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1. INTRODUCTION

Let % be a positive integer and n a nonnegative integer. A k-rowed plane
partition of n is a two-dimensional array {n;}; ;cx.s>1 Of nonnegative integers
whose sum is # and such that n,, > n;; whenever p <i and ¢ <. Thus a
one-rowed plane partition of # is an ordinary partition of n. Let p,(n) denote the
number of k2-rowed plane partitions of 7, and let m,(g) (¢ an indeterminate) be the
corresponding generating function, that is,

mlq) = i;opk(m)q"‘-

A fundamental theorem of MacMahon (see [1, p. 184, Corollary 11.3]) gives a
product expansion for m,(g):

mlg) = [[ (1 — gy mintka, (L1)
j=1

The case k=1 was known to Euler, who also found the following famous
formula for the reciprocal of m(g):

ﬁ (1 —g) = f (—1)mgt1/BmiEm+1) (1.2)

j=1 M=—a0
(see [1, Chap. 1]). This formula leads to Euler’s recursion for computing the
partition function p,(g) [1, Corollary 1.8, p. 12].

Our main result is a formula for m,(¢g)~! which generalizes (1.2); see Theorem
3.4 below. The proof uses (1.1) and (1.2), and is based on results concerning
Macdonald’s identities [14(a)] and Kac-Moody, or GCM (generalized Cartan
matrix), Lie algebras announced in [10(a)] and proved in [10(b)]. (These Lie
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algebras had been introduced by V. G. Kac and R. V. Moody.) We combine
these results with the “numerator formula”, which we explain presently. We
also obtain (Theorem 3.5) a new kind of formula for [T, ,(1 — ¢’)*, of a slightly
different sort from the ones discovered in [10(a), (b)].

The numerator formula concerns the numerator in Weyl’s character formula
for a finite-dimensional irreducible module for a complex semisimple Lie algebra.
It is well known that the denominator in Weyl’s character formula has a certain
product expansion, given by Weyl’s “denominator formula.” In general, the
numerator has no such expansion. However, after a simple rewriting of the
character formula (see Corollary 2.3), the character, the numerator, and the
denominator become polynomials in certain variables: the exponentials of minus
the simple roots. When these varjables are all set equal to a single variable, say
g, then the numerator becomes a polynomial in ¢ which does have a produet
expansion. This fact is also well known, although it is usually expressed
differently. It is a step in one of the classical proofs of Weyl’s dimension formula;
see, for example, [2; 6, p. 256]. We call the setting of the variables equal to ¢
the “principal specialization” for a reason explained in [10(b), Section 17]
(cf. Section 2), and we call the product formula for the principally specialized
numerator the “numerator formula’’; for the precise statement, see Theorem 2.4.

Before it was noticed that the numerator formula was already known, an
analogous formula had been found in [11] for two infinite-dimensional Kac—
Moody Lie algebras. The relevant modules are the infinite-dimensional
“standard modules”, for which Kac [7(b)] had proved Weyl’s character formula.
The main discovery in [11] was that after principal specialization, the characters
of a certain pair of standard modules become power series in g which are closely
related to the product sides of the two Rogers—-Ramanujan identities in com-
binatorial analysis. (We get power series instead of polynomials in g because of
the infinite dimensionality of the Lie algebras and the modules.)

In this paper, we show that both the classical numerator formula and the
result in [11] are generalized by a new numerator formula for all Kac-Moody Lie
algebras (see Theorems 2.4 and 2.6 below). (See also [7(c)].) The general proof
(Section 2) is straightforward but a little delicate. It uses the fact that the Weyl
group is a Coxeter group, a fact proved by Kac[7(a)], Lim [13]}, and Solomon and
Verma [16]). We emphasize that in special cases (for example, when the GCM is
classical or symmetric), the proof simplifies considerably. From the present
point of view, what was proved (by concrete computation) in [11] was the
numerator formula for the two Euclidean Lie algebras A4* and A{?. The formula
for these two cases is exploited further in [3], and for case A{", also in [12]. The
numerator formula for more general Euclidean Lie algebras is used in [7(c), 8].

In [5], Hughes proves that the Gaussian polynomials

[n] [n]!

T =0
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where [f]t = (1 — ¢)(1 — ¢?) - (1 — ¢’), and the polynomial [T;_,(1 + ¢’) are
unimodal, i.e., that their coefficients first increase and then decrease, not
necessarily strictly. (For the Gaussian polynomial case, this had been proved long
age by means of classical invariant theory (cf. [1, p. 48; 17(b)]). Hughes uses a
classical theorem of Dynkin asserting (in the present terminology) that the
principally specialized character of a finite-dimensional irreducible module of a
finite-dimensional complex semisimple Lie algebra is a unimodal polynomial.
Stanley points out that Hughes’ proofs are considerably simplified if one quotes
the numerator formula for the Lie algebras and modules with which Hughes
works [17(b)]. It is also clear that one can prove partition-theoretic results
analogous to Hughes’ by combining Dynkin’s theorem with the numerator
formula for general semisimple Lie algebras and finite-dimensional modules.

Common factors can be canceled from or inserted in the principal specializa-
tions of the numerator and denominator in the character formula in interesting
ways. Stanley has studied what amounts to this for the case sl(n, C), and in
doing so, he has expressed the principally specialized characters for this Lie
algebra in terms of the ‘“‘contents’” and the “hook lengths” of plane partitions
[17(a), Theorem 15.3, p. 263). It would be interesting to study the analogous
“cancellation” for general Lie algebras. Theorem 3.4 and Stanley’s result
(cf. also [17(b)]) can in principle be combined in order to give a formula for the
reciprocal of MacMahon's generating function in terms of plane partitions.

The Gausstan polynomial [}] (¢ = 1,..., 2 — 1) is the principally specialized
character of the ith fundamental module of sl(n, C). It is also known that [{'](g)
is the number of (7 — 1)-dimensional subspaces of (n — 1)-dimensional projec-
tive space over the field with ¢ elements. This and analogous coincidences are
discussed in Section 4, which was written in collaboration with J. Jantzen. In
Section 4, certain principally specialized characters for finite-dimensional simple
Lie algebras are related to the Poincaré polynomials of the irreducible compact
Hermitian symmetric spaces and to the cardinalities of certain finite varieties.
We are grateful to W. Kantor for stimulating conversations on this material.

Principal specialization for infinite-dimensional Kac-Moody Lie algebras
was introduced in [10(a)], and principal specialization for their standard modules
was introduced in [11, 3]. The ideas of studying the standard modules “con-
cretely” and of relating them to power series identities were also introduced
in [11, 3]. The general numerator formula presented here was discovered in
1977 as a direct offshoot of this work.

2. THE NUMERATOR FORMULA
Let A = (4)icto....s be an (I + 1) X (I + 1) symmetrizable GCM and

let I = I(4) be the corresponding Kac-Moody Lie algebra (denoted g(A4) in
[4, 10(b)]), over the field C of complex numbers. (We could work over any field
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of characteristic zero.) As usual, denote the canonical generators by %, e, , f;
(7 == 0,..., 1), and let }) be the span of the 4; . Let [* be the extended Lie algebra
defined as in [4] or [10(b)], so that I* is the semidirect product with [ of a certain
finite-dimensional space d of derivations of I. Let ) be the abelian subalgebra
D @ b of I°. The roots of | may now be defined in the natural way as elements of
(b2)* (the dual space of h°):

For all pe (he)*, let I* = {x e | [k, x] = @(h)x for all A e b¢}; call ¢ a root if
¢ #0andI® £ 0. ’

If A is the classical Cartan matrix of a finite-dimensional semisimple Lie
algebra, then we may take d = 0, so that [* = [ is the semisimple Lie algebra
corresponding to A. In this case, the entire discussion in this section reduces to a
discussion of ordinary finite-dimensional semisimple Lie algebras.

Let 4 C(h°)* be the set of roots of [, 4, C 4, the set of positive roots, and
Oy 0 4oy &g € A, , the simple roots. Then e; e [* for i = 0,..., [. Also, 4;; =
a;(h;) for all £, § = 0,..., . For each 7 = 0,..., [, define the simple reflection r; of
(h°)* by the condition

rp = — olh)x

for all ¢ € (h2)*. Let W be the Weyl group of |, i.e., the group of automorphisms
of (h°)* generated by 7, ,..., 7, . Then W is a Coxeter group with generators 7;
and defining relations (r;)2 = 1 for all i =0,...,/ and (rgz;)™ =1 for all
4, =0,...,] with i 54j; here m; = 2,3,4,6, or oo according as A;A;; =
0, 1,2, 3, or >4, respectively. For all we W, note that det w = -1 according
to whether w can be expressed as a product of an even (resp., odd) number of
simple reflections.

Define p € (h*)* to be any fixed element satisfying the conditions p(#;) = 1 for
all i =0,...,I. Then r,p — p = —a; for each 7, and wp — p is a nonnegative
integral linear combination of —ay ,..., —a; for each we W.

Let P ={xe(he)*|A(k;)eZ, for all { =0,..,1}. (Z, is the set of non-
negative integers.) For each A € P, there is a unique (up to equivalence) irreducible
I? module X? such that X is generated by a nonzero vector x, with the properties
that [¢ - x, = O for all pe 4, and & - x, = A(h)x, for all A e he. X* is called the
standard 1°~module with highest weight A. (In case | is finite-dimensional semi-
simple, the standard modules are exactly the finite-dimensional irreducible
modules.) X? is the direct sum of its weight spaces X,,* for p € (h*)*; here

X ={xeX?| h-x = u(h)x for all ke b}

Each weight space is finite dimensional, and if X * # 0, then A — x is a non-
negative integral linear combination of simple roots. The character of X* is
defined to be the formal (possibly infinite) sum

XX = 3 (dim X,") e(u),

ne(®)*
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where ¢(°) is understood as a formal exponential. Thus the character is the
generating function of the dimensions of the weight spaces. In [7(b)], where
Kac introduces p and the standard modules, he proves the following formal
identities, which are generalizations of Weyl’s character and denominator
formulas:

ProrosiTiON 2.1. For all Ac P,

n _ Zwew (det w)e(w(A + p) —p)
XX = E':ew (det w)e(wp — p) °

ProposiTiON 2.2. We have

Y (det whe(wp — p) = [] (1 — f—g))aimi”

wew ved,

As is pointed out in [7(b), 15], Proposition 2.2 is also a generalization of
Macdonald’s identities [14].
We reformulate Proposition 2.1 as follows:

CoOROLLARY 2.3. Let

NQ) = Y (det wle(w(d + p) — (A + p))

wew

D=} (detw)e(wp — p),

wew

and

so that D = N(0). Then
x(XM)/e(d) = N)/D.

Remark. The point of this rewriting is that N(A), D, and y(X*)/e(A) are all
elements of the formal power series ring Z[[e(—oy),..., e(—;)]], Z being the
ring of integers. This is because @w(A -+ p) — (A + p) is a nonnegative integral
linear combination of —ay ..., —a; .

Unlike D, N(A) does not in general have a product expansion. (For an
interesting special case in which it does, see [3, Sect. 4]). However, in [11] it was
discovered for a certain pair of infinite-dimensional Kac-Moody Lie algebras
that N(}A) does have a product expansion after all the power series variables
e(—ay),..., e(—ay) are set equal, and the resulting specialization of N(A) equals a
suitable specialization of D. This result was used in [11] to place the product
sides of the Rogers—Ramanujan identities in a natural Lie-algebraic context.
Here we formulate and prove this “numerator formula” in the present much
more general setting.

Let A* be the generalized Cartan matrix which is the transpose of 4. Then A4*
is again symmetrizable. Let [’ be the Kac-Moody Lie algebra [(4*). We call I’ the
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transpose Lie algebra. Let the analogs for I of I, b, b, kg ..., £, , 4,4, 0 40y oy,
Yo, 71, Wy p, P, e(*), [®(pe d), and D be denoted with primes: I'¢, §’, b',
hoses by, A’y AL, ag ey ap, 7551y, W, p's PP, €(0), I (pe '), and D,
respectively. Then
D' = 3 (detw)e'(wp’ — p’).
wew’

Note that we do not need to assume that dim h* = dim §’¢, i.e., we may adjoin
spaces of derivations of unequal dimensions to [ and I’ to construct I¢ and I'¢. We

do, however, make the natural assumption that the indices are ordered so that
A;; = a(hy) for all 7,j = 0,..., I. (Recall that 4;; = o(k;) for all 4,7 = 0,..., I).

DEerFINITION. Let g be an indeterminate. The principal g-specializations are the
two homomorphisms of power series rings

Z[[e(—ap),.., e(—ou)]] = Z[[q]]
and

Z[[¢'(—ag),--, € (—aa)]] — Z[[4]]

which take ¢(—a;) (resp., €(—a;)) to g for alli = Q,..., L.

Remark. 'The reason why these specializations are called “principal” is
explained in [10(b), Section 17]; for an ‘‘affine” Kac-Moody Lie algebra,

principal specialization is related in a certain natural way to Kostant’s “principal’
automorphism [9] of a finite-dimensional simple Lie algebra.

DzrFiviTiON.  Let (54 ,..., 5;) be a sequence of positive integers. The g-special-
izations of type (sq ,..., 5;) are the two homomorphisms

Z[[e(—c)s--., e(—ou)]] — Z[[q]]
and

Z[[e'(—ag)y---» €(—er)]] — Z[[q]]

which take e(—a,) (resp., €'(—«;)) to g% for all { = 0,..., &. Note that the principal
g-specializations are the g-specializations of type (1,..., 1).
We can now state the numerator formula and two immediate consequences.

THeOREM 2.4. Let A€ P. Then the principal g-specialization of the numerator
N(X) (see Corollary 2.3) equals the g-specialization of type (A+p)(h),-.., (A-+p) (A1)
of the denominator D’ for the transpose Lie algebral'. In particular (using Proposition
2.2), the principal g-specialization of the numerator has a product expansion.
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Taking A = 0 gives:

CoRroLLARY 2.5. The principal g-specialization of the denominator D equals the
principal q-specialization of the denominator D' for the transpose Lie algebra.

From Theorem 2.4, Corollary 2.5, and the character formula (Corollary 2.3),
we get:

THEOREM 2.6. Let A€ P. Then the principal g-specialization of x(X?)/e(A)
has a product expansion, and in fact equals D,[Dy , where D, is the g-specialization
of type (A =+ p)(ko),-., (A + p)(I;)) of D', and Dy is the principal g-specialization
of D',

Remark. 1f the GCM A is symmetric (which means exactly that all roots
have equal length if [ is finite-dimensional simple), then of course it is unnecessary
to deal with the transpose Lie algebra, and the proofs and statements of the
results simplify correspondingly. They also simplify, and in fact become
classical, if [ is finite-dimensional semisimple.

We now prove Theorem 2.4.

W acts on h® by the contragredient of its action on (h#)*.

Lemma 2.7. For allhely® and i = 0,..., |,
rih = h — ay(h)h; .
In particular, W preserves .
Proof. For all p e (h?)*,
plrih) = (rue)(h)

= (u — p(h;) o;)(h)
= u(h — oy(h)h;). Q.E.D.

Notation. Let RC (h?)* be the span of 4, and let R’ C (y’?)* be the span
of 4’. Note that W preserves R and that W’ preserves R’. Define 8 € }j* to be any
fixed element such that «,(8) = 1 for all £ = 0,..., , and similarly, let 8’ eh’®
be any fixed element such that o5(8') = 1 for all / = 0,..., L.

Lemma 2.8. Forallwe W,

wp—p€ER
and
wd —3deh.
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Forallw e W,
w/p’ — pl e RI
and

wd — ¥ ely.

Proof. It is of course sufficient to prove only the two assertions about w, and
the first of these was already observed above. To prove that ws — 6 € I, we use
induction on the length of 2 (the minimal number of simple reflections needed
to express w). Lemma 2.7 proves our assertion for @ of length 1. Suppose that
w8 — 8 €l for all w of lenth n. Any Weyl group element of length n + 1 can
be written r,, for some i = 0,..., / and some w of length n. We have

riwd — 8 = ry(wd — 8) + r;8 — 8,

completing the proof. Q.E.D.

Define a linear isomorphism ¢: fj — R’ by the conditions «(#;) = o for all
7 = 0,..., [, and a linear isomorphism, also denoted :: R — })’, by the conditions
o) = by .

Levma 2.9. For all pe R and h e,
(h)((e)) = p(h).
Proof. We have
ai(h;) = Ais = o),
ie.,
o(h:)(u(oy)) = o)

for all 4, = 0,..., . Now just use linearity. Q.E.D.

W and W’ are isomorphic under the homomorphism ¢: W — W’ determined
by the conditions «(r;) = r; for all i = 0,..., /. In fact, as mentioned above, the
defining relations for the Coxeter groups W and W’ depend only on the products
Ay -

Lemma 2.10. Forallwe W,

wp — p) = o(w) & — &
and
(wd — 8) = (w)p’ — p'.
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Proof. By Lemma?2.8, (wp — p) and «(wd — 8) are defined. We use induction
on the length of w. Forall: = 0,..., ],

rep — p) = d—o) = —H; — u(r)¥ — &,
by Lemma 2.7 applied to I'. Assume that ((wp — p) = o(w) & — &', Then
rawp — p) = rdwp — p) + 7:p — p)
= i(wp — p — (wp — p)(h) + i(r}8’ — &
= ()’ — 8" — (wp — p)ho)K + (r ) — .
But by Lemma 2.9,
(wp — p)(hs) = (h;)(«(wp — p))
= a((w)¥’ — &),

and so, using Lemma 2.7 for I,

rewp — p) = dr)((w) & — &) + r) & — &

= l(f¢u7) & — 8’,

proving the first assertion. The second follows by reversing the roles of [ and I'.
QE.D.

Lemma 2.11. For all A € (h*)*, define 8, € }y'* to be any element such that
(&) = (A + p)h) = (A + p)((h))
Joralli =0,..., L. Then for all we W,
(w2 + p) — A+ p))®) = ((w) " — )3
Proof. We have
(@ + p) = (O + P)B) = (A + pYu8) — (A + £)(B)
= A+ p) w3 — 8)
= QA+ p)(H((w)p' — "))  (Lemma 2.10)
— () — §)E)). QED.

607/35/2-6
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For all A € P, the principal g-specialization of N(A) is clearly

Z (det w)g=(wA+o) =+ (8) — Z (det w)q—(:.(w)‘lo’—b’)(a:\) (Lemma 2.11),

weW weWw

= Y (det w)q—w—lp'—p')(a;)

weWw’

= Y (det w)q—(wp'—p')(a,]),
wew”’
and this is exactly the g-specialization of type ((A + p)(%)s---, (A ++ p)(A;)) of
D', This completes the proof of Theorem 2.4. Q.E.D.

3. ArPLICATION TO PLANE PARTITIONS

We now restrict our attention to the Kac—-Moody Lie algebras [ which are
affine, i.e., by definition, the quotient of I by its center is of the form § =
g Q¢ C[t, t71}, where g is finite-dimensional simple and ¢ is an indeterminate.
Our formula for the reciprocal of the generating function for k-rowed plane
partitions will come from the special case g = sl(k, C).

Let W and 4, be the Weyl group and root system, respectively, of g, with
4, the set of positive roots of g. Then g embeds naturally into [ in such a way
that W, becomes identified with the subgroup of W generated by 7, ..., #;, 4,
with the intersection of 4 and the integral span of «,..., o;, and 4, with
4y 4, . Let A7, be the complement of 4, , in 4, . If both sides in Proposition
2.2 are divided by the ordinary Weyl denominator [Te,, (1 — &(—g)) for g
and if Weyl’s character formula for g is used, then Proposition 2.2 yields a
formula for TToear (1 — € —@))4m!® This formula is essentially formula (0.4) in
Macdonald [14] (cf. also Theorem 13.4 in [10(b)]).

In [14], this division was performed in order to allow the specialization
e(—o;) > 1 (1 = 1,..., 1), e(—p) > ¢ in Proposition 2.2; if the division were not
performed, the result of this specialization would only be 0 = 0. After the
division, however, this specialization, together with Weyl’s dimension formula
for g, gave Macdonald his formula for n(q)#™¢ [14, formula (0.5)]. But in
[10(a), (b)], it was discovered that the principal specialization of Proposition 2.2
is interesting, and we remark now that the principal specialization of Proposition
2.2 after the division by [ T 2o, (1 — € — o)) is also interesting. In place of Weyl’s
dimension formula for g, we now use the numerator formula (Section 2 above)
for g, which is of course a classical formula since g is finite dimensional. Our
method, then is essentially to apply principal specialization to [14, formula (0.4)],
and to combine with the numerator formula for g and the results in [10(a), (b)].
It turns out to be technically convenient in our argument below to bypass the
numerator formula for g by starting from the appropriate results in [10(b)].
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TrEOREM 3.1. Let ¢(q) = [ 1ini(1 — ¢°). Let h be the Coxeter number of the
complex simple Lie algebra g; my ..., my, the exponents of g; hyC g a Cartan
subalgebra; A, Chy, the set of roots; b Ch¥, the real span of Ay; (-, ), the
canontcal bilinear form on by induced by the Killing form of g; || * 1%, the corre-
sponding quadratic form; A,  C A, , the set of positive roots; p, = 3364, .65
Po = 3> 5 20, 2B1\| BIP (the half-sum of positive roots for the root system dual to 4);
M, the lattice in )} generated by {B/l| 8| | B € 4y}. Then

olgf TI (1 —gmem)

nek
i=1,.5.1

-~ ll—tit0—(0g /2h)[E—Rllog—(p,/2R)|12 — glo.2hutog)
q (1] (] 0 q o).

ueM o€dy

Proof. By Theorem 17.3 and Propositibn 17.7 of [10(b)], the left-hand side in
the statement of the present theorem equals

Y deto ¥ qle+oog—(og /20 P=hlog(oy /2 *
aeW, ueM

But
| 2 4 opo — (po/2R)*
=l & + po=(po/2R)I + 2(opo ~po » 1 + po = (p5/2h)) + (opo = po » oo — po)
=l & + po — (po/20)I* + 2(po — po » 1 — (pt/2k))+(opo — po s 9Py + po)-
Since
(apo — po > Opo + po) = llapo|? — Il po II? = O,
(*) becomes

Y +og= oo/ TWIP=Rilog—og/2ME Y (det @)qER o q—oqsu—(0e/2M)
ueM oEW,
But the sum over W, is
z (det a)q(opo—po.%u—ao) = 1_[ (11— q—(¢.2hu—no)),
oEW, o4,

by Weyl’s denominator formula for g. Now just change p to —p. Q.E.D.

.CoroLLARY 3.2. In the notation of Theorem 3.1, suppose that g has only one

root length.
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Then
el@f [[ A—gqremy=3 ¢ [T (1 — genin),
’;EZ g uEM o€d, .

Moreover, M is the lattice generated by {hB | B € 4,}.
Proof. It is well known that in this case, || 8|2 == 1/ for Be 4,, and so
Po = pol2h. QED.

One can now divide both sides in Theorem 3.1 or Corollary 3.2 by the
principal specialization of Weyl’s denominator for g, i.e., by [Toeq, (1 — ¢ ’)
(Note that (p, p) is just the height of the root ¢.) Since we are interested only
in the equal-root-length case, we state:

CoroLLARY 3.3, In the setting of Corollary 3.2,

o@) T] (L=gmem)) TI (1 —ges)

nek @ES
=100 o

= z grimi? H (1 — g2noutop) (] — g2hiv.ng)),

ueM €4y, 4

For g = sl(k, C), £ = 2, this asserts that

e@fe@)* [1 (1 —g=9)?

1i<igk
= Z q(1/2>215-1w2 H (1 — gusti=i))(1 — ¢i—i).
ul,z.:..,ukekz 1i<dgk
18,=0

When £ = 1, this formula becomes trivial. Multiplying through by ¢(¢g*) and
using Euler’s formula for ¢, we conclude:

Tureorem 3.4. For all k > 1,
[T — gymin.o

ix
1 — guawssti=i

k
— Z (__1)1:g(1/2)kv(3v+1)z Z q‘1/2)2i=1u,-2 H — qi—z‘

veZ Ugoesrs npEkZ 1E<Tgk

Remarks. (1) By MacMahon’s theorem (1.1) on the generating function of
k-rowed plane partitions [1, Corollary 11.3, p. 184], Theorem 3.4 is a formula for
the reciprocal of this generating function. Note that for £ = 1, it reduces to
Euler’s recussion for ordinary partitions. (But recall also that we have used
Euler’s formula in the proof.)
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(2) Theorem 3.4 uses the principal specialization, i.e., the specialization
of type (1,..., 1). Note that our method is flexible enough to give other formulas
for the reciprocal of the generating function of k-rowed plane partitions, by
using for example the specialization of Proposition 2.2 of type (2, 1,..., 1) for
g = sl(k + 1, C). (For general complex simple g, this specialization was used in
[10(a), (b)] to obtain a formula for 7(g)rank 8.)

By looking at Remark (2) in [10(a)], which lists the left-hand sides in Corollary
3.2 for general g, we see that Corollary 3.2 gives a new kind of formula for an
arbitrary power of ¢(g). For example, for g = sl(k, C):

Throrem 3.5. We have

Pl = ;Z (—I)Vq‘”"”"”“’““’}% Y qu/g)z"‘_l“‘l [T (1= guursl.
vel Hyeons €K 1Ci<igk
Zum=0
Remark. In view of Remark (2) after Theorem 3.4, we also get a new formula
for the arbitrary power 7(g)™ek® of »(q) by using the (2, 1,..., 1) specialization.
This formula looks somewhat like the one in Theorem 3.1.

4. PRINCIPALLY SPECIALIZED CHARACTERS, POINCARE POLYNOMIALS OF
HERMITIAN SYMMETRIC SPACES, AND CARDINALITIES OF FINITE VARIETIES

This section was written jointly with J. Jantzen.

Let I be a complex simple Lie algebra of rank /. We use the notation of
Section 2, with b = 0, and the index set taken to be {l,..., I} in place of {0,..., I}.

Fix a value of ¢ = 1,..., ] such that the corresponding simple root o; of the
transpose Lie algebra I’ has coefficient 1 in the expansion of the highest root of I’
in terms of simple roots. Let 7 be the corresponding fundamental [-module, so
that the highest weight A of V' is defined by the conditions A(k;) = 8;; ( = 1,..., 1)
Denote by y, the principally specialized character of V, so that y,(q) is the
principal g-specialization of x(V')/e(A). For w € W, denote by /(w) the length of W,
and for a subset W* of W, define the polynomial

HW*g) = Y, ¢'™.

wew*

Let W, be the subgroup of W generated by the reflections r; with j # 4, and let
W1 be the set of those w € W such that wla; € 4, for all § 5 4. It is well known
that W = W, and that

(W) = p(W)p(Wy).

Note that p(W) = p(W’), W’ being the Weyl group of I'.
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ProrosiTioN 4.1. We have

xv(9) = p(W)(g)-

In particular, dim V is the number of elements in W1,

Proof. Define the height ht ¢ of a root ¢ of I’ to be the sum of the expansion
coefficients of ¢ in terms of the «; . Let 4, be the set of those positive roots of I
involving o in their expansion. Then the coefficient of «; in any root in 4.1
is exactly 1. Hence by Theorem 2.6,

1 — q1+htd>

xv(@) = ]I T g

¢ea}
But by [14(b), Corollary 2.5] (see also [9]),

1 — q1+hi¢

pW)g)=p(W)q) = [] T_g%

d€4]

A, being the set of positive roots for I'. Using the analogous formula for p(W;)(g)
as well, we get

xv(q) = p(W) @ p(W1)(g) = p(W*)(q)- QED.

- Remarks. (1) 'The following alternate proof of Proposition 4.1 gives a direct
connection between the coefficients of y,(¢) and those of p(W?*)(¢): The hypo-
thesis on A implies that A is the only dominant weight of V| and that the weights of
V are exactly the elements w—1A, w € W, these elements being distinct. But it is
easy to see that the height of A — w1\ is [(w™) = [(w), the height of an element
of h* being defined as the sum of its expansion coefficients in terms of o, ,..., &; .
This completes the argument.

(2) It is easy to write down yxp(g) in all the special cases, by using the
well-known formula

L] — gmitl
pW)) =[] 72—
i=1 q

where m, ,..., m; are the exponents of [. The results are as follows: For [ of type
A4, , all [ fundamental modules satisfy our condition, and we get the Gaussian
polynomials [*§')(g), ¢ = 1,..., L. For | of type B, C;, Eg, E,, respectively, there
is only one relevant principally specialized character, and it equals H:=1(1 + ¢%)
(for the spin module), (1 — ¢)(1 — a), (1 — X1 — (1 — g)1 — ¢
(for two modules), (1 4 ¢°)(1 4 ¢°)(1 — ¢**)/(1 — q), respectively. For 1 of



APPLICATION OF THE NUMERATOR FORMULA 193

type D, , the standard 2/-dimensional module gives (1 4+ ¢"1)(1 — ¢)/(1 — ¢),
and the two half-spin modules each give ]—[,t:(l + ¢%).

Let G (respectively, G’) be a complex connected Lie group with Lie algebra
(respectively, I'), and let P (respectively, P’) be the maximal parabolic subgroup
corresponding to the index . It is well known that the generalized flag manifolds
G/P and G'[P’ have only even-dimensional cells, and that the Poincaré poly-
nomials of G/P and of G’/P’ are both equal to p(W1)(g%). Hence we have:

CorOLLARY 4.2. (1) The Poincaré polynomial of G'|P’ is xv(g®).

(2) For all j > 0, the 2 jth Betti number of G'[P’ is dim V_;, where V_; is
the sum of the weight spaces of V for which the weight p satisfies the condition
htA — u) = j..

(3) The Euler characteristic of G'|P" is dim V.

Remark. The spaces G'|P' in Corollary 4.2 are precisely the irreducible
compact Hermitian symmetric spaces. Corollary 4.2 also holds with G'/P’
replaced by G/P.

For I = sl(n, C) the ith flag manifold under consideration is the Grassmann
variety of ¢~planes in C". For | = so(2n + 1, C), G/P is the variety of maximal
totally isotropic subspaces of the orthogonal vector space C?*t1, For sp(2n, C),
G/P consists of the (isotropic) lines in the symplectic space C?». For so(2n, C)
(standard. 2n-dimensional representation), we have the variety of isotropic lines
in C2" viewed as an. orthogonal space, and for so(2s, C) (the two half-spin
representations), we have the varieties consisting of the two types of maximal
totally isotropic subspaces of the orthogonal space C2n.

Now let ¢ be a prime power, and let K be the field with ¢ elements, Let
G[K] be a Chevalley group associated with [ and K, and let P[K] be the obvious
parabolic subgroup. By the standard formulas for the orders of finite Chevalley
groups and parabolic subgroups (see, e.g., [18, 19]), we have

| GIKI/| PIK]| = p(WXg).

We conclude:

CoroLLARY 4.3. The number of points in the variety G[K]/P[K] is xy(q)
(g having its new meaning).

The case | = sl(n, C) gives the Grassmann variety of 7-planes in n-space K*.
Thus the number [7](g) of such i-planes is the principally specialized character y;-
evaluated at the number ¢g. Analogous comments hold for the other classical Lie
algebras and suitable finite varieties analogous to the complex examples above.
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