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Given a region U in the 2-sphere S such that the boundary of U contains at least two
points, let D(U ) be the collection of open circular disks (called maximal disks) in U whose
boundary meets the boundary of U in at least two points and let U2 be the collection of
all regions U ⊂ S such that for each D ∈ D(U ), D meets the boundary of U in at most two
points. In this paper we study geometric properties of regions U ∈ U2. We show for such U
that the centerline (i.e., the set of centers of maximal disks) is always a smooth, connected
1-manifold. We also show that the boundary of U has at most two components and, if it
has exactly two components, then the boundary is locally connected.
These results are related the set of points E(X, Y ) which are equidistant to two disjoint
closed sets X and Y . In particular we investigate when the equidistant set is a 1-manifold.

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

In this paper we discuss two notions from elementary geometry in a more general setting. Generalizing the notion of a
diameter of a circle we define the centerline of certain more general regions of the two-sphere and show that under quite
general conditions the centerline is a smooth one-manifold. The preparatory work is the study of the equidistant set of two
disjoint closed sets, which is a natural generalization of the (perpendicular) bisector.

Given an region U in the 2-sphere S such that the boundary of U contains at least two points, let D(U ) = {Dα}α∈A
be the collection of open circular disks Dα , called balls, in U such that the boundary of Dα meets the boundary ∂U of U
in at least two points. Hence each Dα is a maximal ball (with respect to containment) in U . Our work is related to the
following results. For each Dα ∈ D(U ) let Fα be the convex hull of Dα ∩∂U . It is known that the collection F (U ) = {Fα}α∈A
foliates U . Here one can either use the hyperbolic convex hull (see [9]) or the Euclidian convex hull (see [5]). If we use
the hyperbolic convex hull, and use on each Fα the restriction of the hyperbolic metric on the disk Dα , one obtains the
so-called K–P metric on U (see [9,8,7]). This metric is invariant under Möbius transformations of the 2-sphere. In [7], it is
show that for regions U ⊂ S with the property that there is an open circular disk D in the region U such that the boundary
of D meets the boundary of U in at least three points, the only isometries of the K–P metric are restrictions of Möbius
transformations. For a region U ⊂ S, let E2(U ) be the set of centers of disks Dα in D(U ). By results in [3], E2(U ) is always
locally an R-tree (see also [4] and [6] for related results).

Let U2 denote the collection of regions U ⊂ S with the property that for every open circular disk D in U the boundary
of D meets the boundary of U in at most two points. Simple examples of regions in U2 are an ellipse and a region whose
boundary consists of two disjoint round circles. In a subsequent paper a survey of possible regions will be presented.

* Corresponding author.
E-mail addresses: johannesaarts@gmail.com (J. Aarts), overstee@math.uab.edu (L.G. Oversteegen).

1 The author was supported in part by NSF-DMS-0405774.
0166-8641/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2009.03.007

https://core.ac.uk/display/82669134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:johannesaarts@gmail.com
mailto:overstee@math.uab.edu
http://dx.doi.org/10.1016/j.topol.2009.03.007


J. Aarts et al. / Topology and its Applications 156 (2009) 1776–1785 1777
In this paper we show that for each U ∈ U2, the set of centers E2(U ) is a non-empty, connected, smooth one-manifold.
This last result is closely related to results about equidistant sets (see Definition 1.3). In [1], Bell proves that the equidistant
set of two disjoint continua in the plane is a connected one-manifold. In [3] it is shown that the equidistant set of two
disjoint closed sets in S or R2 is always locally connected. Under an extra condition of the closed sets being noninterlaced
(a condition that is fulfilled in the case of disjoint continua), we show in Section 2 that the equidistant set is a one-manifold.
This result is crucial for the results in [10] where it is shown that every isotopy of a plane continuum can be extended to
an isotopy of the entire plane. We also study topological properties of the boundary of U . Some of the results in this paper
were first obtained in [3] which also contains additional related results.

1. Preliminaries

We think of the two-dimensional sphere S as the boundary of the unit ball in Euclidian three-space with the origin as its
center. We shall use spherical coordinates: a point p ∈ S has coordinates (ϕ,ϑ) where ϕ is the angle between the position
vector �p and the xy-plane, −π/2 � ϕ � π/2 and ϑ is the angle from the positive x-axis to the projection of the position
vector �p of p onto the xy-plane, −π � ϑ < π .

Let x and y be two points in S. The great circle through x and y is the intersection of the sphere and a plane through the
points x, y and the origin; this is also called a straight line through x and y. By a (straight) line segment between x and y we
mean a part of a straight line between x and y that has shortest length. The length of the segment between x and y is the
spherical distance between x and y; note that the spherical distance is measured in radians and that its value lies between
0 and π . If �x and �y are the position vectors of x and y, then the spherical distance of x and y is equal to arccos(�x · �y).

A spherical triangle of which each side has length less than π is called an Euler triangle. For an Euler triangle the usual
triangle inequalities hold: if the sides of an Euler triangle have length a, b and c respectively, then |a − b| � c � a + b. The
former inequality entails the continuity of the spherical distance function.

Notation 1.1. Consider two disjoint sets X and Y in the sphere S. Let Z = X ∪ Y denote the union of X and Y . For any w ∈ C
let B(w, Z) be the maximal open ball centered at w that is disjoint from Z . If such a ball does not exist let B(w, Z) = ∅.
Furthermore, in the case that B(w, Z) is non-empty, let S(w, Z) = ∂ B(w, Z), the boundary of B(w, Z). If B(w, Z) = ∅,
define S(w, Z) = {w}. Note that Z ∩ S(w, Z) 	= ∅ for all w ∈ C.

Definition 1.2. Suppose X and Y are disjoint closed subsets of S. Let Z = X ∪ Y . For any point w ∈ S \ Z we shall say that X
and Y are noninterlaced with respect to w if there exist disjoint continua J X and J Y in S(w, Z) such that X ∩ S(w, Z) ⊂ J X

and Y ∩ S(w, Z) ⊂ J Y . If X and Y are noninterlaced with respect to every point w ∈ S \ Z , we will simply say that X and Y
are noninterlaced. Note that J X or J Y may be empty.

Definition 1.3. Suppose X and Y are disjoint non-empty subsets of S. Let

L(X, Y ) = {
w ∈ S: d(w, X) < d(w, Y )

}
, E(X, Y ) = {

w ∈ S: d(w, X) = d(w, Y )
}
.

We call E(X, Y ) the equidistant set of X and Y . Note that L(X, Y ) is open and E(X, Y ) is closed.

Notation 1.4. Let V be a set in S. Then for any δ > 0 let Bδ(V ) = {x ∈ S: d(x, V ) < δ}. If V = {x} we write Bδ(x) instead of
Bδ({x}). Instead of Bδ(B(w, Z)) we will write B(w, Z + δ).

Lemma 1.5 (Collar). Let Z ⊂ S be the union of two noninterlaced closed sets X, Y ⊂ S. Pick a point w ∈ S \ Z and consider the ball
B(w, Z). Let J X and J Y be as in Definition 1.2. Choose ε > 0 such that Bε( J X ) and Bε( J Y ) are disjoint.

Then there exists δ > 0 such that

B(w, Z + δ) ∩ X ⊂ Bε( J X ) and B(w, Z + δ) ∩ Y ⊂ Bε( J Y ).

Proof. As J X and J Y are compact and disjoint there exists an ε as required. By the compactness of X and Y the existence
of δ follows. �
Definition 1.6. Let K be a closed subset of the sphere S. For any point x ∈ S we define the set of closest points cK (x) by
cK (x) = S(x, K ) ∩ K .

Lemma 1.7. Let Z be the disjoint union of two non-empty closed subsets X and Y of the sphere S. Then we can equivalently define
L(X, Y ) and L(Y , X) as follows:

L(X, Y ) = {
w ∈ S: c Z (w) ⊂ X

}
, L(Y , X) = {

w ∈ S: c Z (w) ⊂ Y
}
.
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Lemma 1.8. Let C ⊂ S be a round circle with center m and let l be a straight line l going through m. Denote the points where this line
intersects the circle by b and −b. Consider a point a on the straight line segment (m,b]. Then for any point c ∈ C such that c 	= b we
have that d(a,b) < d(a, c). Furthermore, the distance d(a, c) strictly increases when the point c ∈ C moves along the circle from b to
−b (in either way).

Proof. Choose a local coordinate system in three space such that the origin coincides with the center of the sphere, m lies
on the positive x-axis, the circle C is parallel to the yz-plane, the y-coordinate of b is zero, and the z-coordinate of b is
positive. Then b = (b1,0,b3) and a = (a1,0,a3). Now pick a point c ∈ C such that c 	= b, then c = (b1, c2, c3) with c3 < b3.
Then d(a,b) = arccos(a1b1 + a3b3) and, similarly, d(a, c) = arccos(a1b1 + a3c3). Since arccos is a strictly decreasing function
and since b3 > c3 we have that d(a,b) < d(a, c). The second statement of the lemma follows analogously. �
Corollary 1.9. If, in the above lemma, we choose the point a ∈ [−b,m), then d(a, c) is strictly decreasing as the point c moves from b
to −b along the circle. Clearly, if a = m, d(a, c) is constant.

Corollary 1.10. Let K be a closed set in the sphere S and let w ∈ S \ K . Furthermore let x ∈ cK (w). Then for every p on the straight
line segment (w, x] we have that B(p, K ) ⊂ B(w, K ) and cK (p) = {x}.

Lemma 1.11 (Non-crossing Lemma). Let x and y be two points in S \ K such that x 	= y. Furthermore let cx ∈ cK (x) and c y ∈ cK (y).
Then one of the following three situations holds:

(i) [x, cx) ∩ [y, c y) = ∅,
(ii) [y, c y) ⊂ [x, cx),

(iii) [x, cx) ⊂ [y, c y).

Proof. Consider two cases cx 	= c y and cx = c y . The case cx = c y is trivial. If cx 	= c y then the segments [x, cx] and [y, c y]
are disjoint by Corollary 1.10. �
Lemma 1.12. Let Z be the union of two disjoint closed sets X and Y in the sphere S, and let w ∈ E(X, Y ). Choose x ∈ c X (w) and
y ∈ cY (w). Then the straight line segment (w, x] is contained in L(X, Y ) and the straight line segment (w, y] is contained in L(Y , X).
Secondly, if w ∈ L(X, Y ) and x ∈ c X (w), then the line segment [w, x] is contained in L(X, Y ). A similar statement holds for points in
L(Y , X).

Proof. Let p ∈ (w, x]; by Lemma 1.10 we have that B(p, X) ⊂ B(w, X) = B(w, Z) and c X (p) = {x}. Therefore c Z (p) = {x} and
hence by Lemma 1.7 we have that p ∈ L(X, Y ). Similarly one can show that (w, y] is contained in L(Y , X). The second part
of the lemma follows analogously. �
Lemma 1.13. Let Z be the union of two disjoint closed sets X and Y in the sphere S. Then L(X, Y ) is connected if X is connected.
Similarly, if Y is connected then L(Y , X) is connected.

Proof. Let X be connected and let C be a component of L(X, Y ). We want to show that X ∩ C 	= ∅. Let w ∈ C ⊂ L(X, Y ),
then there exists an x ∈ c Z (w) ⊂ X . By Lemma 1.12 we must have that the straight line segment L = [w, x] (which could be
degenerate) is contained in L(X, Y ). Hence L ⊂ C and x ∈ C . So X ∩ C 	= ∅ and since X ⊂ L(X, Y ) it follows that L(X, Y ) is
connected. The second statement in the lemma follows similarly. �

The following result follows directly from the continuity of the distance function.

Lemma 1.14 (USC Lemma). Let K be a closed subset of the sphere S and let {xi}i∈N be a sequence converging to a point x∞ . Then
lim sup cK (xi) ⊂ cK (x∞).

Proof. Let p ∈ lim sup cK (xi), then there exist a sequence {y j} j∈N and a subsequence {i j} j∈N of N such that y j ∈ cK (xi j ) and
lim y j = p. By continuity of the distance function it follows that lim j→∞ d(xi j , y j) = d(x∞, p). Let r = d(x∞, K ). We want to
show that d(x∞, p) = r (whence p ∈ C K (x∞)). Clearly d(x∞, p) � r since p ∈ K . Now suppose, by way of contradiction, that
d(x∞, p) = r + ε for some ε > 0. There exists an N ∈ N such that d(xiN , yN) > r + 2ε/3 and d(xiN , x∞) < ε/3. Then

d(xiN , K ) = d(xiN , yN ) > r + 2ε

3
as well as

d(xiN , K ) � d(xiN , x∞) + d(x∞, K ) < r + ε

3
a contradiction. �
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2. Results

Theorem 2.1. Let X and Y be disjoint closed subsets of S and let w ∈ E(X, Y ) be such that X and Y are noninterlaced with respect
to w. Then there exists an η > 0 such that E(X, Y ) ∩ Bη(w) is a one-manifold.

Proof. Let w ∈ E(X, Y ) and let Z = X ∪ Y . Let J X and J Y be as in Definition 1.2. Without loss of generality, we may assume
that J X and J Y are both minimal with respect to length and that J X is the shorter arc. Choose a spherical coordinate system
(ϕ,ϑ) such that the origin coincides with w and such that the positive ϑ-axis passes through the midpoint of J X . Define
the northern hemisphere by {(ϕ,ϑ) | ϕ > 0}. Let aX and aY be the endpoints of J X and J Y respectively such that d(aX ,aY )

is equal to the distance of J X and J Y . We may assume that both aX and aY are located in the northern hemisphere (after
a coordinate change ϕ → −ϕ if necessary). Note that the distance between J X and J Y is equal to d(aX ,aY ). Now, choose ε
with 0 < ε < d(aX ,aY )/4. Then by Lemma 1.5 there is a δ > 0 such that

B(w, Z + δ) ∩ X ⊂ Bε( J X ) and B(w, Z + δ) ∩ Y ⊂ Bε( J Y ).

Then for any point in Bδ(w) the closest point in Z to that point is in Bε( J X ) ∪ Bε( J Y ).
Suppose that w1 = (0, ϑ1) with 0 < ϑ1 < δ/2. Let B1 be the closed ball with center w1 and radius d(w1,aX ). Then we

have B1 ∩ Z ⊂ Bε( J X ) in view of Lemma 1.8, hence w1 ∈ L(X, Y ). In a similar fashion, suppose that w2 = (0, ϑ2) with
−δ/2 < ϑ2 < 0. Let B2 be the closed ball with center w2 and radius d(w2,aY ). Then B2 ∩ Z ⊂ Bε( J Y ) and w2 ∈ L(Y , X). As
has been noted before L(X, Y ) and L(Y , X) are open. Hence there exists σ with 0 < σ < ε such that for all ϕ ∈ (−σ ,σ ) we
have (ϕ,ϑ1) ∈ Bδ(w) ∩ L(X, Y ) and (ϕ,ϑ2) ∈ Bδ(w) ∩ L(Y , X).

For every ϕ ∈ (−σ ,σ ) define

lϕ = {
(ϕ,ϑ) ∈ C: ϑ2 � ϑ � ϑ1

}
.

Claim. |lϕ ∩ E(X, Y )| = 1.

Proof of Claim. Let p = (ϕ,ϑp) and q = (ϕ,ϑq) be two points in �ϕ ∩ E(X, Y ) with ϑq < ϑp . Furthermore, let p X ∈ c X (p) ⊂
Bε( J X ) and pY ∈ cY (p) ∈ Bε( J Y ). Then we have d(p, p X ) = d(p, pY ). In a similar fashion we define qX and qY with
d(q,qX ) = d(q,qY ).

Now consider the sphere S(p, Z). The line pq is a diameter of S(p, Z). Let p∗ be the intersection of S(p, Z) and the line
pq so that p is on the line segment qp∗ . We choose a new spherical coordinate system by translating the origin to (ϕ,0). In
the new system the diameter pq falls along the ϑ axis. The set J X need not be symmetric with respect to the new ϑ-axis,
but has been shifted up or down over � σ . Let q∗ be the intersection of qqX and S(p, Z) and let q∗∗ be the reflection of q∗
in the diameter pq. Note that d(q,q∗) = d(q,q∗∗). Moving counterclockwise around the circle S(p, Z) from p∗ we first meet
q∗ or q∗∗ and next pY . In view of Lemma 1.8 we may conclude d(q, pY ) < d(q,q∗∗). It follows that

d(q,qX ) � d
(
q,q∗) = d

(
q,q∗∗) > d(q, pY ) � d(q,qY ),

a contradiction. �
Let K = {(x,0) ∈ S: −σ ′ < x < σ ′}. Then we can define a function f : K → E(X, Y ) by letting f ((x,0)) = lx ∩ E(X, Y ).

Claim. f : K → E(X, Y ) is continuous.

Proof of Claim. Suppose, by way of contradiction, that f is not continuous. Then there exists a sequence {(zi,0)}i∈N in K
converging to a point (z,0) ∈ K such that y∞ = lim f ((zi,0)) 	= f ((z,0)). But since E(X, Y ) is closed we must have that
y∞ ∈ E(X, Y ). This clearly contradicts the previous claim. �

This last claim establishes the fact that locally E(X, Y ) is the graph of a continuous function from R to R. We can now
pick η = σ ′ so that E(X, Y ) ∩ Bη(w) is a one-manifold. �

It follows from results in [3] that if X and Y are disjoint and closed, then E(X, Y ) is locally connected and 1-dimensional.
Hence, E(X, Y ) is a 1-manifold if and only if it does not contain a triod. By the proof of Theorem 2.1 this is the case if and
only if X and Y are noninterlaced. Hence we have the following corollary (see also [2] for related results).

Corollary 2.2. Suppose that X and Y are disjoint closed subsets of the sphere. Then E(X, Y ) is a 1-manifold if and only if X and Y are
noninterlaced.
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Proof. By Theorem 2.1 and the remark above, it only remains to be shown that if X and Y fail to be noninterlaced with
respect to some point, then E(X, Y ) contains a triod. Hence suppose that X and Y fail to be noninterlaced with respect to
the point w . Then there exist at least three disjoint intervals (xi, yi) ⊂ S(w, X ∪ Y ) with end points xi ∈ X and yi ∈ Y . Then
for all points on the segments [xi, w), the closest point in Z = X ∪ Y is xi and for all points on the segments [yi, w) the
closest point is yi . Hence the set E(X, Y ) must separate B(w, Z) between [yi, w) and [xi, w for each i. This implies that
E(X, Y ) must contain a triod with vertex w as required. �
Theorem 2.3 (Bell). If X and Y are disjoint continua in S then E(X, Y ) is a connected one-manifold.

Proof. Since X and Y are disjoint continua it follows from the Θ-Curve Theorem that they are noninterlaced. Therefore, by
Theorem 2.1, E(X, Y ) is a one-manifold. The connectedness of E(X, Y ) follows from Lemma 1.13. �

We will show next that for every U ∈ U2 the boundary of U consists of at most two components. This result is also
obtained independently in [8]. Since the argument used in the proof will be used later in the paper, we have included
a complete proof. We will assume, by way of contradiction that the boundary of U contains more than two components.
Notice that in this case S\U has at least three components and we can divide the complement of U into three disjoint, non-
empty compact sets K1, K2, and K3. Each of these sets is noninterlaced with respect to the union of the other two, because
each point in U has at most two closest points. So by Theorem 2.1 it follows that the three corresponding equidistant sets
are one-manifolds. We then consider components of these equidistant sets, which will be simple closed curves. We will
show that for every simple closed curve one of the complementary domains consists of closest points to a set Ki . After that
we will show that these simple closed curves cannot intersect each other; this in turn shows that the sphere S is a finite
union of disjoint closed disks, which clearly is a contradiction.

Theorem 2.4. Let U be an open connected set in S with boundary ∂U . If for every x ∈ U we have that |c∂U (x)| � 2, then ∂U consists
of at most two components.

Proof. Let K = S \ U . Suppose, by way of contradiction, that ∂U consists of more than two components. Then we can write
K = K0 ∪ K1 ∪ K2, where K0, K1, K2 are mutually disjoint compact sets. Notice that since K = S \ U and U is connected, no
component of K separates the sphere. Hence Ki has exactly one complementary domain which we will call K c

i . Also note
that the condition |c∂U (x)| � 2 for every x ∈ U implies that for each i Ki is noninterlaced with the sum of Ki⊕1 and Ki⊕2,
where ⊕ denotes addition modulo 3. By Corollary 2.2 we have that Ei = E(Ki, Ki⊕1 ∪ Ki⊕2) is a 1-manifold for i = 0,1,2.
Note that since S is compact this implies that each Ei has finitely many components. Furthermore we have that each of
these components is a simple closed curve. For i = 0,1,2, denote the components of Ei by Cn

i where n ∈ Ni = {1, . . . ,ki}.
For every i = 0,1,2 and every n ∈ Ni let Dn

i be the complementary domain of Cn
i that contains a point p ∈ Ki such that

d(p, Cn
i ) = d(Ki, Cn

i ). Clearly each Dn
i is an open disk. We claim that each Dn

i consist of points closest to Ki . To see that
this is true note that every point in Cn

i cannot have two closest points in K n
i = Ki ∩ Dn

i , since it already has a closest
point in Ki⊕1 ∪ Ki⊕2 by definition of the Cn

i . Hence for each point p ∈ Cn
i there exists a unique point cp ∈ K n

i such that
d(p, cp) = d(p, Ki).

For every point p ∈ Cn
i we can consider the straight line segment to its unique closest point cp in ∂ K n

i . It follows from
Lemma 1.11 that for two distinct points p and q in Cn

i we have that [p, cp) ∩ [q, cq) = ∅. We now claim the following

Dn
i ∩ K c

i ⊂ P =
⋃

p∈Cn
i

[p, cp].

To see why this is true assume, by way of contradiction, that there exists an x ∈ Dn
i ∩ K c

i such that x /∈ P . Note that Dn
i ∩ K c

i
is an open connected set. Since x lies in the complementary domain of K n

i there exists an arc A from x to a point q ∈ Cn
i

such that A ∩ K n
i = ∅. Since q ∈ P and P is closed by Lemma 1.14, there exists a last point r, going along A from q to x,

such that r ∈ P . Let p ∈ Cn
i be such that r ∈ [p, cp] and let A′ be the part of the arc A going from r to x. Now part of the

arc [p, cp] is shielded from one side by A′ . This is a contradiction since there should be arcs [t, ct] converging to the arc
[p, cp] from both sides. This shows that Dn

i consist of points that are closest to K n
i .

Since the disks Dn
i consist of closest points it is clear that if i 	= j then Dn

i ∩ Dm
j = ∅ for all n ∈ Ni and m ∈ N j .

Let i, j ∈ {0,1,2} and let n ∈ Ni , m ∈ N j . We claim that if {i,m} 	= { j,n} then Cn
i ∩ Cm

j = ∅.
To see this, first consider the case that i = j. In this case m 	= n and it is clear that Cn

i ∩Cm
j = ∅ since Ei is a one manifold.

Now consider the case that i 	= j and Cn
i 	= Cm

j . Assume, by way of contradiction, that if Cn
i ∩ Cm

j 	= ∅, then Cn
i � Cm

j . Pick a

point w in Cn
i ∩Cm

j ⊂ U , such that w ∈ Cn
i \ Cm

j ∩Cm
j . This point will have a closest point a in K n

i and a closest point b in K m
j .

Now choose a sequence {wk}k in Cn
i \ Cm

j converging to w . Note that each wk has a closest point ck in Ki⊕1 ∪ Ki⊕2 \ Dm
j . Let

c = limk→∞ ck , then c ∈ Ki⊕1 ∪ Ki⊕2 \ Dm
j and therefore c 	= b. But by Lemma 1.14 c is closest point of w , a contradiction to

the assumption that |c∂U (x)| � 2 for all x ∈ U . The last case to consider is if Cn
i = Cm

j . But in this case it would follow that
S is the disjoint union of Dn , Cn = Cm and Dm . This means that for i 	= k 	= j there are no points in S that are closest to Kk ,
i i j j
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Fig. 1.

a contradiction. Hence it follows that S is the finite disjoint union of closed disks Dn
i = Dn

i ∪ Cn
i , which is a contradiction

since S is connected. �
A natural question to ask is: If U is an open connected subset of S with the property that each point in U has at most n closest

points, does it follow that U can have at most n boundary components? The following result answers that question negatively.

Example 2.5. We present an example of an open connected subset U of S with boundary ∂U with the property that
|c∂U (x)| � 3 for all x, but yet ∂U has infinitely many components.

Proof. First we will construct a nested sequence of open sets Un inductively such that each Un has the following properties.
Each Un is open, for every x ∈ Un we have that |c∂Un (x)| � 3 and ∂Un has n + 3 components. Furthermore, any given
round circle hits Un in at most three points. Start by choosing three points z1, z2, z3 that lie on one round circle S1. Let
U0 = S\ {z1, z2, z3}. Choose a point z4 such that d(z4, z3) < 1/2 and such that z4 /∈ S1. Let U1 = U0 \ {z4}, clearly U1 satisfies
all mentioned properties. Suppose we have constructed Un . Then the points z1, . . . , zn+3 determine

(n+3
3

)
circles Si . Now

choose a point zn+4 such that d(zn+4, z3) < 1/2n+1 and such that zn+4 does not lie on any of the circles Si . Then define
Un+1 = Un \ {zn+4}. We can now define a set U by U = ⋂

i U i , this set is open because it is the complement of a closed set
and it has infinitely many boundary components z1, z2, . . . . For every x ∈ U we have that |c∂Un (x)| � 3, since if this was not
the case there would be a circle in S containing 4 points, but that would contradict the construction of the Ui ’s. �
Definition 2.6. Let K be a set in the sphere S and let x ∈ K . Furthermore let N be the cardinality of the set of components
of K \ {x}. The point x ∈ K is called a cutpoint of order N if N � 2.

Theorem 2.7. Let U be an open connected set in S with boundary ∂U and suppose that for every x ∈ U we have |c∂U (x)| � 2 and that
∂U consists of exactly two components. Let K1 and K2 be the components of S \ U . Then ∂U = ∂ K1 ∪ ∂ K2 is locally connected and
∂ Ki has the property that any cutpoint is of order two. Moreover, if ∂ Ki = Ki then Ki is a point or an arc.

Proof. By Theorem 2.3 E = E(K1, K2) is a compact connected one-manifold, hence E is a simple closed curve. We show
that ∂ K1 has the required properties. The proof for ∂ K2 will be analogous. Let D1 be the complementary domain of E that
contains K1. Since every point in S has at most two closest points it follows that each point x ∈ E has a unique closest point
cx in ∂ K1. This allows us to define a continuous function f : E → ∂ K1 by letting f (x) = cx . In a similar way as was done in
the proof of Theorem 2.4 we can show:

D1 = K1 ∪ X, where X =
⋃
x∈E

[x, cx].

Note that by the USC Lemma 1.14, X is closed. The straight line segments (x, cx) foliate the complement of K1 in D1. This
shows that the function f : E → ∂ K1 is onto. Since if there would exist a y ∈ ∂ K1 such that y /∈ f (E) then y /∈ X and
hence there would be an open neighborhood V of y inside D1 such that V ∩ X = ∅. But V ∩ S \ K1 	= ∅ contradicts the
fact that D1 = K1 ∪ X . Therefore ∂ K1, being the continuous image of a locally connected continuum, is a locally connected
continuum. From now on we will assume that ∂ K1 is non-degenerate. For any y ∈ ∂ K1 define N y to be the cardinality of the
set of components of f −1(y).

Claim. For every y ∈ ∂ K1 we have that N y � 2. Furthermore, if N y = 2 then f −1(y) = {y1, y2} for some y1, y2 ∈ E and [y1, y] ∪
[y2, y] is a straight line segment.

Proof of Claim. Let y ∈ ∂ K1. Without loss of generality we may assume that f −1(y) consists of more than one point. Let
y1 	= y2 ∈ f −1(y) and let A12 be the open arc in E between y1 and y2. Suppose that [y1, y] ∪ [y2, y] is not a straight line
segment (see Fig. 1).
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In this case we see that the boundary of K1 has to be disjoint from the open area bounded by the arcs [y1, y], [y2, y]
and A12. For every point x ∈ A12 we have that (x, cx) ∩ A12 = ∅ and (x, cx) ∩ (yi, y) = ∅ for i = 1,2. Therefore, every point
in A12 has to have y as a closest point. So in this case f −1(y) is connected. This shows that N y � 2 for all y ∈ ∂ K1. �

Now assume, by way of contradiction, that there exists a point y ∈ ∂ K1 such that ∂ K1 \{y} has at least three components.
Label three of these components by C1, C2 and C3. Each of these components is open in ∂ K1 since ∂ K1 is locally connected,
therefore the components of f −1(Ci) are open intervals for each i. Choose three such open intervals U1, U2 and U3. Then
E \ {U1 ∪ U2 ∪ U3} consists of three components and since the endpoints of Ui map to y, each of these components contains
a point mapping to y. So N y � 3, a contradiction. Hence every cutpoint of ∂ K1 has order two.

Now assume that ∂ K1 = K1. This implies that ∂ K1 cannot contain a simple closed curve and therefore that ∂ K1 is a
dendrite. By the result above every cutpoint of this dendrite has order two. Hence ∂ K1 is an arc or a point. �
Definition 2.8. Let U be an open set in the sphere S. We define E2(U ) as follows:

E2(U ) = {
x ∈ U :

∣∣c∂U (x)
∣∣ = 2

}
.

Theorem 2.9. Let U ∈ U2 . Then E2(U ) is a connected smooth non-empty one-manifold.

Proof. The proof consists of several parts. First we show that E2(U ) is non-empty. Next we prove that E2(U ) is a manifold
(not necessarily connected). Then we present an analysis of the foliation of U which is generated by E2(U ). This analysis is
used to prove the connectedness of E2(U ). Finally it is shown that E2(U ) is smooth.

Let m ∈ U such that d(m, ∂U ) is maximal.

Claim 1. m ∈ E2(U ).

Proof of Claim 1. Suppose, by way of contradiction, that |c∂U (m)| = 1. Let cm ∈ c∂U (m) be the unique closest point of m.
Consider a local spherical coordinate system such that m = (0,0) and cm = (0, ϑ) with ϑ > 0. Since ∂U is non-degenerate,
the coordinates of cm are well defined. The spherical coordinates of a point p are denoted by pϕ and pϑ , thus p = (pϕ, pϑ ).
By Lemma 1.5 there exist δ and ε such that for all x ∈ Bδ/2(m) we have that c∂U (x) ⊂ Bε(cm). But then for any point
y = (0, ϑy) with −δ/2 < ϑy < 0 we have by Lemma 1.8 that d(y, ∂U ) > d(m, ∂U ), a contradiction. �

This claim shows that E2(U ) is non-empty. For every point w ∈ E2(U ) let c1
w and c2

w denote its two closest points in ∂U .
For a point w /∈ E2(U ) let cw = c1

w = c2
w denote its unique closest point.

Claim 2. For every x ∈ U \ E2(U ) there exists a w ∈ E2(U ) such that x ∈ [w, c1
w) ∪ [w, c2

w).

Proof of Claim 2. Let cx denote the unique closest point of x in ∂U . Choose a local spherical coordinate system such that
x = (0,0) and cx = (0,−ϑ), where ϑ > 0. Consider the set D = {y � 0: c∂U ((0, y)) = {cx}} and let m be the supremum of D .
Let w = (0,m); clearly x ∈ [w, cx). If w ∈ E2(U ) the claim is proved. Now assume, by way of contradiction, that w /∈ E2(U ),
and that w has cx as unique closest point. Then there exists a ξ > 0 such that for all y ∈ Bξ (w) we have |c∂U (y)| = 1. By
Lemma 1.5 there exist 0 < ε < d(x, ∂U )/10 and a 0 < δ < ξ such that for all y ∈ Bδ(w) we have that c∂U (y) ⊂ Bε(cx). For
every y in Bδ(w) let c y denote its unique closest point. Define the following subsets of S(w, ∂U ):

R = {
p ∈ S(w, ∂U ): pϕ > 0, pϑ < m

}
, L = {

q ∈ S(w, ∂U ): qϕ < 0, qϑ < m
}
.

Clearly cx ∈ R ∩ L. We can define a function f : Bδ(w) → R ∪ L by letting f (y) = S(w, ∂U )∩ [y, c y]. This function is continu-
ous by Lemma 1.14. Let A = {(0, yϑ ) ∈ Bδ(w): m < yϑ < m + δ}. Then for all y ∈ A we must have that f (y) ∈ L or f (y) ∈ R .
In fact, since f −1(R) ∩ A and f −1(L) ∩ A are open in A and A = f −1(R) ∪ f −1(L) we must have that either f (A) ⊂ L or
f (A) ⊂ R . Without loss of generality we may assume that f (A) ⊂ L. Choose a point p ∈ Bδ(w) and a point q ∈ A such that
pϕ > 0, pϑ = m, and the straight line segment B = [p,q] is contained in Bδ(w). Then f (p) ∈ R and every point in B \ {q}
has positive ϕ-coordinate. Going from p to q along the straight line segment B let r be the last point such that f (r) ∈ R .
Let l be the straight line through the points r and w . Now let s ∈ l ∩ S(w, ∂U ) be such that sϑ < m. Note that sϕ < 0
since rϕ > 0. Then for every point y ∈ (r,q) we have that the point f (y) must lie to the left of s by Lemma 1.11. But this
contradicts continuity of f at r. �
Claim 3. E2(U ) is a one-manifold.

Proof of Claim 3. Let w ∈ E2(U ) and choose ε > 0 such that Bε(c1
w)∩ Bε(c2

w) = ∅ and Bε(c1
w)∩ S(w, ∂U ), Bε(c2

w)∩ S(w, ∂U )

are both arcs. Define closed sets X and Y as follows:

X = Bε

(
c1

w
) ∩ ∂U , Y = Bε

(
c2

w
) ∩ ∂U .
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Clearly X and Y are noninterlaced with respect to w and w ∈ E(X, Y ), so by Theorem 2.1 there exists a 0 < δ < d(w, X)/10
such that E(X, Y ) ∩ Bδ(w) is a one manifold. Furthermore, by Lemma 1.5, we can choose δ so small that for all z ∈ Bδ(w)

we have c∂U (z) ⊂ X ∪ Y . Clearly E(X, Y ) ∩ Bη(w) ⊂ E2(U ) ∩ Bη(w) for all 0 < η < δ. Hence E2(U ) is a 1-manifold. �
Let E be the component of E(X, Y ) ∩ Bδ(w) containing w . We can define two functions f X : E → ∂U and fY : E → ∂U

by for each x ∈ E:

f X (x) = c∂U (x) ∩ X, fY (x) = c∂U (x) ∩ Y .

Both functions are continuous by Lemma 1.14. We claim that both f X and fY are monotone. To see why this is true for f X ,
let y ∈ X be such that y has at least two preimages p and q in E . Let A be the arc in E going from p to q and let T be
the open region enclosed by [p, y], [q, y] and A. Since δ < d(w, X)/10 it follows that T ⊂ B(p, X) ∪ B(q, X) and therefore
∂U ∩ T = ∅. By the Non-crossing Lemma 1.11 and the fact that for every x ∈ E we have that([

x, f X (x)
) ∪ [

x, fY (x)
)) ∩ E2(U ) = {x}

it follows that each point in A has y as its unique closest point in X , hence f X is monotone. In a similar fashion it can be
shown that fY is monotone. Hence each of f X (E) and fY (E) is either an arc or a point. We claim that the following set

CE =
⋃
y∈E

[
y, f X (y)

) ∪ [
y, fY (y)

)
(1)

is a closed neighborhood of w in U . The fact that CE is closed follows from the USC Lemma 1.14, to see why CE is a
neighborhood let s and t denote the endpoints of the arc E . Let S X be the simple closed curve formed by the union of the
arcs E , f X (E) (this set could be a point), [s, f X (s)] and [t, f X (t)]. Define the set R X to be the closed disk bounded by S X

that contains [w, f X (w)]. Similarly define SY and RY . We will show that CE = R X ∪ RY . Clearly CE ⊂ R X ∪ RY , so assume,
by way of contradiction, that there exists a point y in R = R X ∪ RY such that y /∈ CE. Since CE is closed there exists an open
set W ⊂ R X ∪ RY containing y such that W ∩ CE = ∅. Let V be a component of W containing y, then V ⊂ R X or V ⊂ RY .
Without loss of generality, we may assume that V ⊂ R X . Note that for any z ∈ E we have that [z, f X (z)] ∩ V = ∅. For every
z ∈ E define R X (z) to be the closed region enclosed by the arc between s and z, the arc between f X (s) and f X (z), [s, f X (s)]
and [z, f X (z)]. Define two sets El and Er as follows:

El = {
z ∈ E: V � R X (z)

}
, Er = {

z ∈ E: V ⊂ R X (z)
}
.

Note that E = El ∪ Er and Er ∩ El = ∅. Furthermore both El and Er are closed since the set {[z, fx(z)]}z∈E forms a continuous
family of arcs. Since s ∈ El and t ∈ Er this contradicts the connectedness of E . Hence CE is a neighborhood of w . Note that
we can use the same method of proof to show that CE is a closed neighborhood for each point z ∈ [w, f X (w)).

For each y ∈ CE \ E we have that y /∈ E2(U ). Hence E(X, Y ) ∩ Bη(w) = E2(U ) ∩ Bη(w) for some η > 0, which proves that
E2(U ) is a one-manifold.

Let C be a component of E2(U ). Define the set P as follows:

P =
⋃
w∈C

[
w, c1

w

) ∪ [
w, c2

w

)
.

Note that in the case that w ∈ ∂U , [w, c1
w) ∪ [w, c2

w) = ∅.

Claim 4. P is closed in U .

Proof of Claim 4. Let {zi}i∈N be a sequence in P converging to a point z∞ ∈ U . By the definition of P there exists a sequence
wi in C such that zi ∈ Ai = [wi, c1

wi
)∪[wi, c2

wi
). Without loss of generality we may assume that w∞ = lim wi exists. Clearly

w∞ ∈ C and if w∞ ∈ ∂U then this would imply that z∞ = lim zi ∈ ∂U . So w∞ /∈ ∂U . By Lemmas 1.11 and 1.14 we must have
that the arcs Ai converge into the arc A∞ = [w∞, c1

w∞) ∪ [w∞, c2
w∞), i.e. lim Ai ⊂ A∞ . Hence z∞ = lim zi ∈ A∞ . This shows

that z∞ ∈ A∞ ⊂ P . �
Claim 5. P is open in U .

Proof of Claim 5. Let z ∈ P , this means there exists a w ∈ C \ ∂U such that z ∈ A = [w, c1
w) ∪ [w, c2

w). If w ∈ C , then the arc
A divides U into two components. We will refer to these components as the left and right sides of A. If w ∈ C then choose
a p ∈ C on the left side of A and a q ∈ C on the right side such that d(p,q) < d(w, ∂U )/10. Let C ′ be the closed arc in C
going from p to q, then the set P ′ defined by

P ′ =
⋃

′

[
y, c1

y

) ∪ [
y, c2

y

)

y∈C
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is neighborhood of z contained in P . If w ∈ C \ C then w has a unique closest point cw , let A = [w, cw). For each x in C
let Ax = [x, c1

x) ∪ [x, c2
x). We claim that w /∈ Ax for each x ∈ C . To see why this is true suppose, by way of contradiction, that

there exists a y ∈ C such that w ∈ A y . The arc A y divides U into two components. We will refer to these components as
the left and right sides of A y . Now pick a point p ∈ C on the left side of A y and a point q ∈ C on the right side of A y . Note
that A p ∩ A y = ∅ = Aq ∩ A y and that the arcs A p and Aq both divide U into two components as well. Define F p to be the
component of U \ A p that does not contain y and define Fq to be the component of U \ Aq that does not contain y. Since
C ∩ Ax = {x} for every x ∈ C and C is homeomorphic to the interval (0,1) ⊂ R it follows that once C enters F p or Fq it
cannot leave F p or Fq anymore. But then w /∈ C , a contradiction. Hence w /∈ Ax for each x ∈ C . For each x ∈ C let Dx be the
component of U \ Ax such that w ∈ Dx , note that A ⊂ Dx for every x ∈ C . Since C cannot leave a component Dx once it has
entered it, it follows that the components Dx are nested. We can now define an order on C by letting

x < y ⇔ Dx � D y .

Now pick a point y ∈ C and consider the set

B = (w, y)C = {x ∈ C : x < y}.
Choose an strictly decreasing sequence {wi}i∈N in B such that lim wi = w and wi ∈ Bd(w,∂U )(w) for each i ∈ N. The open
arc B locally separates the plane, so for every point x ∈ B we can find a small open neighborhood Nx such that B separates
Nx into two components Lx and Rx . We will call Lx the left side of B at x and Rx the right side of B at x. By a local
compactness argument this allows us to consistently define a left side LB and a right side R B of B . Choose an strictly
decreasing sequence {wi}i∈N in B such that lim wi = w and wi ∈ Bd(w,∂U )/10(w) for each i ∈ N. We can now define a
function f L : (w, w1]C → ∂U by letting

f L(x) =
{

c1
x if [x, c1

x) ∩ LB 	= ∅,

c2
x if [x, c2

x) ∩ LB 	= ∅.

Similarly we can define a function f R : (w, w1]C → ∂U . Using arguments similar to the arguments used to prove that f X

and fY are monotone and continuous, we can show that both f L and f R are monotone and continuous. For each i ∈ N
define the following sets:

Ai = [
wi, c1

wi

) ∪ [
wi, c2

wi

)
,

Li = f L
([wi, w1]C

)
,

Ri = f R
([wi, w1]C

)
.

By Lemmas 1.11 and 1.14 we must have that the arcs Ai converge to the arc A. Notice that for each i � 2 the union of
the arcs A1, Ai , and the sets Li and Ri (both of which are either a point or an arc) form a simple closed curve Si . For i � 2
let Di be the open disk enclosed by Si , containing (wi, w1)C . Then by results from Claim 3 we have

Di =
⋃

x∈(wi ,w1)C

Ax.

Clearly each Di ⊂ P and Di+1 ⊃ Di for each i. Define D as follows:

D = clU

( ∞⋃
i=2

Di

)
.

We claim that D is a closed neighborhood of z that is contained in P . The fact that D is contained in P follows from
the fact that each Di is contained in P and P is closed in U by Claim 4. Since z ∈ A = lim Ai we have that z ∈ D . Let
δ = min{d(cw , z)/10,d(z, w)}. Now assume, by way of contradiction, that there exist a point x with d(x, z) < δ such that
x /∈ D . Since D is closed in U there exists an open set W ⊂ U containing x such that W ∩ D = ∅. Let V be an open ball
around x inside W such that the radius of V is less than δ. Note that V ∩ A = ∅, since A ⊂ D . Since the arcs Ai converge to
the arc A it follows that V ⊂ Dk for some k ∈ N, hence V ⊂ D , a contradiction. �

Claims 4 and 5 show that P = U and hence that E2(U ) is connected.

Claim 6. E2(U ) is smooth.

Proof of Claim 6. Pick a point w in E2(U ) and choose a local spherical coordinate system such that w = (0,0), and c1
w

and c2
w lie symmetric with respect to the negative ϕ-axis, the ϑ-coordinate of c1

w being positive. For each x 	= w let arg x
be the angle (in [0,2π)) between the positive ϕ-axis and the line segment [w, x]. We claim that the ϕ-axis tangent is to
E2(U ) at w . Suppose that this is not the case. Then we may assume, without loss of generality, that there is a sequence
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wi = (ϕi, ϑi), with ϕi > 0 and ϑi > 0, of points in E2(U ) converging to w such that for some α > 0 we have arg wi > α. Let
lα be the line that makes an angle α with the positive ϕ-axis and let cα be the point on S(w, ∂U ) that is symmetric with
c1

w with respect to the line lα . Let B be the subarc of S(w, ∂U ) that joins the points c1
w and cα but is disjoint from c2

w .
Choose ε > 0 such that:

(1) the ε-neighborhoods of c1
w and c2

w are disjoint,
(2) the ε-neighborhoods of c2

w and B are disjoint, and
(3) the intersection of B(w, ∂U + δ) and ∂U is contained in the union of the said neighborhoods (cf. Collar Lemma).

Now by the USC Lemma, if one of the closest points of wi to ∂U is in Bε(c1
w) (and this holds true if i is large enough), the

other must be in Bε(c2
w). But inspection of the intersection of S(wi, ∂U ) and ∂U shows that the other closest point must

be in the ε-neighborhood of B . This is a contradiction �
This completes the proof of the theorem. �
We have shown that if U ∈ U2 such that the boundary of U has two components, then the boundary of U is locally

connected and any cut point in the boundary is of order two. The case when the boundary of U is connected (or equivalently
when U is simply connected) is more complicated. It can be shown that in this case the boundary of U is not necessarily
locally connected. However, it can be shown that the set of accessible points in ∂U consists of at most two arc components
A1 and A2 which are associated with the two sides of the centerline E2(U ). Hence U can be roughly pictured as a long thin
tube with two ends and E2(U ) as its center line. The closure of the center line is no longer necessarily an arc: the remainder
of E2(U ) may be non-degenerate (i.e., the centerline can behave like a sin(1/x) function). In particular, the boundary of U
can be an indecomposable continuum (i.e., cannot be written as the union of two of its proper sub-continua; see [3] for
additional information).
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