) -+ B, D ED, are compatible with the (I-structures on 
V * H(D) and B. Viewed as morphisms H(D) -+ (B, p) they are denoted by 
Q(D). Thus v@ = @’ holds. One easily verifies that the universality of @’ 
carries over to @. Q.E.D. 

(1.7) Let (B, p) b e a right A-object of B. Then for each B’ E B the abelian 
group [R, B’] can be equipped a left n-module structure. An element h E n 
acts on a morphism f : B -+ B’ by composing it with p(h) : B ---f B. Thus the 
functor [B, -1 : B -+ Ab.Gr. factors through the forgetful functor 
U : nM -+ Ab.Gr. Similarly, if (p, B) is a left A-object of B, the functor 
[-, B] : B + Ab.Gr. factors through U. 

(1.8) We denote the lifting of [B, -1 by A[B, -1 : B -+nM and define the 
tensor product (B, p) Q, : FP(nM) -+ B as its left adjoint relative to the 
inclusion J : FP(,M) -+ nM (cf. [25] 2.2). 

1.9 THEOREM. Let A be a ring and B an additive category with cokernels. 
Then there exists a covariant bifunctor (the generalized tensor product) 

@/, : B/, x FP(,M) -+ B, 

determined up to an equivalence, which has the following properties: 

(1.10) For each object (B, p) E BA 

(B, P) 0~ A zz B 

holds. 

(1.11) For each (B, p) E BA the functor 

(4 P)@A : FPtM) - B 

is J-left adjoint to n[B, -1 : nM -+ B (cf. 1.8), i.e. for each pair B’ E B, 
M E FP(,,M), there exists an isomorphism 

(1.12) %,,,(M B’) : [(B, P> 0~ M, B’l z [JM nL& 41 

natural in B’, M and (B, p). 

(1.13) For each ME FP(,M) the functor @,,M : Bn -+ B preserves those 
direct limits which are preserved by V : B” -+ B (cf. 1.5 and 1.6). Similarly 
for each (B, p) E B,, thefunctor (B, p)@ : FP(,M) + B commutes with those 
direct limits which are preserved by J : FP(,,M) -+ *M. 
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1.14 Remark. If B has cokernels and arbitrary sums, then thme exists a 
bifunctor 

with the same properties. More precisely, the statements 1.10 - 1.13 remain 
valid if FPbM) and J are replaced by AM and the identity of AM respectively. 

Our proof of 1.9 carries through directly to 1.14. 

Proof of 1.9. Let (B, p) be an object of B,, . We define 

(1.15) (B, P) 0~ A = B 

and similarly for a finite sum Oar /li 

(1.16) (B, P) On ‘g 4 = sg Bi 

where Ai = A and Bi = B. 
A /l-homomorphism f : rl -+ n is determined by f( 1) E A. Therefore we 

define 

(1.17) (4 PEW = ~(f(lN 

Similarly a map g : eel Ai + ekK A, (I, K finite) can be described by the 
matrix (gik( l)), where g,, is the composition 

(pk = canonical projection, q1 = canonical injection). 
Thus we define 

(1.18) (4 ~90~ = (4 /4O&ik(lN 

For each ME FP6M) there exists by definition an exact sequence 

(1.19) @Ai @Ak+M+O 
iSI keK 

where I and K are finite sets. We define 

(1.20) (B, p)ChM = WV% P)OA&. 

By standard homological algebra this is well defined, (i.e. up to an equivalence) 
and in particular compatible with the definitions 1.15 and 1.16. Furthermore 
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(B, p)& : FP(,,M) + B is a functor and a morphism (B, p) -+ (B’, p’) 
induces a natural transformation (4 P)@% -+ (B’, ,40n . Hence 
aA : BA x FP(,,M) ---f B is a bifunctor. 

We now prove 1.12. Let M E FP(nM), B’ E B and (B, p) E BA . For each 
m EM denote by fm : A -+ M the A-homomorphism 1 - m. Then the map 

(1.21) @(,,,,(M B’) : [(B, P) C$, M, B’l - [M nB B’ll, 

which assigns to a morphism /3 : (B, p) @,, M+ B’ the A-homomorphism 

m - B = (B, p) an A id (B, p) @A M% B’, is obviously an isomor- 
phism for M = A. Since the functors 

(1.22) [(B, p) @A (-), B’] : FP(nM) -+ Ab.Gr. 

and 

(1.23) [-, n[B, II’]] : FP6M) + Ab.Gr. 

are additive, we can define in view of 1.16 

(1.24) “(*$ Ai , B’) = +$ @(k ’ B’) 

for a finite sum Giel Ai , Ai : A. (We drop the index (B, p) if this does not 
give rise to misunderstanding). Hence S(& rli , R’) is also an isomorphism 
and one readily checks that it is natural in B’, (B, p) and compatible with 
morphisms oiGl Ai + aKEK A, . We abbreviate the functors 1.22 and 1.23 
by F and P respectively. Since they are left exact, a resolution 1.19 of 
A4 E FP(,M) gives rise to a commutative diagram 

in which the vertical morphisms are equivalences. We define Q(M, B’) to be 
the unique morphism FM -PM which makes the diagram 1.25 commutative. 
It is obviously an equivalence. By standard homological algebra 8(M, B’) 
is well defined, i.e. independent of the chosen resolution 1.19, and natural in 
(B, p), M and B’. 
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The second part of 1.13 follows immediately from [25] 2.13 and 1.11. To 
prove the first part of 1.13, we need only show by [251 2.1 and [2.5] 2.17 that 
for each B’ E B the functor [(-) @A M, B’] : BA + Ab.Gr. takes those 
direct limits preserved by V : Bn -+ B into inverse limits. By 1.12 the 
functor [(-) & M, B’] is equivalent to the composition 

[&I, -1. ,,[V-, B’] : Bn + ,,M + Ab.Gr. 

Since [M, -1 is left continuous ([251 2.15), it is enough to show that 
n[V-, B’] : BA + ,,M is left continuous with respect to the above indicated 
direct limits. This is obviously equivalent to saying that the same property 
holds for the composition U * n[ V-, B’] : B, + ,,M + Ab.Gr., where U is 
the forgetful functor. The functors U * ,.JL’-, B’] and [-, I?‘] . V : BA + 
B--t Ab.Gr. agree. Therefore this property holds because [-, B’] takes 
direct limits into inverse limits. 

Q.E.D. 
By dualizing 1.9 and 1.14 with the help of 1.4 we obtain 

1.26 THEOREM. Let B be an additive category with kernels. Then there 
exists a bifunctor (symbolic horn, cf. Freyd [5j p. 87), determined up to an 
equivalence, 

A[ -, -1: FP(,M)opp x nB + B 

with the following properties: 

(1) It is contravariant in the first and covariant in the second variable. 

(2) FRY each (p, B) E nB 

holds. 

(3) For each (p, B) the functors A[-, (p, B)] : FP(,,M)O”” + B and 
n[ -, B] : BO~P + ,.,M (cf. 1.8) are adjoint on the rightll relative to the inclusion 
J : FP(,M) + nM, i.e. for each pair ME FP(,,M), B’ E B, there exists an 
isomorphism 

P’, nCM (P, WI1 E CM nP’, 41 

which is natural in B’, M and (p, B). 

(4) FRY each ME FP(,M) the functor n[M, -1: .B + B peserwes those 
inverse limits preserved by V : .B + B (cf. 1.5 and 1.6). Similmly fw each 
(p, B) E ,B the futxtor ,,[-, (p, B)] takes those a!irect limits preserved by 
J : FP(,M) -+ .M into inverse limits. 

I1 This terminology is due to Freyd (cf. [A, p. 81). 
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1.27 Remark. Let B be an additive category with kernels and arbitrary 
products. Then there exists a bifunctor 

J-,-]:.Mx,,B+B 

with the same properties. More precisely, the statements 1.26 (l)-(4) remain valid 
if FP(,M) and J are replaced by .M and the identity of liM respectively. 

(I .28) RepIace in 1.9, 1.14, 1.26, and 1.27 the ring A by AOP*. Then one 
obtains bifunctors 

On : n BxFP(M,)+B, @n:nB~M,+B, 

J-, -1: FP(M,) x B, + B and J--, -1: M, X B,+B 

with properties as in 1.9, 1.14, 1.26 and 1.27, respectively. 

1.29 THEOREM. Let A be a ring and B an additive category with cokernels. 
Assume either that B has arbitrary sums or that A is finitely generated as an 
abelian group. Then there exists a functor B ---f B, , B + B @ ,A (cf. 1.9 or 
1.14 respectively) which is left adjoznt to V : B, + B. Dually, let B be an 
additive category with kernels. Assume either that B has arbitrary products or 
that A is finitely generated as an abelian group. Then there exists a functor 
B+B,,B- z[A, B], (cf. 1.26 or 1.27 respectively) which is right adjoint to 
V: B,+B. 

We shall not prove 1.29, since we only make incidental use of it later. But 
we give the reader a hint how 1.29 can be established: 

For each pair (B’, p’) E B, , B E B there exists a commutative diagram 

B[B oz A, V(B’, p’)] @(y’) l ~i,.~r.[fl, [B, VB’, P’)]] 

U t t ” 

a,JB Oz A, (B’, $)I 2 
I 

,[A, LB, W-3’, P’M es LB> W’, r4ln 

where [B, V(‘(B’, P’)]~ is the abelian group [B, V(B’, p’)] equipped with the 
right A-module structure induced by (B’, p’). 

(1.30) Let A and B be additive categories, B right complete. This is equiv- 
alent to saying that B has arbitrary sums and cokernels (cf. Grothendieck 
[9] p. 133). Hence there exists by 1.14 (A = Z) for each pair A E A, B E B 
the composed functor 

B@, [A, -1 : A-+Ab.Gr.-+B 
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which is said to be a generalized representable functor. Dually, if B is left 
complete, then by 1.27 (A = Z) there exists for each pair B E B, A E A the 
composite functor 

x[-, B] . [-, A] : A+Ab.Gr. -+B 

which is said to be a corepresentable functor. 

(1.31) Let A and B be additive categories. The tensor product B @x A 
of B and A over Z is an additive category, whose objects are symbols i? 0, A, 
where B E B and A E A. The abelian group of morphisms from 3 @x A to 
8’ @x A’ is the tensor product [B, 8’10 [A, A’]. If B consists of a single 
objects U, we use the notation {U} @x A instead of B @x A. 

Let B be a right complete category and B a subcategory of B. The functor 

Y:~@,A”~~+(A,B),~@ZA~~@Z[A,-], 

which assigns to a morphism p @x (Y. the natural tranformation p @x [a, -1 
is called the generalized Yoneda functor. 

(1.32) Dually, assume that B is a subcategory of a left complete additive 
category B. Then there exists a functor 

Y’ : B @x A”pp + (A, B), B @x A r) z[-, B] a [-, A], 

which assigns to a morphism/3 @x 01 the natural transformation x[ -, fl] * [ -, a] 

1.33 THEOREM. Let A and B be additive categories. Assume that B is right 
complete and has small dense subcategory B.12 Then the Yoneda functor 

is dense ([25] 1.3), i.e. each functor t : A + B is canonically a direct limit of 
generalized representable functors B & [A, -I. Furthermore it follows imme- 
diately from [25] 1.11 and [251 1.17 that any subcategory of (A, B) is dense 
whose objects are the functors B & [A, -1 and whose morphisms include the 
natural transformations B & [a, -I, where A, a and B, fl run through A”pp 
and B respectively. 

(1.34) Dually assume that B is left complete and has a small codense subcategory 
B. Then the functor 

Y’ : B oz A*pP-+ (A, B), B @x A wL[-, B] * [-, A], 

la The smallness of fi is not essential. Using different methods one can show 
that for any dense functor J : B --f B the Yoneda functor B & A”” + (A, B), 
B @Z A -+ JB & [A, -I, is dense (cf. 2.12). 
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is codense, i.e. each functor t : A -+ B is canonically an inaerse limit of core- 
presentable functors =[-, B] * [-, A]. Furthermore, any subcategory of (A, B) 
is codense whose objects are the functors &, B] * [- , A] and whose morphisms 
include the natural transformations J-, p] * [-, a], where A, CY and 8, p run 
through AoPp and B respectively. 

Proof. We give a proof for 1.33; the statement 1.34 then follows by duality. 
Let J : B -+ B denote the dense inclusion. According to [25] 1.15 and 

[25] 1.17 the functor S : B 4 (&pp, Ab.Gr.), B - [J-, B], has a left 
adjoint T : (&P, Ab.Gr.) -+ B which is a retraction. By [25] 2.22 and 
[25] 2.1 the induced functors (A, S) : (A, B) -+ (A, (&PP, Ab.Gr.)), 
t - S * t, and (A, T) : (A, (g”Pp, Ab.Gr.)) -+ (A, B), r - T. r, are also 
adjoint and (A, T) is a left retraction. Since the functor 

R : (&PP Oz A, Ab.Gr.) + (A, @PP, Ab.Gr.)), 

VW4 @I = F@ Oz 4 is an equivalence, (A, T) * R is left adjoint to 
R-1 . (A, S) and (A, T) * R is a retraction. By [25] 1 .lO and [25] 1.17 the 
Yoneda embedding (%‘P oz A)Opp -+ (&Pp & A, Ab.Gr.), B gz A - 
[B & A, -1, is dense. Therefore by [25] 1.13 and [251 1.17 the same holds 
for the composite of B & A w = (%‘P & A)0pp -+ (&Pp @Jz A, Ab.Gr.) 
and (A, T) . R : (%p @, A, Ab.Gr.) --f (A, B). Hence to prove 1.33 it is 
enough to show that this composite is equivalent to Y : B @a AOPP -+ (A, B), 
B~z~++B~z[~, -1. T o establish this we need some preparation 
(1.35 - 1.38). 

(1.35) For each abelian group G and object B E B the functors 
[G, [J-, B]] : %k’pp--+ Ab.Gr. and [J-, Z[G, B]] : &‘Pp + Ab.Gr. are 
equivalent by 1.27 (cf. 1.26 3)). Hence the diagram 

(1.36) (@PP, Ab.Gr.) @9p*cG*-‘) F (&PP, Ab.Gr.) 

S 

I 

S 

B 
zW.-I T 

l B 

is commutative up to an equivalence. The left adjoints of the functors S, 

@-? F, -1) and zCG, -1 are T, (BPP, GO) (cf. [2512.22) and az G : B -+ 
B respectively [for the latter combine 1.14 (1.12) and 1.27 (1.26 2)]. Since 
the diagram 1.36 is commutative up to an equivalence, it follows that 

(1.37) T.(&‘p,G@)s BzG.T. 
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Since T : (&‘p, Ab.Gr.) + B is left adjoint to S, the groups [T[-, I?], B] 
and [[-, B], SB] = [[-, B], [I-, B]] s [JB, B] are equivalent for alJ 
B E B, B E B. Therefore it follows from the Yoneda lemma that there is an 
equivalence between B and T[-, B] which is natural in B. By 1.37 we obtain 

(1.38) {T . @‘p, G@)}[--, B] = T(G@ * [-, B]} 

E(@~G.T)[-,B]&I@~G. 

The value of R : (&PP oz A, Ab.Gr.) -+ (A, (%P, Ab.Gr.)) at [B c& A, -1 
is the functor A -+ (&PP, Ab.Gr.), A’ - [A, A’] @ [-, 81. By 1.38 (with 
G = [A, A’]) the functor T : (%p, Ab.Gr.) + B assigns to [A, A’] @ [-, B] 
an object which is equivalent to 3 @ z[A, A’]. Hence we obtain 

(1.39) {(A, T) * RIB Oz A, -11 (A’) ES B Oz [A, -@I 

Let 01 : A’ + A” be a morphism. Then one readily checks that the morphisms 

{(A, T) * RIB Oz A, -I> (4 and 

B & [A, IX] : B & [A, A’] + B & [A, A”] 

and the two equivalences (1.39) for A’ and A” respectively form a commutative 
diagram in an obvious way. This proves that the image of [B oz A, -1 under 
(A, T) * R : {%P & A, Ab.Gr.} + (A, B) is equivalent to the functor 
BB~[A~ -I :A-+B.w e 1 eave it to the reader to check that this equivalence 
is natural in 3 &A. Thus the composite of the Yoneda embedding 

B oz Aopp = (%‘g & A)O” ---f (B”Pp oz A, Ab.Gr.) 

and (A, T) * R : (&‘P & A, Ab.Gr.) + (A, B) is equivalent to 

Y:~@,A”pp-+(A,B),&&A-+~&[A,-]. 

This proves that Y is dense. 
Q.E.D. 

1.40 THEOREM. Let A and B be additive categories. Assume that B is 
right complete and has a dense gaerator U (cf. [251 1.19). Then the functor 
(cf. 1.31) 

Y : {U} & A”** --t (A, B), U Oz A - U & [A, -I, 

is dense; i.e. each functor t : A + B is canonically a direct limit of generalized 
representable functors U Qz [A, -1, A E AO**. Furthermore, it follows imme- 
diately from [251 1.11 and [2.5l 1.17 that any subcategory of (A, B) is &me 
whose objects are the fun&on U & [A, -1 and whose morphisms include the 
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natural traruformations y oz [a, -I, where A, cx and y run through A”“P and 
(U} respectively. 

(1.41) Dually, assume that B is left complete and has a codense cogenerator 
Q (cf. [25] 1.19). Then the functor 

Y’ : (Q} Oz Aopp - (A, W, Q Oz A - A-, 81. L-3 4 

is codense, i.e., each functor t : A-+ B is canonically an inverse limit of 
corepresentable functors z[-, Q] . [-, A]. Furthermore, any subcategory of 
(A, B) is codense whose objects are the functors z[-, Q] * [-, A] and whose 
morphisms include the natural transformations z[-, r][-, ~1, where A, 01 
and y run through AOpp and {Q} respectively. 

Proof. The statements 1.40 and 1.41 are actually special cases of 1.33 and 
1.34 respectively. We show this for 1.40 and 1.33. For 1.41 and 1.34 this 
follows by duality. 

Let {OF U} denote the full subcategory of B whose objects are U, U @ U, 
U@ U@ u, . . . . In the proof of [25] 1.23 (ii)-+(i) it was shown that 
the inclusion {OF U} -+ B is dense. Hence by 1.33 the Yoneda functor 
Yo : (OF U} Oz Aopp-+ (A, B), (OL vi) Oz A - (OL ui) Oz [A, -1, 
is dense (Vi = U). Let I : {U> -+ {OF U> be the inclusion. Then it follows 
readily from the definition of the tensor product of categories (1.31) that the 
functors I & Aopp : {U} & A- -+ {OF U} & A”pp and 

where A, = A, establish an equivalence between {U} & A”pp and 
{OF U} Oz Aopp. The Yoneda functor Y : {U} & A*P” -+ (A, B) is the 
composite of Y, with the equivalence I oz A”pp. Since Y,, is dense, the same 
holds for Y. 

Q.E.D. 

2. THE BASIC PROPERTIES OF GENERALIZED REPRESENTABLE FUNCTOR~ 

The essential theorems of this section have been stated in the introduction 
(16) - (22). 

2.1 ASSUMPTIONS. In this section, we adopt some notations and make 
certain assumptions which are collected here for convenience. 

(2.2) A category denoted by A will be assumed to be cl-enriched (3.7), 
where /1 is a ring. 
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(2.3) A category denoted by B is assumed to have cokernels. 

(2.4) A pair of categories denoted by A and B will be assumed to satisfy 
one of the following conditions: 

(i) The category B has infinite sums. Then the symbol A denotes any 
object of A. 

(ii) For each pair X, Y E A the A-module ,,[X, Y] is finitely presentable. 
Then the symbol A denotes any object of A. The only exception is 2.8 
where A is restricted because (ii) is replaced by the weaker condition: 

(ii)’ There exists an object A E A for which the functor n[A, -1 : A + AM 
factors through the inclusion J : FP(,M) -+ dM (cf. 1.1) 

The duals of the assumptions 2.2 - 2.4 are denoted by 2.2* - 2.4*. 

(2.5) Let A and B be additive categories satisfying 2.2 - 2.4. Then by 1.9 
and 1.14 there exists for each (B, p) E B,, a generalized representable functor 

or 
(4 P) @,I [A, -1 : A -+ =‘(,JW --) B 

(&P) 0~ [A, -1: A-+.M+B 
(2.6) Dually, if A and B satisfy 2.2* - 2.4*, then by 1.26 and 1.27 there 

exists for each (p, B) E nB a generalized corepresentable functor 

AC-, (P, WI . A[--, 4 : A--t B 

(2.7) Since A is A-enriched, there exists by (3.8e) for each A E A ring 
homomorphisms uA : /W’- [A, A] and We : n + [A, A] with the property 

nb) = ~a&), h w ere /I3 X E /PP. Thus the values t/l of a functor t : A -+ B 
together with the ring homomorphisms &P+ [A, A] -+ [tA, tA] and 
II + [A, A] + [t/l, tA] are both right and left /t-objects. Since the values 
of these composed ring homomorphisms agree at each X, where A EJ h E A*PP, 
we denote them both by 7”. 

2.8 LEMMA (Yoneai~).~~ Let A and B be additive categories satisfyi~ 2.2, 
2.3 and either 2.4(i) or 2.4(ii)‘. Let t : A + B be a fun&or. Then for each 
(B, p) E Bn the homomorphism 

(2.9) Q((B, PI, 4 4 : [(B, P) 0~ M -1, tl - I?, t4 

I* For small categories A and d = Z this was first observed by Freyd [#I, p. 18. 
Using different methods he proved that there exists an isomorphism between the 

groups [B Oz 14 -1, tl and B, t-41. 

481/8/I-8 
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which ass&s to + : (B, p) &, [A, -1 - t the composed morphism 

B = (B, p) 0” A %+. (B, p) @,, [A, A] ‘(A! tA, 

where fA(l) = idA , establishs a l-l correspondence between the natural 
transformations from (B, p) @* [A, -1 to t and the A-morphisms from (B, p) 
to (tA, ~~).l~ 

(2.10)13 Dually, assume that A and B satisfy 2.2*, 2.3* and either 2.4(i)* or 
2.4(ii)‘*. Then for each functor t : A -+ B and (p, B) E *B there exists an 
isomorphism 

P, AC-, (P, 41 * A-, All E &A t W, (P, WI 

simikzr to 2.9. 

Proof. We prove 2.8 if A and B satisfy 2.2, 2.3 and 2Jii)‘. Then by 2.5 
(B, p) 84 [A, -1 is the composition A + FP(,M) + B. The proof for the 
other case is similar but simpler. The statement 2.10 then follows by duality. 
By 1.12 the functor (B, p) @A :FP(AM) + B is left adjoint to n[B,-] :B--+,,M 
(cf. 1.7) relative to the inclusion J : FP(,M) + nM (cf. [251 2.2). Then by 
[25J 2.22 and [25l 2.1 th e induced functor (A, (B, p) &) : (A, FP(,M)) + 
(A, B) is left adjoint to (A, n[B, -I) : (A, B) -+ (A, nM) relative to 
(A, J) : (A, FP(,M)) + (A, AM). Hence for n[A, -1 E (A, FP(,M)) and 
t E (A, B) there exists an isomorphism 

G-11) W, P) 6% I3 -1, tl z MA -1, APB, -1 . tl = Ld4 -1, ,I[& t -11. 

Let 5 E JA, x] and f6 : .JI + n[A, X] be the cl-homomorphism 1 - 6. 
From 1.21 and the proof of [25l 2.22 one can easily deduce that the isomor- 
phism 2.11 assigns to # : (B, p) @,[A, -I-+ t the natural transformation 
I,V : “[A, -1 -+n[B, t-1, where #(X)(& is the composed morphism 

B =(B,P)@A~ IdaAft* P, P) 0~ [A, xl “cx! tX. Thus the Yoneda map 
3.18 (for the functor ,,[B, t-1) Y(A) : h[A, -1, n[B, t-l] + A[B, tA] 
assigns to +’ : n[A, -I-+ n[B, t-] the composite morphism 

B = (B, p) & A ld+ (B, p) @,, [A, A] 9(A! tA. 

I4 Actually the Yoneda Lemma 2.8 is also valid, if A is not A-enriched. It suffices 
that for the object A of A the functor [A, -1 can be decomposed into U * n[A, -1: 
A 3 AM + Ab.Gr. (cf. the remark after the proof of 3.17). 
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The composition of Y(A) with the isomorphism 2.11 therefore yields 

SZ((B, p), A, t) (cf. 2.9). F rom the Yoneda lemma 3.17 it follows that 
SZ((B, p), A, t) establishes a l-l correspondence between the natural trans- 
formation from (B, p) @A [A, -1 to t and the morphisms f : B + tA with 
the property hf = fh, h E A. According to 1.7 hf is the composition 
f. p(h) : B + B -+ tA. By 3.21 fh is equal to n[B, k,(h)] (f) and since 
tuA(h) = T”(X) (cf. 2.7), we obtain $I = T,#) *f. Thus the morphisms 
f : B + tA with the property Xf = fh, h E /.I, are the (I-morphisms from 
(B, p) to (tA, ~~4). This proves the Yoneda lemma 2.8 for generalized repre- 
sentable functors. Q.E.D. 

2.12 THEOREM. Let A and B be additiwe categories satisfying 2.2 - 2.4 and 
J : C + B,, an additiwe functor which is dense (cf. [2.5’J 1.3, for instance 
J = id,*). Then the generalized Yoneak functor 

Y:C@zA”pp+(A,B),C@ZA--+ JC&[A,-1, 

is dense (for C & A”pp cf. 1.31), i.e. each functor t : A- B is canonically a 
direct limit of representable functors JC @,, [A, -I, where C E C and A E A. 
Furthermore it follows from [251 1.11 and [251 1.17 that a subcategory of (A, B) 
is dense, provided its objects are the functors JC @A [A, -1 and its morphisms 
include the natural transformations Jy @A [OL, -I, where A, (Y and C, y run 
through A- and C respectively. In particular sf A and C are small, then (A, B) 
has a small dense subcategory. 

(2.13) Dually, assume that A and B satisfy 2.2* - 2.4* and that J : C + nB 
is a coaknse functor (e.g. J = id@). Then the functor 

Y’ : C & A--+ (A, B), C & A - A[-, JC] . A[-, A], 

is codense, i.e. each functor is canonically an inverse limit of corepresentable 
functors n[-, JC] . *[-, A]. Furthermore any subcategory of (A, B) is codense 
whose objects are the functors n[-, JC’I . A[ -, A] and whose morphisms include 
the natural transformations n[ -, Jy] * n[-, a], where A, LY and C, y run 

through A”PP and C respectively. In particular sf A and C are small, then 
(A, B) has a small codense subcategory. 

Proof. We prove 2.12. The assertion 2.13 then follows by duality. To 
establish that Y is dense we need some preparation. 

Since A is /l-enriched (3.7), there is a functor F : A-+ AA (cf. 3.8). By 
3.11 and 3.12 every functor t : A + B can be canonically decomposed into 

F tLl V 
A - A,, ---+ BA -+ B. (For the notation, see 3.11, 3.12. The &structure 

on tA is given by kpn: [A, A] L [tA, tA], where (A, 0) = FA.) The 
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composition tll *F : A + AA -+ B,, is called the canonical lifting of t. Call 
a functor s : A + BA strong if it is the canonical lifting of a functor A --f B. 
The full subcategory of (A, BJ generated by the strong functors is denoted 
by Str(A, BJ. From 3.11 and 3.14 it follows that the forgetful functor 

V : B,, -+ B induces an isomorphism Str(A, B,J 2 (A, B), s - P * s. 
Thus the Yoneda functor Y : C @x A”P9--+ (A, B), C oz A - jC an [A, -1 
gives rise to a composite 

(2.14) Str(A, BJ % (A, B)-+(tYp Oz A, Ab.Gr.), tAF - t - [Y-, t]. 

To prove the density of Y, it suffices by [25] 1.7,l. 17 to show that the compo- 
site 2.14 is full and faithful. 

Since j : C -+ BA is dense, the functor B,, -P (C”99, Ab.Gr.), (B, p) - 
[I-, (B, p)] is full and faithful. Thus the induced functor 

Q : Str(A, BJ + (A, (C”99, Ab.Gr.)), s - (A - [j-, d]), 

is also full and faithful. Recall that the functor R : (C”9p gz A, Ab.Gr.) --+ 
(A, (CYp, Ab.Gr.)), where {R(E)(A)} (C) = E(C @x A), is an equivalence 
(cf. proof of 1.33). Hence the composite 

R-l * Q : &(A, Bn) + (A, (Pp, Ab.Gr.)) -+ (Cop9 & A, Ab.Gr.) 

is full and faithful. 
We now are in a position to show that the composite functors 2.14 and 

R-l . Q are equivalent. This clearly implies that 2.14 is full and faithful. 
Hence Y is dense. 

Let t,, *F : A -+ BA be the canonical lifting of a functor t. By definition 
of R and Q the value of the functor R-l * Q(tli -F) : co9P oz A + Ab.Gr. 
at C @x A is [JC, (tA, TV)], where (tA, TV) = (tll SF) A cf. 2.7. On the 
other hand the value of the functor [Y-, t] E (C04)P @x A, Ab.Gr.) at 
C @x A is [JC @,i [A, -1, t] (cf. 2.14). Since there is an isomorphism 
[/C & [A, -I, t] g [JC, (tA, TV)], which is natural in C and A and t, 
the composite functors 2.14 and R-l * Q are equivalent (cf. 2.9). 

Q.E.D. 

If BA does not admit a dense functor j : C -+ B,i with a small domain, 
then the canonical index category in the representation of a functor t : A --+ B 
as direct limit of generalized representable functors is very large. The 
following theorem shows that in this case there is a smaller index category. 
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2.15 THEOREM.~~ Let A and B be additive categories satisfying 2.2 - 2.4. 
Then for each functor t : A + B, each obiect X EA and each morphism 
.$:X-+X 

(2.16) tx = li,m (tda, 7e,) On [rx, x] 
c&M(A) 

and 

hold (for M(A) and M(A)* cf. [251 2.19). 
Dually, assume that A and B satisfy 2.2* - 2.4*. Then for each functor 

t : A + B, each object X E A and each morphism 5 : X + X’ 

(2.17) tX = lim 
.cM;Ab* 

A[,&% d4 (7~ , tm)l 

are valid. 

Proof. We give an outline for the first half of 2.16. From this the second 
part can be readily deduced. The assertion (2.17) then follows by duality. 

From 1.12 it follows for each YEA that the functors G:Mm(A)+Ab.Gr., 
a: r\rt [(tda, 76,) @A [rcy, X], Y], and G’ : Mm(A) -+ Ab.Gr., a - L[rcx, x], 
n[tdor, Y]], are equivalent. There is a lemma similar to [25j 2.20 for 
contravariant functors. (One only has to replace N in [251 2.20 by N”PP.) 
Thereforel? G’ =[,J-, X], ,Jt-, Y]] is valid. Since n[t-, Y] :AoPP+~M 

is the canonical lifting of [t-, Y] : A*pp+Ab.Gr. (cf. 3.11 and 3.12), it 
follows from 3.14 that [J-, x], Jt-, Y]] E [[-, x], [t-, Y]] E [tX, Y]. 
Hence 

(2.18) li,m G G li,m G’ G [tX, Y] 

holds. By [251 2.10 and [251 2.1 lim G is isomorphic to the group of natural c 
transformations from Mm(A) + B, a .- (tda, T&) an [nx, x], to the constant 

I6 If d = Z, B = Ab.Gr. and A is small, then it can be shown that 2.16 is equivalent 
to the following assertion of Yoneda (cf. [26], 4.31*) 

I tY @ Hom(Y, X) = tX 
YeA 

481/8/1-8* 
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functor const( Y) : Mar(A) + B. Since this isomorphism and those in 2.18 
are natural in Y, the object tX is the direct limit of Mar(A) --f B, 
a - @da, ‘-da) @A [r% 4. Q.E.D. 

(2.19) We now sketch a useful generalization of 2.12 and 1.33. Let A and B 
be as in 2.1 and J : C -+ Bn an additive functor such that each (B, p) E BA is 
functorially a direct limit of objects JC, where C EC. This is made precise 
in 2.20. Examples are dense functors J. However density is a much stronger 
condition than 2.20; from this weaker condition we will show that each 
functor t : A -+ B is functorially a direct limit of functors of the form 
/CBA [A, -1 : A-+B, where CEC. 

(2.20) Let J : C -+ Bn b e a functor with the following properties: 

(a) For each (B, p) E Bn there is a category D(B, p) and a functor 
F(B, p) : D(B, p) -+ C such that (B, p) = lim J * F(B, p). 

(b) For each morphism j : (B, p) + (B’, p’) there is a functor 

and a natural transformation #(j): F(B, p) -+F(B’, p’) . H(F), such that 
j = 15 J+(f). If j = id, then H(f) = id and 4(f) = id. 

2.21 THEOREM.‘~ Let A and B be additive categories as in 2.1 and 
J : C + Bn an additive junctor satisfying 2.20. Then the property 2.20 cmk 
over to the junctor 

The dual statement is left to the reader. 

Proof. (Sketch). In 2.15 we showed that each functor t : A + B can be 
represented as a direct limit of functors (tdm, a,) @A [r-a, -1 : A+ B. 
Roughly speaking it therefore suffices to prove that such a functor is a direct 
limit of functors JC @A [rm, -1 : A -+ B, where C EC. 

Let (B,p) &[A,-]: [A-B be a generalized representable functor 2.5. By 
2.20 (B, p) = lim JC, is valid, where I E D(B, p). (We prefer this notation to 

(B, p) = 1,” J fF(B, p).) The following calculation based on 2.8 and [2.5l 

2.10 shows that (B, p) an [A, -1 is a direct limit of functors JC, 6& [A, -I, 
where ‘ runs through D(B, p). 

I6 The proof that 2.21 is actually a generalization of 2.12 requires a rather elaborate 
cofinality argument. 
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(2.22) [[B, p] On [A, --I, t] g [(B, P), (t4 7~11 E Pi,m JC, , (t4 7411 

E +-&KJ,, (t4 T*)] e li$TC, OA [A, -1, tl 

(= [lifn .r‘ On w, -1,m 

(2.23) For a functor t : A + B define a category D(t) as follows: The 
objects are pairs (c, a), where a is an object of Mar(A) (i.e., a morphism of A, 
cf. [251,2.19) and I an object of D(tda, ~a,). Let a : idd. + id, be a morphism 
in A. A morphism (6, a) + (K, id& in D(t) is a morphism f : C, + C, in C 
such that the diagram 

JC, -!!f+ li,m JC, = (tda, 7~) 

Jf 1 II 

JC.‘, --% lir+n JC, = (tda, TQ) 

is commutative, where u, and I(, are the canonical morphisrns into the direct 
limit. Similarly a morphism (I, a) --t (Y, id,) is a morphism g : C, + C,, 
such that w” . Jg = ta * u, , where wV : JC, -+ (tra, or,) is the canonical mor- 
phism into the direct limit. These are the only morphisms in D(t). Composi- 
tion is defined in the obvious way. The category D(t) has all properties of a 
cofibre category except for one. [The base would be Mar(A), cf. [25J 2.19, 
and the cofibre at a E Mm(A) would be D(tda, Ed,).] 

Define F(t) : D(t) + C @x A0”” to be the functor (c, a) ,- C, @x ra. With 
the notation as before (2.23) the value of F(t) at a morphism (6, a) + (K, id& 
or (I, a) + (Y, idr,) is f Oz a or g @x id respectively. For each (t, a) E D(t) 
there is a composite 

(2.24) % @* id JC, O,, [ra, -1 ------+ (tda, T&) @A [ra, -1 -% t 

where u, is the canonical morphism into the direct limit and w, is the natural 
tranformation which corresponds to ta under the Yoneda isomorphism 
[(tda, Ed @A Pa, -1, tl LX [(td a, T&), (tra, ~1.11, cf. 2.8. Using222 and 2.16 
it is not difficult to check that t together with the natural transformations 2.24 
is the direct limit of 2 *F(t) : D(t) + (A, B), (I, a) * JC, @I~ [ra, -I. We 
leave it to the reader to show that this representation of t as a direct limit is 
functorial in t, i.e., that 2.20(b) is valid. Q.E.D. 

2.25 Remark. Let A’ be the ring A made commutative. As mentioned in 
3.10, the canonical projection p : II +d’ induces a l-l correspondence 
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between the A-enrichments of A and the /l’-enrichments of A. Further- 
more the functors (tda, ~61,) an [rcr, -1 : A --f B and 

A[-, (P, , tra)] * A[-, da] : A + B 

considered in 2.16 and 2.17 have the property that 7dcr and 7rcr factor through 

P OPP : AoPp ---f (1’ and p : /I -+ (1’ respectively (cf. 2.7). Therefore it is not a 
restriction to assume il commutative in 2.16 and 2.17. This is in contrast to 
2.12, because the representable functors considered there do not have the 
property mentioned above. 

(2.26) For the following consequence of 2.16 assume A commutative. From 1.5 
it easily follows that 2.16 remains valid ;f t : A + B and 

(tda, ~a,) aA [rcll, -1 : A + B 

are replaced by their canonical liftings tA *F* : A + Bn and 

(@da, Td,) On [f-a, -IL . FA : A + BA 

(cf. 3.11). A similar remark holds for 2.17. However this presentation of tA -F” 
as a direct limit of funct?rs ((tda, 7da ) @,, [m, -])n . F* , 01 E A, is of little use 
in applications unless the latter are representable functors in (A, B,,). We now 
prove that this is actually the case. 

(2.27) Let B be right complete and (B, p) @,r [A, -1 : A + nM -+ B a 
representable functor, where A E A and (B, p) E Bn . (The case 2.4(ii) can be 
treated similarly.) Since /l is commutative, p : (1+ [B, B] factors through 
the inclusion I : [(B, p), (B, p)] -+ [B, B]. We denote the factorization also 
by p. Hence ((B, p), p) is an object of (Bn)d . We will show that 

((B, P>, P) On [A, -1 : A - BA 
and the canonical lifting of (B, p) @A [A, -1 : A --+ B coincide (cf. 3.11). 
From the construction of the tensor product (cf. 1.14 and 1.15 - 1.20) it 
easily follows that the diagram 

LW 
((B*PLP)8J/j 

-BA 

II -1 V 

AM 

@BP) @,n 
l B 

is commutative. Furthermore the endomorphism of V{((B, p), p) @A 1M}, 
M E nM, corresponding to X E A coincides with p(h) an id : (B, p) @A M -+ 
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(B, p) On M. By 3.11 the canonical lifting of (B, p) @A [A, -1 : A -+ B is 
given by the morphisms idOn ax(h) : (B, p) Bn[A, X] + (B, p) @,r [A, x], 
where X E A and h E (1. Using 3.1 one readily checks that ur(X) : ,JA, X] + 
JA, X] agrees with the action h(-) : n[A, X] + JA, x], 5 - X(t), of h on 
,JA, x]. Therefore we need only show that the morphisms 

p(h) OA id : (4 P> @A [A, Xl + (& P) 6% PA, Xl 

and id an X( -) : (B, p) On [A, x] --+ (B, p) an [A, X] coincide. From its 
construction (cf. 1.14 and 1.15 - 1.20), one easily deduces that the tensor 
product is bilinear. Hence p(A) On id and id On X( -) are equal, X E (1. This 

proves that ((4 P), P) On L-4 -1 : A -+ BA and ((8 PI @A [A, -IL *F,t : 
A --+ Bn agree. Q.E.D. 

APPENDIX. THE YONEDA LEMMA FOR NONSTRONG FUNCTORS t : A -+ nM 

By a A-enriched category we mean an additive category A with the follow- 
ing propertiesrr: Each horn-functor [A, -1 : A -+ Ab.Gr., A E A, factors 
through the forgetful functor U : ,M+Ab.Gr., and each morphism 
(Y : A -+ A’ induces a natural transformation ,Jol, -1 between the liftings 
J/l’, -1 and ,,[A, -1 with the property U, [a, -1 = [OL, -I. We show in 
3.8 that this is equivalent to saying that there exist functors F : A + AA and 
F’ : A + nA which, composed with the forgetful functors V : A* + A and 
V : *A --t A, yield the identity of A. Thus a functor t : A --+ B can be factored 

into AF’An41’B11&B and A%IIA”t-nBY’B, where tA and ,,t 
denote the canonically induced functors (cf. 3.11). A functor s : A + AM is 
said to be strong if s = n( U * s) * F’. If (1 is commutative, this is equivalent 
to requiring the map n[A, A] -+ [s/l, sA], 01 -+ SOI, to be a Il-homomorphism 
for each pair A, A E A. 

Let t : A + nM be an additive functor, not necessarily strong. Since 

(nM)n = AMA f 11 it o ows from the above that the values of t can be equipped 
with a /l-A bimodule structure. 

The Yoneda lemma (3.17) f or a A-enriched category A then states that the 
map Y(A) : [,[A, -I, t] + tA, # - y%(A) id,, establishes a l-l correspond- 
ence between the natural transformations # from ,JA, -1 to t and the ele- 
ments a E tA with the property ha = ah, h E A. The map Y(A) is an isomor- 
phism iff t is strong (3.23). Each functor t : A -+ AM has a maximal strong 
subfunctor Yt which assigns to A E A the submodule {a E tA 1 ha = d, h E A) 
of tA. The functor G : (A, hM) + (A, Ab.Gr.), t - U * Yt is right adjoint 

I7 This terminology is due to Kelly (unpublished, cf. 3.8b) and 3.8~)). 
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to (A, Ab.Gr.) --+ (A, nM), s - lis .F’. Furthermore G is a right retraction 
(3.24). 

3.1 LEMMA (Eilenberg). Let A be a ring and A an additive category. The 
right A-structures on an object A E A (i.e. the ring homomorphisms AOPP + [A, A] 
cf. 1.2) are in l-l correspondence to thefuctorizutions of [A, -1 : A + Ab.Gr. 
through U : *M + Ab.Gr. Dually theye exists a l-l correspondence between 
the left A-structures on A E A and the factorizations of [-, A] : A + Ab.Gr. 
through U. 

Proof. Since this lemma is well known, we merely give an outline of the 
first half. The second half follows by duality. 

Let pA : (10~~ + [A, A], A E A, be a ring homomorphism and let X E A. 
We define the left A-module structure, corresponding to pA , on the group 

[A, xl by 

(3.2) w = 5 - P.& 

where h E A18 and 5 E [A, XJ The group [A, x] equipped with this A-module 
structure is denoted by n[A, x]. One easily checks that n[A, -1 is a functor 
from A to JH with the property [A, -1 = U * n[A, -I. 

(3.3) To establish the converse, we define for a lifting n[A, -1 : A --t nM 
of [A, -I, A E A, 

(3.4) ~~(4 = WA. 

A morphism 5 : A -t X induces a A-homomorphism n[A, fl : ,,[A, A] -+ 
n[A, x]; hence we obtain for each X E A 

(3.5) 46) = &[A, Cl id,J = AM 51 WA = f * p&9. 

Using this, one readily checks that p,, : AOPP -+ [A, A] (cf. 3.4) is a ring 
homomorphism. 

The processes 3.2 and 3.3 obviously yield the l-l correspondence stated 
in 3.1. 

3.6 DEFINITION. Let A and r be rings and A an additive category. The 
objects of the category rAA are triples (?T, A, p) consisting of an object A E A 
and ring homomorphisms 71: P-+ [A, A] and p : AO*P --t [A, A] with the 
property p(X) * T(Y) = m(y) * p(X), where h E A, y E r. A morphism 
(?T, A, p) + (n’, A’, p’) in rAA is a morphism OL : A + A’ with the properties 
(r . p(X) = p’(X) * 01 and OL * 4~) = T/(Y) . a, where h E AQPP, y E r. 

18 Throughout this paper we write h E A instead of A 3 A E Aam if it does not 
give rise to misunderstanding. 
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3.7 DEFINITION. Let II be Q ring. An additive category A is said to be 
A-enrichedifit has theproperty 38(b). S ometimes we also say that A is equipped 
with a A-structure. 

3.8 THEOREM. Let A be an additive category and A a ring. The following 
are equivalent: 

(a) There exists a functor F : A + A,, which, composed with V : A* + A, 
yields the identity of A. 

(b) For each functor [A, -1 : A -+ Ab.Gr., A E A, there exists a decomposi- 
tion U * n[A, -1 : A -+ *M -+ Ab.Gr., and each morphism 01: A + A’ 
induces a natural transformation n[or, -1 : ,JA’, -I--+ n[A, -1 tihich, com- 
posed with U, yieIa3 [01, -I. 

(c) For euchfunctor [-, A] : A + Ab.Gr., A E A, there exists a decomposi- 
tion U * *[-, A] : A + AM -+ Ab.Gr. and each morphism 01: A + A’ 
induces a natural transformation n[-, a] : ,,[-, A] + n[-, A’] with the 
property u * A[-, CX] = [-, a]. 

(d) There exists a functor F : A + dA which, composed with the forgetful 
functor V : nA -+ A, yields the identity of A. 

(e) There exists a functor F” : A + dAn with the following properties: 

(1) The composition V SF” : A + AAA + A is the identity of A (V denores 
the forgetful functor *AA + A). 

(2) Let F”A = (rr, A, p). Then the images of r : A -+ [A, A] and 
p : flopp + [A, A] are commutative rings and they coincide, i.e. v(h) = p(h) for 
A 3 h E AOPP. 

Proof. In view of 1.4 the proof of (a) t) (b) is dual to that of (c) +-+ (d). 
The implications (e)-+(a) and (e)-+(d) are trivial. Moreover (b) and (c) 
are equivalent because they both essentially assert that the horn-functor 
[-, -1 : Aop” X A -+ Ab.Gr. factors through U : AM + Ab.Gr. Thus we 
need only show (a) -+ (b) --+ (e). 

(a) --+ (b): Let A E A. Then FA = (A, Us) holds, where uA is a ring homo- 
morphism A”p*+ [A, A]. By 3.1 a, gives rise to a decomposition of 
[A, -1 : A -+ Ab.Gr. into U * n[A, -1 : A -+ AM + Ab.Gr. According to 
3.2 an element h E A acts on f E ,.JA, x] by composing f with uA(h). Since F 
is a functor, each morphism ~1 : A + A’ is also a A-morphism (A, Us) + 
(A’, uA*). Therefore OL * aA = aA * 01 holds for all h E A. Using this and 
3.2, one easily checks that [a, -1 is a natural transformation n[A’, -1 +A[A, -1. 

(b) --+ (e) Let A and X be objects of A. By 3.1 and 3.5 the lifting n[A, -1 
of [A, -1 gives rise to a ring homomorphism pA : AOp* -+ [A, A] and an 
element h E A acts on .$ E *[A, x] by composing e with pd(A). Since each 
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OL : A -+ A’ induces a natural transformation ,.,[a, -1 : JA’, -I--+ ,,[A, -I, 
we obtain for 5 E n[A’, X] and h E A 

Let X = A = A’, [ = id, and a: = pA(p), where p E A*r’P. Then by 3.9 
the image of pa : /.P’p -+ [A, A] is a commutative ring. Therefore pa defines 
also a ring homomorphism A + [A, A], h - pa(h), which we denote by nA . 
Thus we define F”A = (TV , A, pa) and using 3.9 one readily verifies that F” 
is a functor from A to nA,l with the properties stated in 3.8(e). 

3.10 Remark. The property 3.8(e) of a A- enriched category shows that it 
would not be an essential restriction to assume A commutative. For let A’ be the 
ring A made commutative and p : A + A’ the canonical projection. Then p 
establishes in an obvious way a 1-l correspondence between the A’-structures 
(3.7) on A and the A-structures on A. But (A, n,M) is in general only a 
subcategory of (A, nM). Since we can establish the Yoneda Lemma (3.17) for 
all functors t : A -+ nM, we would restrict 3.17 if we only consider commutative 
rings A. In view of this we did not assume A commutative in 3.8. 

The following is an immediate consequence of 3.8: 

3.11 COROLLARY. Let A be a A-enriched category and t : A -+ B a functor. 
Denote by ,$,, : *AA -+ nB, , tn : AA -+ Bn and .t : nA -+ *B the canonically 
induced functors (e.g. t,(A, p) = (A, t(A, A) * p), where t(A, A) : [A, A] ---f 
PA, 4, a w ta). Then there exists a commutative diagram 

(31.2) 

where V denotes the forgetful furactors and F’, F and F” are as in 3.8. 
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3.13 DEFINITION. Let A be a A-enriched category. A functor t : A + *M 
is called strong if it agrees with canonical lifting A( U * t) * F’ of U * t : A + 
Ab.Gr. (cf. 3.11). 

The canonical projection p : A + A’ (cf. 3.10) induces an embedding 
Z:.lM + AM which is one-one on objects. Then it readily followsfiom 3.8(e) 
and 3.11 that a strong functor t : A -+ nM factors through I. Furthermore one 
easily checks that the factorization t’ : A -+ ,.,,M is a strong functor in the sense 
of Linton [Z7] p. 323, i.e. for each pair A, A E A, the map n,[A, A] + [t/A, t’A], 
OL -. t’a, is a A’-homomorphism (Since A’ is commutative, [t’A, t’A] can be 
viewed as a A’-module). Conversely, any functor s : A -+ JM with this 
property induces a strong functor Z * s : A + nM. Instances of strong 
functors are the horn-functors n[A, -1 : A -+ nM, A E A. 

3.14 THEOREM. Let A be a ring and A a A-enriched category and t, 
t : A + B functors. Then 3.12 gives rise to a commutative diagram 

(3.15) [/$, - F”, ,,iA . F”] - [tA SF, tA -F-j 

1 \ Iv 

[J ‘F’, J*F’] -% 14 t7 

in which all maps are isomorphisms. 

Proof. We show that v (3.15) is an isomorphism. The proof for the other 
maps in 3.15 is similar. Since the forgetful functor V : Bn ---t B is faithful, v 
is injective. To prove that v is surjective, we show that each natural transfor- 
mation # : t + i is also a natural transformation tA *F + fA *F. For this 
we need only verify that for each A E A the morphism #(A) : tA + iA 
is compatible with the canonical A-structures on tA and ZA, in other words 
that $(A) is a morphism t,, . FA + iA . FA. By 3.8(a) FA is equal to (A, uA), 
where a, is a ring homomorphism AOpP + [A, A]. By 3.1, 3.5 and 3.11, an 
element X E A acts on #(A) E [tA, fA] by composing #(A) with tu,&), i.e. 

W(A)) = YV) * tuA4. S ince u,(h) is a morphism A + A, it follows from 
the naturality of # that 

$(A) . tu&) = iuJh) - $(A) 

Thus #(A) is a morphism t, * FA + fh . FA. 
Q.E.D. 

3.16 COROLLARY. (Yoneda lemma for strong functors, cf. Linton [17] 
Theorem 3.3) Let A be a ring, A a A-enriched category and t : A + nM a 
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strong functor. Then for each A E A the group h[A, -I, t] can be equipped with 
a left A-module structure and the Yoneda assignment 

Y(A) : [,[A, -I, t] + tA, # - #(A) id,, 

is an isomorphism of A-modules. 

Proof. According to the definition of strong (cf. 3.10) t = A( U * t) * F 
holds. The map UY(A) is obviously the composition of [,,[A, -1, n( U. t) SF’] -+ 
[[A, -1, u -4, # - 44 with the Yoneda isomorphism [[A, -I, U . t] c 
UtA. Since n[A, -1 = A( U . n[A, -I) *F’ it follows from 3.14 (with B = 
Ab.Gr.) that # - Uz,b is an isomorphism. Thus the left A-module structure 
on U * tA induces a canonical left A-module structure on [,,[A, -I, t] and 
Y(A) is a A-isomorphism. 

In 3.23 we will prove the converse of 3.16, i.e. any functor t : A -+ ,rM 
is strong for which the Yoneda maps Y(A), A E A, are isomorphisms. For A 
commutative this was first observed by Linton [I7], theorem 3.12. However, 
an additive functor t : A -+ AM is in general not strong, even if A is com- 
mutative. For instance let 7~ : &‘a + [A, A], A E A, be a ring homomorphism 
which is different from the canonical one given by 3.7 and 3.1. Then by 3.1 
r induces a lifting n[A, -I’ : A + nM of [A, -1 : A -+ Ab.Gr. which does 
not agree with n[A, -1: A + nM (cf. 3.7 and 3.8(b)). Since ,JA, -1 is strong 
and U * n[A, -1 = U * n[A, -I’ holds, the functor n[A, -1’ is not strong. 

3.17 LEMMA (Yoneda) (for nonstrong functors). Let A be a ring and A a 
A-enriched category (3.7). By 3.11 (with B = nM) there exists for each additiwe 
functor t : A -+ AM a canonical &composition into V * tll *F : A -+ Ah -+ 
nMA + ,,M. Thus, for each A E A, tA can be equipped with a A-A bimodule 
structure. 

Then [*[A, -I, t] is a left A-module and the Yoneda assignment 

(3.18) Y(A) : I&% -1, tl --+ t4 # - #(A) id,, 

is a A-homowphism which maps L[A, -I, t] isomorphically on the submodule 
of tA consisting of the elements a E tA with the property l\p = ah, h E A. 

Proof. The group [,[A, -I, t] can be equipped with a left A-module 
structure as follows: Let y5 : n[A, -1 -+ t be a natural transformation and 
~EA. Defineh#atXEAas 

(3.19) nL% xl + t-F I - vW)(W. 

We have to show that ~(XI,!I) = (~1. X) $, ~1 E A. According to 3.1 and 3.5 the 
lifting n[A, -1 of [A, -1 gives rise to a ring homomorphisma, : A”p~+ [A, A], 
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and an element h E II acts on f E ,JA, x] by composing 6 with uA(h). In 3.9 
let LX = U,,(P), where TV E II. Then it follows from 3.9 that 

(3.24 /-4w = 5 * 0;1(4 * ~A(l-4 = E * U”(P) * uk9 = 440 

From this one readily deduces that p(X+) = (d) #. The other properties of 
a A-module structure are evident. Hence by 3.19 a left A-module structure is 
defined on L[A, -I, t]. Furthermore it follows easily from 3.19 that the 
Yoneda map Y(A) (3.18) is a (i-homomorphism. We now show that the ele- 
ments a E im Y(A) have the property Xa = ah, h E d. According to 3.11 the 
right n-module structure on tA is given by the composite (lOPP -+ [A, A] -+ 
[tA, tA], h - tuA(X). Hence we have 

(3.21) ah = tu,(h)(u) 

for each a E ~4. Since 4 : ,,[A, -1 --+ t is natural and h(id,) = u,,(h) . id, = 
,,[A, uA(h)] id, , it follows that 

V’(A) $1 = W(4 id,d = VW) W-L) = WI - AM ~,&Vl W 
= tu,G) - vV)(idJ = tudW’(4 ~9 = (Y(A) $1 A. 

Conversly, let a E tA be an element with the property ha = ah, h ELI. We 
prove that 

where 6 E ,,[A, x], is a natural transformation. The compatibility of & with 
morphisms X+ x is standard. Therefore we need only verify that 
&h(X) : ,,[A, x] -+ tX is a d-homomorphism. Since for /\ E A, a E tA, and 
5 E n[A, x], & = tu,(X)(u) and X(t) = 4 * u”(X) hold, we obtain 

The partially defined map tA --t [,[A, -I, t], a - $a, is left inverse to 
Y(A) : [n[A, -1, tl + tA. Hence Y(A) is injective, and the elements a E tA 
with the property Xu = a/\, h E (1, constitute a submodule of tA which is 
isomorphic to h[A, -I, t]. 

Q.E.D. 

Remurk: The Yoneda lemma 3.17 can begeneralized asfollows: The category 
A need not be A-enriched. It suflces that for’the given object A of A, the functor 
[A, -1 can be decomposed into U * n[A, -1 : A -+ nM + Ab.Gr. The com- 
posit&m /P’P + [A, A] + [tA, tA], X - tu,(h), makes tA into a A-A bimodule, 
where uA : A099 --t [A, A] is the ring homomor phism associated with n[A, -] 
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(cf. 3.1). Then the map Y(A) (3.18) establishes a I- 1 correspondence 
between [*[A, -I, t] and the set of elements a E tA with the property ha = ax, 
A E A. In general the group [d[A, -I, t] can be equipped with a left A-module 
structure only if the image of to, is a commutative ring. In this case the Yoneda 
map Y(A) is also a A-homomorphism. 

We shall make only incidental use of this generalization later. 

From 3.17 and 3.18 it follows that the image of Y(A) (cf. 3.18) is a sub- 
module of tA. This leads to the following 

3.22 DEFINITION. Let A be a ring, A a A-enriched category and t : A -+ *M 
a functor. The Yoneda part Yt : A ---f *M of t is the subfunctor which assigns to 
A E A the submodule {a E tA 1 ha = a& h E A> = im Y(A) of tA. 

(3.23) From 3.21 and 3.11 it follows easily that Yt : A+ AM is a strong 
functor and that Yt contains every strong subfunctor of t. Hence t is strong zr 
Yt = t. This implies that the Yoneda map Y(A) : [n[A, -I, t] + tA is an 
isomorphism i. t is strong. 

3.24 THEOREM. Let A be a ring and A a A-enriched category. Then the 
functor E : (A, Ab.Gr.) + (A, nM), s - ns *F’ (cf. 3.11), is left aojoint to 
G : (A, dM) + (A, Ab.Gr.), t - U * Yt. (Recall that U : ,,M + Ab.Gr. is 
the forgetful functor). Furthermore for each s E (A, Ab.Gr.) the functors 
U * Y(,s * F’) (cf. 3.11) and s coincide and the front adjunction at s is the identity 
of s. Hence G is a right retraction. 

Proof. Let t : A+ nM be a functor and A an object of A. Then by 3.17 
there exists an isomorphism between the underlying group of [,[A, -I, t] 
and U * Yt(A) E [[A, -I, U * Yt] which is natural in A and t. Hence 
E * Y* : A”pp --f (A, Ab.Gr.) ---f (A, ,,M), A - n[A, -I, is left adjoint to 
G : (A, nM) + (A, Ab.Gr.), t - U * Yt, relative to the Yoneda embedding 
Y* : A”pp ---f (A, Ab.Gr.), A -+ [A, -I, (cf. [25], 2.2). Since Y* is dense 
(cf. [25], 1.10, 1.17) and E right continuous, it follows from [25J, 2.1, 2.24 
that E is left adjoint to G. The rest of 3.24 is an immediate consequence of 
3.22 and 3.23. 

Q.E.D. 

ACKNOWLEDGMENTS 

I am indebted to Professors S. MacLane and F. W. Lawvere for their stimulation 
and criticism and to the Forschungsinstitut fiir Mathematik der E.T.H. and to the 
Deutschen Forschungsgemeinschaft for their financial support. 



REPRESENTABLE FUNCTORS WITH VALUES IN ARBITRARY CATEGORIES 129 

REFERENCE 

I. AND&, M. Derived functors in non-abelian categories. Mimeographed Notes, 
Batelle Memorial Institute, Geneva, 1966. 

2. BOURBAKI, B. “Algebre commutative,” Fast. XXVII. Hermann, Paris, 1961. 
3. EPSTEIN, D. Steenrod operations in homological algebra. Mimeographed Notes, 

University of Warwick, Coventry, 1965. 
4. FREYD, P. Functor categories and their application to relative homological algebra. 

Mimeographed Notes, University of Pennsylvania, 1962. 
5. FREYD, P. “Abelian Categories.” Harper & Row, New York, 1964. 
6. GABRIEL, P. AND ZISMAN, M. “Calculus of Fractions and Homotopy Theory.” 

Springer Verlag, New York, 1967. 
7. GABRIEL, P. AND POPESCO, N. Caract&isation des categories ab6liennes avec 

gCnCrateurs et limites inductives exactes. Camp. Rend. Acad. Sci. Paris, 258 
(1964), 4188-4190. 

8. GABRIEL, P. AND CHEVALLEY, D. CatCgories et foncteurs (to be published). 
9. GROTHENDIECK, A. Sur quelques points d’alghbre homologique. Z’Ghoku Math. /. 

9 (1957), 119-221. 
10. ISBELL, J. R. Adequate subcategories. Illinois 1. Math. 4 (1960), 541-552. 
II. ISBELL, J. R. Small adequate subcategories. Mimeographed Notes. Case Institute 

of Technology, Cleveland, 1965. 
12. ISBELL, J. R. Structure of categories. Bull. Am. Math. Sot. 72 (1966), 619-655. 
13. KAN, D. M. Adjoint functors. Trans. Am. Math. Sot. 87 (1958), 295-329. 
14. LAMBEK, J. Completions of categories. Mimeographed Notes, Mathematisches 

Forschungsinstitut der E.T.H., Ziirich, 1966. 
15. LAW~ERE, F. W. Functorial semantics of algebraic theories. Unpublished doctoral 

dissertation, Columbia University, 1963. 
16. LA~~ERE, F. W. The category of categories as a foundation for mathematics. 

In “Proceedings of the La Jolla Conference on Categorical Algebra.” Springer, 
Berlin, 1966. 

17. LINTON, F. J. Autonomous categories and duality. 1. Algebra 2 (1965), 315-349. 
18. MACLANE, S. “Homology.” Springer, Berlin, 1963. 
19. MACLANE, S. Categorical algebra. Bull. Am. Math. Sot. 71 (1965), 40-106. 
20. MITCHELL, B. “Theory of Categories.” Academic Press, New York, 1965. 
21. ULMER, F. Satelliten und derivierte Funktoren. I. Math. Zeit. 91 (1966), 216-266. 
22. ULMER, F. On Kan functor extensions (to be published). 
23. ULMER, F. Darstellung von Satelliten und derivierter Funktoren durch Ext 

(-,-) und Tensorprodukte (to be published). 
24. ULMER, F. Dichte Unterkategorien in Funktorkategorien. Mimeographed Notes, 

Mathematisches Forschungsinstitut der E.T.H., Ziirich, 1966. 
25. ULMER, F. Properties of dense and relative adjoint functors. J. Algebra 8 (1968), 

77-95. 
26. YONEDA, N. On Ext and exact sequences. J. Fuc. Sci. Tokyo 18 (1961), 507-576. 


