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A B S T R A C T  

This paper is divided into two parts. Part I discusses limitations o f  the measures of  
global uncertainty o f  Lamata and Moral and total uncertainty o f  Klir and Ramer. We 
prove several properties o f  different nonspecificity measures. The computational com- 
plexity o f  different total uncertainty measures is discussed. The need for a new measure 
of  total uncertainty is established in Part I. In Part II, we propose a set of  intuitively 
desirable axioms for a measure of  total uncertainty and then derive an expression for the 
same. Several theorems are proved about the new measure. The proposed measure is 
additive, and unlike other measures, has a unique maximum. This new measure reduces 
to Shannon's probabilistic entropy when the basic probability assignment focuses only 
on singletons. On the other hand, complete ignorance--basic assignment focusing only 
on the entire set, as a whole--reduces it to Hartley's measure o f  information. The 
computational complexity of  the proposed measure is O(N), whereas the previous 
measures are O(N 2 ). 

K E Y W O R D S :  conflict, confusion, evidential reasoning, entropy, dissonance, 
speciflcily, uncertainty 

1. I N T R O D U C T I O N  

C o n s i d e r  a s imple  e x p e r i m e n t  wi th  a s ix-faced die.  S u p p o s e  the  d ie  is 
t ho rough ly  shaken  and  p l aced  on  a t ab le  cove red  with a box and  you a re  
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asked to guess the top face of the die. To answer this question one faces a 
type of uncertainty that can be attributed to randomness present in the 
system (experiment). The best answer to this question might be to describe 
the status of the die in terms of a probability distribution over the different 
faces (if known). Uncertainty that arises due to randomness in the system 
is called probabilistic uncertainty. 

To make the system more complex, suppose an artificial vision system 
analyzes a digital image of the die and, based on the evidence gathered, 
suggests that the top face is 5 or 6 with a belief value (confidence) of, say, 
0.8. In other words, based on the evidence the system is not able to specify 
the top face of the die exactly. This kind of uncertainty usually arises due 
to limitations of the evidence gathering and interpretation system. Uncer- 
tainty in this second situation is due to a difficulty in specifying the exact 
solution and is called nonspecificity in the literature. 

Finally, suppose you are asked to interpret the top most face of the die 
as, high or low. In this case a different type of uncertainty (ambiguity) is 
faced. Here the existence of a fuzzy event high is assumed and one has to 
gauge the extent to which this event has occurred. In a probabilistic 
experiment, an event either occurs or not, but here an event may occur 
partially. This type of uncertainty arises due to the presence of fuzziness in 
the system. 

It is clear that fuzzy uncertainty differs from probability and nonspeci- 
ficity. Fuzzy uncertainty deals with situations where boundaries of the sets 
under consideration are not sharply defined--partial  occurrence of an 
event. On the other hand, for probabilistic and nonspecific uncertainties 
there is no ambiguity about set-boundaries, but rather, about the belong- 
ingness of elements or events to crisp sets. The present study confines 
itself only to non-fuzzy uncertainties. The literature is quite rich on fuzzy 
uncertainty; interested readers may refer to [1-4]. 

Intuitively one feels that uncertainty due to nonspecificity is related to 
probabilistic uncertainty. It is very difficult to look at either of them in 
isolation. For example, when belief values are assigned only to singleton 
elements, there is no uncertainty due to nonspecificity, only randomness 
may be present. But if a belief value is assigned to a set with cardinality 
more than one, then there is only nonspecificity. On the other hand, when 
belief values are assigned to more than one set that are not singletons, one 
faces both randomness and nonspecificity. 

In our discussion, we restrict ourselves to a finite reference set X, and 
an unknown element x belonging to X. It is also assumed that all 
information about the belongingness of x to X, if available, is expressible 
in the language of the Dempster-Shafer  [5] theory of evidence. Several 
authors have suggested different measures for uncertainty. Yager [6] 
proposed a measure called dissonance or conflict, while Hohle [7, 8] 
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suggested a measure to quantify the level of confusion present in a body of 
evidence. Smets [9] suggested a different type of measure for the informa- 
tion content of an evidence. Unlike the measures of Yager [6] and Hohle 
[7, 8], the measure of Smets is not a generalization of Shannon's entropy. 
Higashi and Klir [10] proposed a measures of nonspecificity for a possibil- 
ity distribution that was later extended to any body of evidence by Dubois 
and Prade [11]. Recently Klir and Ramer [12] pointed out some limitations 
of the measure of conflict (confusion) of Hohle [7, 8], and suggested a new 
measure for the same. We give an example which shows that this measure 
also leads to an unappealing situation, and we prove several theorems on 
different nonspecificity measures. 

Lamata and Moral [13] proposed two composite measures, called global 
uncertainty measures, that attempt to quantify both the probabilistic and 
nonspecific aspects of uncertainty. One of their measures simply adds the 
dissonance measure of Yager to the nonspecificity measure of Dubois and 
Prade; whereas the other one is introduced via definition without prior 
motivation or justification. Klir and Ramer subsequently suggested another 
composite measure called total uncertainty that is defined as the sum of 
Dubois and Prade's nonspecificity and a new measure of conflict called 
discord [12]. Composite measures reflect some interesting aspects of uncer- 
tainty, but analysis reveals that they can lead to intuitively unappealing 
situations when interpreted as total uncertainty. For example, all of these 
composite measures have several maxima, which makes it difficult to gauge 
the quality of evidence based on their numerical values. Moreover, the 
computational overhead for each of these measures is high. Finally, and 
most importantly, elementary measures of nonspecificity or probabilistic 
uncertainty such as dissonance, discord, or nonspecificity attempt to meas- 
ure only one of the two aspects of non-fuzzy uncertainty, so interpretation 
of a composite measure such as the total or global uncertainty is difficult. 
Aggregation of elementary measures may depend on the mode of interac- 
tion between different aspects of uncertainty represented by the compo- 
nents in the sum. Because nonspecificity and randomness are related in an 
unknown way, it does not seem desirable to add expressions for these 
measures directly to get a measure for total uncertainty. 

In Part I of this paper we evaluate existing measures of uncertainty and 
prove several new properties about some of them. We show that existing 
measures cannot model situations when no evidence is better than incon- 
sistent evidence. To elucidate this point, consider the following two situa- 
tions: First, an expert is completely ignorant about the unknown element 
(because of insufficient or no evidence), and the confidence (belief) as- 
signed to the universal set X is 1; and second, based on the evidence, an 
expert assigns a belief value of 1//(2 ~ - 1) to each of the possible nonempty 
subsets of X. In the former case, the expert is confident about his or her 
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ignorance; whereas in the latter case, the expert seems confused. Because 
the basic assignment in the second case is expected to be inconsistent, the 
total uncertainty in the second case should be larger than in the first case. 
However, none of  the existing measures support this position. 

All of the problems itemized above motivate us to look for a new 
measure of average total uncertainty. Our approach will be to postulate a 
set of axioms that seem desirable for any measure of total uncer ta inty--as  
opposed to axioms related to only one component  in a composite s u m - - a n d  
then to derive a function that satisfies the axioms. The measure of total 
uncertainty we discover will account for the expert 's dilemma given above. 
Several theoretical properties of  the new measure are studied, and a 
numerical example is given that affords an empirical comparison with 
previous measures. Unlike other  measures of total uncertainty, the new 
measure has a unique maximum. Shannon's probabilistic entropy and 
Hartley's entropy are shown to be special cases of our  measure. Finally, we 
show that the new measure is computationally more tractable than previ- 
ous measures. 

2. BASIC TERMINOLOGY 

In this section we introduce the basic terminology and definitions of the 
Dempster-Shafer theory of evidence. Let X be a finite universe of dis- 
course, IXI = n ,  e ( x )  the power set of  X, and x any element in X. All 
information about the belongingness of x to X is expressible by a basic 
probability assignment (BPA) function m: P(X) ~ [0, 1] that satisfies: 

m(~b) = 0 (~b = emptyse t )  (1) 

and E m(A) = 1. (2) 
Ac_X 

The value m(A) represents the degree of evidence or belief that the 
element x in question belongs exactly to the set A but not to any B such 
that B c A .  The pair (F,  m) is called the body of evidence for x, where F 
is the set of all subsets A of X such that re(A) > 0. Elements of F are 
called focal elements. If the focal elements are nested (i.e., can be arranged 
in a sequence such as A 1 c A  2 c ... c A k , . . . )  then the corresponding 
body of evidence is called a consonant body of evidence. In this context 
the following observations about a body of evidence may be made. If 
IF] = 1 and A ~ F then either ]A] = 1, and there is no uncertainty; or 
IAI > 1, and there is uncertainty due to nonspecificity. Conversely, IFI > 1 
and [A[ = 1 for all A ~ F represents a situation with only randomness. In 
all other  cases both randomness and nonspecificity will be present, because 
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when I F I >  1 and [AI>  1, at least for some A ~ F ,  the element in 
question can be in any one of the sets (focal elements) and given the focal 
set, it can be any member  of the set. 

Sharer [5] defined two fuzzy measures on a body of evidence (F, rn), 
namely, Belief ( Bel) and Plausibility (PI) as follows: 

B e l ( A ) =  ~ m ( B ) ;  (3) 
B c A ~ F  

and Pl (A)  = 1 - B e l ( A  c)  = Y'~ r e ( B )  (4) 
A A B .g d# 

where A c is the complement  of A. Shafer also defined the Commonality 
Number of A as follows: 

C m ( A )  = ~ m(B)  (5) 
A ~ B  

Conceptually Bel(A) represents the total degree of evidence that the 
concerned element belongs to A a n d / o r  some of its subsets. On the other 
hand, PI(A) not only gives the total degree of evidence that the concerned 
element belongs to A or some of its subsets, but also to those sets that 
have nonempty intersections with A. Properties of these two measures can 
be found in [1, 5, 14]. A belief function (Bel) is called a vacuous belief 
function if Bel(X) = 1 and Bel(A) = 0 for A 4= X. For  a vacuous belief 
function m ( X )  = 1 and m(A)  = 0 for A 4: X. For  a consonant body of 
evidence the belief and plausibility measures are called necessity and 
possibility measures, respectively. The commonality function Cm(A) gath- 
ers pieces of evidence supported by A. The commonality function plays the 
role of belief for a conjunctive body of evidence [14]. Any of the four set 
functions m, Bel, Pl and Cm can be expressed uniquely in terms of any 
other [5]. 

Lastly, we note that every possibility measure ~- on P ( X )  is uniquely 
determined by a possibility distribution function r: X ~ [0, 1] via the 
formula: 

-rr(A) = xma~{r(x)} 

A possibility distribution r = ( Pl, P2 . . . . .  Pn), Pi = r(xi) is called an or- 
dered possibility distribution if Pi >- Pj when i < j. For  a possibility measure 
we can assume without any loss of generality that the focal elements are 
some or all of the subsets in the complete sequence of nested subsets: 

A 1 c A  2 c ... c A ,  ( = X )  where A i = {x I . . . . .  Xi} , i =  1 , . . . , n  
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Note that m(A)  = 0 for each A ~ Ai, and it is not required that m(A i) 
0, V i = 1 . . . . .  n. In this context there is a one to one correspondence 
between the possibility distribution and BPA [1]: 

m( Ai)  = Pi  - -  /7/+1; P n +  l -~ 0 

tl 

and Pi = ~ , m ( A k )  
k = i  

3. MEASURES OF UNCERTAINTY 

This section reviews some extant measures for each of  the two different 
aspects of  non-fuzzy uncertainty, namely, nonspecificity and confl ict /con- 
fusion/discord.  Table 1 summarizes different existing measures. 

The word "probabilistic" in column three of Table 1 does not necessar- 
ily indicate a function of  a probability distribution. It is used to indicate 
that part of  the overall uncertainty which is due to randomness or chance. 
Let  M~ denote the set of all basic assignments on the power set with 2 ~ 
elements. A measures of uncertainty is a mapping S: M~ ~ [0, oo) that 
satisfies some intuitive notion of  uncertainty. In what follows we use Log 
to specify logarithms to some base a > 1. Usually, a = 2 or a = e; differ- 
ent writers have used different bases. However, because a change of base 
amounts to a multiplicative constant, we omit the base unless clarity 
demands it. 

Yager [6, 15] proposed the following measure of dissonance (conflict) in 
a body of evidence: 

E ( M )  = - E m(A)LogP l (A ) .  (6) 
A ~ F  

This measure is based on the following interpretation of conflicting evi- 
dence: whenever the evidence suggests that the element of concern may 
belong to either of two or more disjoint subsets, then we have conflicting 
evidence. In [6, 15] Yager introduced the concept of specificity associated 
with a possibility distribution. For  a normalized possibility distribution r 
specificity is defined as 

1 
S(r )  = fo 1 da (7a) 

where r~ = {xJ r(x) >__ a, x ~ X} and ]* I denotes set cardinality. S(r) 
estimates the precision of a fuzzy se t - - i n  other  words, it quantifies the 
extent to which a fuzzy set restricts a small number  of values for a variable. 
A probabilistic interpretation of S is given in [11]. This measure of 
specificity was subsequently extended (generalized) by Yager [6] to any 
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belief structure as follows: 

N ( m )  = ~ { m ( A ) / I a l } .  (7b) 
A ~ F  

J (m)  = 1 - N ( m )  is viewed as a measure of nonspecificity. Properties of 
these measures have been investigated by several authors and can be 
found in[6, 13, 15, 16]. 

Hohle [7, 8] proposed the following measure of confusion: 

C ( m )  = - ~_, m ( A ) L o g B e l ( A )  (8) 
A ~ F  

C purports to represent the conflict that arises when two evidential claims 
m ( A )  and m ( B )  conflict within the same body of evidence and when 
B ¢ A. Properties of E, N and C have been studied by Dubois and Prade 
[16]. 

Higashi and Klir [10] derived a measure of nonspecificity (called U-un- 
certainty) for possibility distributions based on a set of desirable axioms. 
U-uncertainty was proposed to be the possibilistic counter part of Shan- 
non's entropy and at the same time, a generalization of the Hartley 
information measure. U-uncertainty is thus derived so as to satisfy all 
properties of Shannon's entropy for which possibilistic counterparts are 
meaningful, as well as to generalize Hartley's information. U-uncertainty 
for an ordered possibility distribution [1] is given by: 

n 

U(r )  = ~_, ( P i  - -  Pi+l)L°g[Ail (9) 
i=1 

Recall that A i = {xl, x 2 . . . . .  Xi}; Pi ---- r(xi), r is the possibility distribution 
function and Pn+l = 0. Since Pi - Pi+l = m ( Z i ) ,  where m is the BPA 
associated with the possibility distribution, the expression for U(r) can be 
rewritten as; 

n 

U( r ) = ~,  m (  A i )  LoglAil.  (10) 
i = 1  

Dubois and Prade [11] made a natural extension of this measure for any 
BPA as follows: 

I(m) = ~ m(A)LoglAI. (11) 
A ~ F  

Properties of I were studied by Lamata and Moral [13], who suggested two 
composite measures for global uncertainty: The first one was defined as the 
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sum of the measures of conflict (E)  nonspecificity (I):  

G l (m ) = E(m) + I(m).  (12) 

Lamata and Moral [13] point out that measures like (11) are difficult to 
extend (or generalize) to a more general class of fuzzy measures because 
such a measure is defined in terms of a BPA, and, for example, in the case 
of ordered fuzzy measures there is no function similar to the BPA. We add 
here that extension of measures such as I or E to any fuzzy measure may 
in fact be entirely disconnected from the idea of uncertainty assessment in 
the context of evidential reasoning. To circumvent this problem Lamata 
and Moral suggested a second expression for global uncertainty: 

G2(m ) = EVBel(f) , where for any a ~ X, 

f (a)  = -Log ( 
el((a}) ) 

E P/({b}) ; 
b ~ X  

(13) 

(14a) 

and EVBeI(f) = fo Bel{x ~ X / f ( x )  >>_ a} da (14b) 

is the expected value of f with respect to Bel--in fact, however, G 2 does 
not circumvent the problem identified by Lamata and Moral, because it is 
also defined in terms of a BPA. The expression for G2(m) can be 
decomposed and rewritten as 

G2(m ) = V(m) + W(m), (15) 

where V(m) = EVBel(-Log( PI({x}))); (16) 

and W(m) = Log( ~_, m(A)IAI} (17) 
~ A G X  + 

Lamata and Moral interpreted -LogPl({x}) as the degree of surprise 
experienced when it is known that x is the unknown element belonging to 
X. EVoet(-LogPI({x})) is the expected value of surprise with respect to 
Bel. They considered V the lowest degree of surprise because the expecta- 
tion is computed with respect to Bel. The second term W is viewed as a 
measure of imprecision. In fact, Em(A)IAI is the average cardinality of the 
focal elements. Hence the second term can be interpreted as a measure of 
nonspecificity. In contrast to the average cardinality of focal elements, 
Yager's specificity measure (7b) gives an indication of the dispersion of 
belief. In Lamata and Moral [13] no motivation is given for defining G 2 as 
in (15). Consequently, it is hard to us to offer an explanation for the 
interpretation of the "lowest expected degree of surprise." 
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According to Klir and Ramer the measure of dissonance at (6) is 
unsatisfactory; they feel that re(B) conflicts with m(A) whenever B ~ A, 
not only when B n A = • [12]. Hohle's measure of confusion accounts for 
this problem. However, Klir and Ramer suggest in [12] that the degree of 
violation of B __. A should influence the value of the conflict measure. 
With a view towards incorporating this constraint they suggested an 
alternative measure of conflict [12]: 

D ( m )  = - ~., m( A)Log[1 - C o n (  A ) ] ,  

A ~ F  
(18) 

where Con(A)= ~_, [m(B)[B-AI/IBI] (19) 
B ~ F  

Klir and Ramer suggest that Con(A) expresses the sum of individual 
conflicts of evidential claims with respect to a particular set A, each of 
which is properly scaled by the degree to which the containment B c_ A is 
violated. Equation (18) can be simplified to the following form [12]: 

D(m) = - A~Fm( A)L°g[ ~-" rn( B)[A N (20) 

Klir and Ramer then defined total uncertainty as: 

T(m) = D(m) + l(m). (21) 

Comparing (21) and (12), we see that I is common to both G 1 of Lamata 
and Moral and T of Klir and Ramer. Indeed, the number D - E (D is 
always >_ E) is in some sense a measure of the distinction drawn by these 
authors between global and total uncertainty. 

Measures like E, C, N, D and I etc. (the first seven rows of Table 1) can 
be called elementary measures, whereas functions such as Gx, G 2 and T 
may be viewed as composite measures (the last three rows of Table 1). 
Composite measures exhibit a trade-off between the assessment objectives 
of their elementary factors. For example, G 1 balances nonspecificity against 
dissonance. As long as aspects of uncertainty that are quantified by 
elementary factors are conceptually additive in nature, summation to form 
a composite measure is meaningful. Otherwise, interpretation of a compos- 
ite measure is at best difficult. In view of this, a better approach to the 
assessment of total uncertainty might be to derive a measure based on a 
set of axioms (desirable properties) about what it is supposed to quantify. 
This is the path we follow in part II of this paper. 
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We offer the following comments on G 1, G 2 and T: If Con(A) repre- 
sents the sum of individual conflicts of evidential claims with respect to a 
particular set A, then the average (or weighted average) measure of 
conflict preferably should be a direct function of Con(A) (as it is in case of 
Shannon's entropy). The physical significance of the use of (1 - Con(A)) 
in the expression for D is difficult to interpret except as it helps yield an 
entropy-like expression. Moreover,  when there is more than one focal 
element, there is some uncertainty due to randomness associated with 
each focal element. T captures this uncertainty only partially. T and G 1 
account for only one aspect (conflict) of uncertainty. We illustrate this with 
an example: Let A c B, rn(A) > O, m(B) > 0, and re(A) + re(B) = 1. 
Using (19) one finds that Con(A)> 0 but Con(B)--0, and D(m)= 
- m ( A ) L o g ( 1 -  Con(A)). Similarly, PI(A)= Pl(B)= 1, resulting in 
E(m) = 0. Thus E does not capture any uncertainty due to randomness, 
whereas D does not take into account the ignorance (due to randomness) 
associated with the basic assignment re(B). G2 suffers from the same 
problem. It is, therefore,  questionable whether T, G 1 or G 2 should be 
called total uncertainty. Next we exhibit a counterintuitive property of 
Con(A). 

EXAMPLE 1. Suppose X = {1, 2, 3, 4} and the BPA function is defined as 
follows: A = {1,2,3}, B = {1,2,3,4}; re(A) = 0.4, rn(B) = 0.6. For this 
basic assignment, because there are only two focal elements, Con(A) 
should represent the conflict of rn(A) with re(B), whereas Con(B) should 
reflect the conflict of m(B) with re(A). By (19) we get Con(A) = .4*0 + 
. 6 . 1 / 4  = .15 and Con(B) = .6*0 + .4*0 = 0.0. Thus although A c B, 
m(A) is in conflict with m(B) and the conflict of A with B is different 
from the conflict of B with A. Let  us consider another  BPA on the same 
X as follows: A = {1, 2}, B = {2, 3, 4}, m(A) = 0.2 and m(B) = 0.8. Ac- 
cording to equation (19), Con(A)= 0.53 and Con(B)= 0.1. It seems 
reasonable to expect that if A is in conflict with B then B should also be 
in conflict with A to the same extent. In a private communication [19] Klir 
has acknowledged that Con(A) has defects, and has proposed yet another  
measure (strife) that seems to correct the first deficiency (Con(A) > 0 
even when A c B) by redefining the expression for Con(A) as Con(A) = 
EB~Fm(B)(]A-BI/IAI). However, with the new definition one gets 
Con(A) = 0.4 Con(B) -- 0.13. Thus (19) (hence (20) too) still seems to be 
an unappealing measure of  conflict. 

A different type of information measure was proposed by Smets in [9]. 
His information measure is based on a set of five desirable properties, of 
which the most important was additivity. Here  additivity means that the 
information content from two distinct, nonconflictual evidences is the sum 
of the information content of each evidence. Smets' measure takes the 
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L ( m )  = - Y'~ L o g C m ( A ) .  (22) 
A cc_X 

If the belief structure is non-dogmatic ( m ( X )  > 0), then C m ( A )  > 0 for 
all A ___ X and L is well defined; otherwise L is undefined. L is not a 
generalization of  Shannon's entropy; for a Bayesian belief structure it does 
not reduce to Shannon's probabilistic entropy, rather, it is undefined. 
Smets did not provide a satisfactory interpretation of L in the context of 
uncertainty measurement,  and because all of the other measures (that deal 
with randomness) discussed so far represent some kind of average (ex- 
pected) values, whereas L does not, our subsequent discussion will ignore 
this measure. 

4. SOME NEW PROPERTIES OF NONSPECIFICITY MEASURES 

In the following theorems, we assume IX] = n. Let  F k ___ F such that 
F k = {A I A ~ F and IA[ = k}; and let Pk = EA ~ Fkm(A), SO by (2), EPk = 
1. 

THEOREM 1 Redistribution o f  m keeping Pk fixed over F k does not change 
the value o f  nonspecificity measures 1, J, and W. 

Proof  

n 

I ( m )  = ~7. m ( A ) L o g l A I  = Y'. Y'. m ( A ) L o g l A I  
A ~ F  k = l  A ~ F  k 

n n 

~_, Y'~ m ( A ) L o g [ k l  = ~_, L o g ( k )  Y'. m ( A )  
k = l  A ~ F  k k = l  A ~ F  k 

Pk Log(  k ) 
k = l  

Because the last expression remains fixed on redistribution of  m provided 
the Pk are fixed over, Fk, the theorem follows. Proofs for J and W are 
similar. • 
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EXAMPLE 2. AN IMPLICATION OF THEOREM 1 Suppose X = {1, 2, 3, 4} 
and two BPAs m and m a are defined as follows: 

m: 
m({1}) = 1 / 4  

m({1,2})  = 3 / 4  
m 1 • 

ml({1}) = 1 / 4  

m1({1,2}) = 3 / 2 4  

m1({1,3}) = 3 /24  

m1({1,4}) = 1 / 4  

m~({2,3}) = 1 /12  

m1({2,4}) = 1 /12  

m1({3,4}) = 1 /12  

For  both m and ml,  Pa = 1 / 4  and P 2 = 3 / 4 ,  but ( F , m ) : ~ ( F  1,ml). 
Theorem 1 asserts that l (m) and I(m 1) are equal (namely, I(m) = I (m 1) 
= 0.75). According to Yager specificity relates to the degree to which the 
evidence is pointing to a one element realization [6]. In other  words, it 
represents the average mass per element. In this spirit, Theorem 1 and the 
above observation are quite natural. However, nonspecificity gives an 
intuitive notion of lack of specification/preciseness (or inability to specify 
the correct element) that is connected to the uncertainty due to random- 
ness in some unknown fashion. Under  this interpretation, the result 
I(m) = I(m 1) is undesirable. 

THEOREM 2 For focal elements A andB with IZl 4~ Inl, any reassignment 
of m preserving (re(A) + m(B)) will increase I, J and W if the reassign- 
ment makes m more uniformly distributed with respect to the cardinalities of 
these focal elements. 

Proof  l e t  [AI = p,  IBI = q, where A and B are two focal elements 
such that IAI 4= IBI. Suppose the reassignment m I of m is defined as 
follows: 

ml(C ) =re (C) ,  C ~ F and C : # A , B  
ma(A ) = m ( A ) - 6 ;  ml (B  ) = r e ( B )  + 6 with 6 > 0 .  

I ( m , )  - I (m)  = {re (A)  - 6}Logp + {re (B)  + ~}Logq 

- m (  A)Logp  - m( B)Logq = 6 Log(q /p) ,  

S O  

> 0  i f q  ) > p  
I ( m l ) - I ( m )  = < 0  i f q  < p  
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Similarly, 

( 1  1 ) { > 0  i f q  > p }  
J ( m l )  - J ( m )  = 6 - q = o if q < 

To prove the proposition for W, it is enough to observe that logarithm is a 
monotonic  function and Em1(A)IAI  > E m ( A ) I A I  for q > p and 
Eml (A) IAI  < Em(A) IA[  for q < p. • 

THEOREM 3 I f  m 1 and m e are BPAs on X generating plausibility struc- 
tures Pl 1 and Pl 2, respectively such that for each x ~ X ,  Pll({x}) <_ Pl2({x}), 
then W(m 1) <_ W(m2). 

Proof  

=, F., Pll({X}) _< 
x ~ X  x ~ X  

=~ y" ma( A) IAI  < ~ mz(  A ) IAI  
A c X  A c X  

as ]E P l ( {x} )  = ~ m ( A ) I A I  [6, 13] • 
x ~ X  A c X 

THEOREM 4 W is minimum ( W ( m )  = O) over M n i f  and only i f  m is a 
Bayesian belief structure (ie, m focuses on~ on singleton elements). 

Proof  Because E m ( A )  = 1 and IAI > 1, W (m )  = Log(EA~_xm(A)IAI)  
> 0. This shows that the global minimum of W is 0. If m is a Bayesian 
belief structure then W(m)  = 0. Conversely, suppose W ( m )  = 0: W ( m )  = 
0 =* E A ~ F m ( A ) I A I  = 1. Now because E m ( A )  = 1, if there is any A ~ F 
such that IAI > 1, then E A ~ F m ( A ) I A I  > 1. Hence E A ~ F m ( A ) I A I  = 1 
I AI = 1 for all A ~ F. • 

THEOREM 5 W is maximum ( W ( m ) =  Log(n))  i f  and only if  m is a 
vacuous belief function. 

Proof  W is maximum when E A ~ F m ( A ) I A ]  is maximum. Because 
E m ( A )  = 1 and the maximum IAI is n, ~ A ~ F m ( A ) I A I  < n. If m is 
vacuous, then m ( X )  = 1 and Ea  ~ Fm(A)IAI  = n, so W attains the maxi- 
mum value of Log(n).  Conversely, suppose W is maximum, ie, 
Ea ~ e m ( A ) l A I  = n. Then m ( X )  = 1, because if m ( X )  ~ 1 then there is 
at least one A ~ F, such that IA[ < n, and hence E A ~ F m ( A ) I A I  < n 
(contradiction). • 
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5. SOME COMMENTS  ON C O M P O S I T E  MEASURES T, G~ 
AND G 2 

This section investigates the extent to which the composite  measures T, 
G 1 and G z conform to intuitive notions of  total uncertainty. We begin 
with an example. 

EXAMPLE 3 Define seven basic probability assignment functions on X = 
{1, 2, 3, 4} as follows: 

1. 

1. 

m({2}) = m({3}) = m({4}) = 1 /4 .  

= m({2, 3}) = m({3, 4}) = m({1, 4}) --- 1 /4 .  

= m({1, 3}) = m({1, 4}) = m({2, 3}) = m({2, 4}) = m({3, 4}) 

ml:  m({1}) = 

m2: re(X) = 

m3: m({1}) = 

m4: m({1, 2}) 

ms: m({1, 2}) 
= 1 / 6  

ms: r e ( A )  = 

m7: 
re(A) = 1 /32  
m(A) = 2 / 3 2  
m(A) -- 3 / 3 2  
m(A) = 4 / 3 2  

1 /15  for all A ~ P(X) ,  A ~ Q. 

if Ia[  = 1 
if IAI = 2 
if [AI = 3 
if LAI = 4. 

Based on our intuitive feeling about  total uncertainty we offer the follow- 
ing comments .  Clearly there is no uncertainty associated with rn 1. For  m2, 
the total uncertainty is due purely to nonspecificity, (randomness is absent). 
Conversely, m 3 has only uncertainty due to randomness,  but not nonspeci- 
ficity. On the other  hand, m 4, m 5, m 6 and m 7 have uncertainties due to 
both nonspecificity and randomness.  It  seems plausible to expect the total 
uncertainty (TU) for these seven BPAs to satisfy the inequalities: TU(m 1) 
< TU(m 2) = TU(m3) < TU(m 4) < TU(rn 5) < TU(m 6) < TU(m7). 
TU(m z) should equal TU(m3), as m 2 and m 3 are the extreme cases of 
only randomness  or  nonspecificity, respectively, m2 represents a situation 
when there is only nonspecificity and that to the maximum extent (no 
randomness);  whereas m 3 does not possess uncertainty due to nonspeci- 
ficity, m 3 has only randomness  in a most  ambiguous way. The equality of  
TU(m 2) and TU(m 3) essentially constrains TU to behave "symmetrically" 
at its extremes. In other  words, if there is only one type of uncertainty then 
the maximum value should be  the same in either case. 

However,  when both types of  uncertainty are present,  then TU should 
increase /decrease  depending on the complexity of the system (nature of 
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the basic assignment function). In m 4 the amount  of  uncertainty due to 
randomness  appears  to be the same as that of  m 3 because in either case 
(m 3 or m 4) any one of the four possibilities could be true with a 
confidence value of 1/4 .  However,  in m 4 there is some uncertainty due to 
nonspecificity which is absent in the case of  m 3. Therefore,  TU(m 3) should 
be strictly less than TU(m4). Comparison of  m 4 and m 5 indicates that m5 
has more  randomness  than m 4. Even if we assume that nonspecificity is 
the same for m 4 and m 5, TU(m 5) should be greater  than TU(m 4) as m 5 
has more  focal elements  with uniformly distributed belief values. Note  that 
m3, m 4 and m 5 all distribute belief values (basic assignments) uniformly 
over  their respective set of  focal elements. All focal elements  in each of 
the cases have the same cardinality. On the other hand, m 6 distributes the 
basic assignments uniformly over all possible subsets. Here  the amount  of  
uncertainty due to randomness  is much more  than ms; but the average 
amount  of  uncertainty due to nonspecificity is nearly the same as that of  
m 5. Hence  the total uncertainty for m 6 is expected to be greater  than for 
ms. Apparent ly  m 7 represents the case of  maximum uncertainty. In m 6 
the basic assignment function is uniformly distributed on P(X).  m 7 also 
concentrates on all elements of  P ( X )  but the belief value attached to a set 
is proport ional  to its cardinality. This increases the nonspecificity of m7, 
which distributes both randomness  and nonspecificity uniformly over the 
largest possible set of  focal elements. What  happens in Example 3 when 
TU is computed  using equations (12), (15) and (21)? 

The second and third columns of Table 2 list the values of  global 
uncertainty as suggested by Lamata  and Moral,  whereas the fourth column 
displays the values of  total uncertainty as given by the function of  Klir and 
R a m e r  for the seven BPAs of Example 3. Table 2 reveals that none of  
these measures  conforms to our intuitive desire regarding the inequalities 
TU(m 1) < TU(rn 2) = TU(m3) < TU(m 4) < TU(m 5) < TU(m 6) < 
TU(m 7) about  total uncertainty. Note  also that G 2 and T are identical on 
all seven BPAs, so in this example there is no quantitative difference 

Table 2. Global  and Total  Uncertainty Values for the BPAs in Example 3 

m G 1 via (12) G 2 via (15) T via (21) 

m 1 0.0 0.0 0.0 
m 2 2.0 2.0 2.0 
m 3 2.0 2.0 2.0 
m 4 1.415 2.0 2.0 
m s 1.263 2.0 2.0 
m 6 1.353 2.0 2.0 
m 7 1.394 2.0 2.0 
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between G 2 and T, even though there is an ostensible qualitative differ- 
ence in what they measure. 

6. COMPUTATIONAL COMPLEXITY OF T AND G z 

Computational problems in the framework of the theory of evidence are 
well known [17, 18]. This section compares the computational complexity 
of T and G t when only the basic assignment function, rn is available. We 
assume that IF[ = N, ie, rn focuses on N subsets. The total number of 
logarithmic evaluations, multiplications and additions (the exact number 
might vary depending on implementation) are summarized in Table 3 
(totals are computed ignoring extra overhead in Logarithm evaluation). 

We have not considered G 2 because the total number of operations for 
it is a function of n, the cardinality of IX[, whereas for T and G1 it is a 
function of N. Hence it is difficult to compare the computational overhead 
of G 2 to that of T and GI. Moreover,  it is difficult to find an expression 
for the total computations involved in an evaluation of G 2. From Table 3 
one sees that the computational overhead for both G~ and T is substan- 
tial. The number  of logarithmic evaluations are the same for both func- 
tions. If we assume that multiplication and addition require the same 
amount  of time, then G 1 and T involve ( N  2 + 2 N  - 1) and (3N 2 + 2 N  
- 1) additions, respectively. Hence,  G 1 and T are both O ( N  z) procedures. 
Thus, when the number  of possibilities is n, N may be as high as 2 ~ - 1, 
indicating excessive computation for both G 1 and T. 

7. CONCLUSIONS AND DISCUSSION 

Limitations of some existing measures of the probabilistic and nonspe- 
cific components  of non-fuzzy uncertainty that have been used in eviden- 
tial reasoning were examined. The measures of conflict discussed in 
section 3 cannot account for complete uncertainty (ignorance) that arises 

Table 3. Time Complexity of T and G l (IFI : N, IXI = n) 

Computation T via (21) G 1 via (12) 

Logarithmic N N 
Multiplication 2N 2 + 2N 2N 

Addition N 2 _ 1 N 2 _ 1 
Total 3N 2 + 3 N -  1 N 2 + 3 N -  1 
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due to randomness. We have stated and proved several new theorems on 
various nonspecificity measures. 

We discussed three composite measures of total and global uncertainty. 
Lamata and Moral defined a global measures of uncertainty (G~) as the 
sum of Yager's measure of dissonance (E)  and the nonspecificity measure 
( I )  of Dubois and Prade. They also defined a second measure of global 
uncertainty (G 2) as the sum of a measure of innate contradiction (V) and 
a measure of  imprecision (W). Klir and Ramer  defined total uncertainty 
(T)  as the sum of  I and a new measure of conflict (D). We have 
established by examples and theorems that all of  these composite meas- 
ures result in intuitively unappealing situations. None of G 1, G 2 nor  T has 
a unique maximum; hence, it is difficult to interpret (visualize) the ambigu- 
ity present in the system reflected by values of Gl,  G 2 and T. G~ and T do 
quantify some interesting aspects of uncertainty, but the name total (or 
global) uncertainty does not seem appropriate for either of them, because 
conflict and nonspecificity represent different aspects of non-fuzzy uncer- 
tainty, so there is no sound rationale for simply adding them together to 
assess the total uncertainty of a BPA. Computational overhead, an impor- 
tant consideration in evidential reasoning, may be quite large for G 1 and 
T. 

Since the probabilistic and nonspecific components of total uncertainty 
are coupled in an unknown manner  it seems better  to look at total 
uncertainty as a whole, rather than as a sum of conflict and nonspecificity. 
Along with all of  the problems of composite measures itemized above, this 
fact motivates us to look for a new measure of average total uncertainty. 
Our approach in Part II of this paper  will be to postulate a set of axioms 
that seem desirable for any measure of  total uncertainty (as opposed to 
axioms related to only one component  in a composite sum); and then to 
derive a function that satisfies these axioms. 
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