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a b s t r a c t

Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a
receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for
efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly
understood. We present the first description of receptor binding proteins and a tail tip structure for the
siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages,
A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were
identified as RBPs in phage A118. Rhamnose residues in wall teichoic acids represent the binding ligands
for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose
and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission
electron microscopy allowed the creation of a topological model of the A118 phage tail.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Listeria monocytogenes is an opportunistic, Gram-positive, non
spore-forming pathogen responsible for severe infections in both
animals and humans and associated with a high mortality rate
of up to 30% (Vazquez-Boland et al., 2001). The genus Listeria encom-
passes ten closely related species, now including the recently
described new species L. rocourtiae (Leclercq et al., 2010), L. marthii
(Graves et al., 2010), L. weihenstephanensis (Lang Halter et al., 2013)
and L. fleischmanni (Bertsch et al., 2013). Primarily associated with
human infections are L. monocytogenes strains of the serovars (SV)
1/2a, 1/2b and 4b (Farber and Peterkin, 1991). The SV 1/2 group is
defined by two different sugar residues linked to the C2 and C4
positions of the linear ribitol-phosphate backbone of the wall teichoic
acids (WTA), namely rhamnose and N-acetylglucosamine. In contrast,
SV 4b cell walls has a WTA type featuring a complex secondary
substitution of integrated N-acetylglucosamine with terminal glucose
and galactose (Eugster and Loessner, 2012; Fiedler, 1988; Uchikawa
et al., 1986).

Bacteriophages have emerged as versatile tools for detection
and biocontrol of foodborne pathogens, such as Listeria. Phage

based detection methods can be used to trace the source of
bacterial contamination and outbreaks, and help to identify and
characterize associated strains (Loessner and Busse, 1990). The
application of reporter phages, allows for a rapid detection of
viable Listeria cells in food and environmental samples (Loessner
et al., 1996; Hagens et al., 2011). Phage products are also used to
sanitize food products and production facilities from Listeria
contaminations (Carlton et al., 2005). Altogether, a prerequisite
for use of phages in biocontrol and detection is the understanding
of molecular details of the adsorption and infection processes
(Habann et al., 2014).

The first step in the infection of a bacterial host by a bacter-
iophage is the adsorption of the phage to the host cell. The
attachment of the virus particle requires recognition of a cell wall
associated ligand (commonly referred to as phage receptor) by a
phage receptor binding protein (RBP). The RBP recognition and
binding is extremely specific, and high affinity is required for rapid
and efficient virus attachment. Most of our knowledge about this
interaction originates from research on T-phages and lambdoid
phages infecting Escherichia coli and related organisms (Chatterjee
and Rothenberg, 2012; Killmann et al., 1995; Marti et al., 2013;
Rossman and Yap, 2014). Apart from some intensive research on
Bacillus phages and phages of lactic acid bacteria, little is known
about the infection process for most phages infecting Gram-
positive bacteria. Over the past decade or so, several RBP encoding
genes of Streptococcus thermophilus phages DT1 and MD4, Bacillus
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subtilis phages SPP1 and φ29, Lactococcus lactis phages bIL67 and
CHL92 of the c2 species, sk1, bIL170, and p2 of the 936 species, and
TP901-1 and Tuc2009 belonging to the P335 species, have been
identified (Bebeacua et al., 2013; De Haard et al., 2005; Duplessis
and Moineau, 2001; Dupont et al., 2004; Guo et al., 2003; Jakutyte
et al., 2012; Sciara et al., 2008; Spinelli et al., 2006a, 2014; Stuer-
Lauridsen et al., 2003; Vegge et al., 2006). Most of these proteins
likely bind to cell wall associated carbohydrates such as teichoic
acids, as it has been proposed for Bacillus phage SPP1 (Baptista
et al., 2008). For some RBPs, phosphoglycerol binding has been
demonstrated (Ricagno et al., 2006; Sciara et al., 2010; Siponen
et al., 2009). We have recently been able to determine molecular
details and some structural information on the RBPs of the large
virulent Listeria myovirus A511 (Habann et al., 2014). However,
no data have been available for the numerous siphoviruses of
pathogenic Gram-positive bacteria in general, and specifically for
Listeria.

Listeria phage A118 has been isolated from a L. monocytogenes
SV 1/2 lysogen (Loessner, 1991). It features a non-contractile tail of
300 nm in length, an isometric capsid with diameter of 61 nm
(Dorscht et al., 2009a; Zink and Loessner, 1992), and belongs to the
Siphoviridae family of dsDNA bacterial viruses in the order Caudo-
virales. Phage A118 represents the prototype of the temperate
Listeria phages, and was the first to be sequenced and analyzed in
some molecular detail (Loessner et al., 2000). Its 40.8 kb genome
encodes 72 gene products, and is organized in three life-cycle
specific gene clusters.

Listeria phage P35 shares no homology to A118 or other known
Listeria phages except for P40, and belongs to a recently described
class of virulent Listeria Siphoviridae featuring an approximately
57 nm head diameter and a 110 nm tail (Dorscht et al., 2009b). Its
genome is 35.8 kb in size and contains 56 putative ORFs. In
contrast to A118, P35 can infect most Listeria SV 1/2 strains. It
lacks lysogeny control genes and therefore features a virulent
(i.e. obligate lytic) lifestyle (Dorscht et al., 2009b; #1247). We
selected both phages for this study, since their different morphol-
ogies and genomes, but the ability to infect the same Listeria
serovars, might reveal common elements in receptor recognition
and adsorption to the host cell.

We here report the identification of the proteins of both phages
A118 and P35 responsible for binding to the host cell receptor. The
cellular receptors for the RBP proteins have been identified as
sugar side-chains of the wall teichoic acids. Employing various
approaches, a topological model of the bacteriophage A118 base-
plate could be created. Our data provide insights into the early
stages of phage infection and elucidate important steps in the
process of cell recognition and adsorption by these viruses.

Results

A118 and P35 baseplate proteins feature homologies to known phage
tail proteins

A in silico analysis was performed to identify putative functions
to A118 and P35 baseplate proteins and RBP candidates. Genes
located between tmp, encoding the tape measure protein Tmp

(gp16 in A118 and gp14 in P35) (Katsura, 1987), and the holin/
endolysin lysis cassette (Loessner et al., 1995), were considered
putative baseplate proteins (Fig. 1).

HHpred analyses revealed strong structural homologies of A118
gp17 to the distal tail proteins (Dit) gp46 of Lactococcus phage
TP901-1 and gp19.1 of Bacillus phage SPP1, both described as
central core proteins involved in adsorption apparatus assembly
(Veesler et al., 2010, 2012). Strong homologies to gp44, forming a
central hub involved in DNA translocation in Enterobacteria phage
Mu, could be detected for A118 gp18 (Kondou et al., 2005). A118
gp19 is homologous to several proteins involved in receptor
recognition and cell infection (Barbirz et al., 2008; Muller et al.,
2008). Homologies to baseplate proteins of Lactococcus phage
TP901-1 could be identified for A118 gp20. The N-terminal part
of A118 gp20 resembles TP901-1 gp48 (BppU), while the C-
terminal part is homologous to another TP901-1 baseplate protein
gp49 (BppL), which was previously described as RBP (Vegge et al.,
2006). Additionally, the C-terminal region shares structural simi-
larity to the RBP of Lactococcus phage p2 (Bebeacua et al., 2013).
No significant hits to phage related proteins could be identified for
A118 gp21, gp22 or gp23.

Gp15, gp16 and gp17 were considered as putative RBPs in phage
P35, due to their location at the end of the structural genes,
downstream of Tmp (gp14) (Fig. 1). Bioinformatics revealed homo-
logies to gp19.1 (Dit) of Bacillus phage SPP1 in the N-terminal and
C-terminal parts of P35 gp15, while a homology to gp15 (Dit) of
Lactococcus phage p2 was restricted to 232 aa residues in the
N-terminal part. The P35 gp16 protein features a C-terminal
homology to a putative prophage tail protein (gp18) from L. mono-
cytogenes EGDe, and P35 gp17 exhibits a homology to the Lacto-
coccus phage p2 receptor binding protein. No homologies could be
found among the amino acid sequence of the putative RBPs in
phage A118 (gp19 and gp20), and the protein sequences of the RBP
candidates of P35, despite the fact that both phages infect SV 1/2
strains of Listeria. Interestingly, the N-termini of A118 gp19 and
gp20 feature strong homology to the N-terminal part of the gp19
and gp20 of Listeria phage A500, which infects Listeria SV 4b strains
(Dorscht et al., 2009b; Loessner and Busse, 1990; Zink and Loessner,
1992), while the C-terminus is highly variable. Taken together, in
silico analyses allowed us to assign putative functions to most A118
baseplate proteins. Gp19 and gp20 represent putative RBPs in A118,
but are unrelated to the RBP candidates gp15, gp16 and gp17 in P35.

The RBPs of A118 and P35 recognize specific sugar residues in Listeria
cell wall teichoic acids

We aimed to experimentally confirm the function of the RBPs
of phages A118 and P35, i.e., binding to their corresponding host
cell receptors. Towards this aim, N-terminal GFP-fusions of the
proteins were tested for their ability to bind to Listeria cells. We
found that both A118 GFP-gp19 and A118 GFP-gp20 were able to
evenly coat Listeria SV 1/2 cells (Fig. 2A and B), but not the other
Listeria serovars tested, suggesting that both proteins contribute to
the host-specificity of A118. Regarding phage P35, only gp16
exhibited specific adsorption to SV 1/2 cells (Fig. 2C), and this
protein was confirmed to be the RBP of phage P35.

Fig. 1. Genomic localization of putative baseplate genes in bacteriophages A118 and P35. Genes located in between tmp (indicated in gray) and the holin/endolysin encoding
genes (indicated in red) were considered as putative baseplate protein-encoding genes including RBP candidates (indicated in blue).
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Both A118 and P35 can only infect SV 1/2 strains of Listeria. Chara-
cteristic sugar substituents, namely N-acetylglucosamine (GlcNAc) and
rhamnose (Rha) in the WTA polymers are thought to serve as possible
receptors for phage attachment, i.e., binding of the corresponding RBP
(Eugster et al., 2011; Eugster and Loessner, 2012; Eugster et al.,
submitted for publication). Specific attachment to Rha residues has
previously been demonstrated for phage A118 (Eugster and Loessner,
2012), and the requirement for both Rha and GlcNAc has been shown
for the short tail fiber protein of Listeria phage A511 (Eugster et al.,
submitted for publication; Habann et al., 2014). Here, we assessed the
function of RBP candidate proteins by adsorption tests with GFP-
tagged RBP proteins (Fig. 2). Cell wall mutant strains lacking either
GlcNAc (EGDeΔlmo2550) or Rha (EGDeΔlmo1083) in wall teichoic
acids (Eugster et al., submitted for publication) were used in a first
experiment (Fig. 2). GFP-gp19 and GFP-gp20 of A118 bound to
EGDeΔlmo2550 (Fig. 2D and E) but not to EGDeΔlmo1083 (Fig. 2G
and H), indicating a requirement for the presence of WTA rhamnose
for binding of A118 gp19 and gp20 to the bacterial cell. Interestingly,
the P35 RBP gp16 did not bind to either the ΔGlcNAc or the ΔRha
mutant (Fig. 2F and I), suggesting that both sugar residues are required

for cell wall recognition and phage adsorption. Neither A118 gp19 or
gp20, nor P35 gp16 displayed binding to cells lacking both GlcNAc and
Rha (Fig. 2J–L). Furthermore, no binding occurred to cells in which
only GlcNAc (1034::pPL2(lmo2550)) in WTA was restored by comple-
mentation (Fig. 2M and N). However, reconstitution of rhamnose in
1034::pPL2(lmo1083) resulted in binding of both A118 RBP proteins
(Fig. 2O and P), which demonstrated the requirement for this sugar in
binding of A118 to its target cell.

Reconstitution of GlcNAc in WSLC 1442 (SV 1/2), restored the
binding capability of P35 gp16 to wildtype levels (Fig. 2Q and R).
Additional evidence that both sugars might be involved in receptor
recognition resulted from assays using a SV 3 strain (WSLC 1031),
which lacks rhamnose, and is unable to bind GFP-gp16 (Fig. 2S).
When Rha was supplied by trans complementation (1031::pPL2
(lmo1083)), binding of gp16 could be observed (Fig. 2T).

The above results were matched with data obtained from pull
down assays, which can quantify phage adsorption (Eugster et al.,
submitted for publication), and compared to host range spectra of
both A118 and P35 (Table 1). A clear correlation between cell wall
binding of both RBPs, adsorption of whole phage to its Listeria

Fig. 2. Identification binding ligands (receptors) for Listeria phages A118 and P35. Confocal microscopy of Listeria monocytogenes cells incubated with purified A118 GFP-gp19,
GFP-gp20, or P35 GFP-gp16. (Panels A–C): Binding to wildtype SV 1/2 strain EGDe. Binding to mutants deficient for N-acetylglucosamine (GlcNAc) in their wall teichoic acid
can be detected for GFP-gp19 and GFP-gp20 (D and E), but not for GFP-gp16 (F). No binding could be observed to rhamnose (Rha) deficient mutants (G–I), and no binding
occurs to the SV 7 strain (WSLC 1034) lacking both sugar substitutions (J–L). Restoring of N-acetylglucosamine substitution in the WTA polymer of WSLC 1034 did not enable
binding of A118 GFP-gp19 and GFP-gp20 (M and N), whereas restoring rhamnose supported recognition by both proteins (O and P). WSLC1442 lacks GlcNAc and does not
bind P35 GFP-gp16, whereas a GlcNAc-reconstituted strain does (Q and R). Serovar 3 cells feature only GlcNAc and no rhamnose, and do not allow binding (S) until rhamnose
is introduced (T). Scale bars correspond to 5 mm.

Table 1
Binding properties of GFP-RBP fusion proteins, adsorption of phage particles to the bacterial cell wall, and infectivity of phages. þ/� indicates a positive/negative result for
GFP-RBP binding, adsorption of phage particles to Listeria spp. or host susceptibility to phage infection.

Species Strain
(WSLC)

Serovar Binding of
A118 GFP-gp19

Binding of
A118 GFP-gp20

Adsorption of A118 to
bacterial cell wall

A118 plaque
formation

Binding of
P35 GFP-gp16

Adsorption of P35 to
bacterial cell wall

P35 plaque
formation

L. monocytogenes EGDe 1/2a þ þ þ þ þ þ þ
L. monocytogenes Mack 1/2a þ þ þ þ þ þ þ
L. monocytogenes 1442 1/2a þ þ þ þ � � �
L. monocytogenes 1066 1/2b þ þ þ þ þ þ þ
L. monocytogenes 1083 1/2b þ þ þ � þ þ þ
L. monocytogenes 1001 1/2c þ þ þ þ þ þ þ
L. monocytogenes 1031 3b � � � � � � �
L. monocytogenes 1032 3c � � � � � � �
L. monocytogenes 1020 4a � � � � � � �
L. monocytogenes 1042 4b � � � � � � �
L. monocytogenes 1019 4c � � � � � � �
L. monocytogenes 1033 4d � � � � � � �
L. ivanovii 3009 5 � � � � � � �
L. ivanovii 3010 5 � � � � � � �
L. innocua 2021 6a � � � � � � �
L. innocua 2054 6a � � � � � � �
L. innocua 2653 6b � � � � � � �
L. innocua 20105 6b � � � � � � �
L. innocua 2024 6b � � � � � � �
L. innocua 2012 6b � � � � � � �
L. monocytogenes 1034 7 � � � � � � �
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target, and plaque formation (i.e., successful completion of lytic
cycle by the phage) was found for A118, however, restricted to
Listeria SV 1/2 hosts. One exception is strain WSLC 1083, which
was decorated by GFP-gp19, GFP-gp20, and the A118 phage itself,
but not yield plaques. Binding of P35 phage, P35 GFP-gp16, and
infection range also matched perfectly, and were also limited to
strains of SV 1/2 only (Table 1).

A118 gp18, gp19, and gp20 are required for attachment

Antibodies raised against putative tail components were employed
to evaluate the role of the different A118 baseplate proteins in
attachment and infection. The infectivity of phage particles after pre-
incubation with sera containing the specific antibodies was investi-
gated by quantitative phage plating. Pre-incubation of phage A118
particles with antibodies α-gp16, α-gp17, and α-gp21 had no effect on
the phage infectivity (Fig. 3). In contrast, exposure to α-gp18, α-gp19,
and α-gp20 completely inhibited phage infection, suggesting that the
corresponding phage proteins gp18, gp19, and gp20 play essential
roles in the early steps of phage infection (i.e., virus attachment), and
are accessible to antibodies in the mature phage particle.

Topological model of the A118 tail tip

The major goal of this study was identification and localization of
the individual A118 tail components, which would enable develop-
ment of a structural model for the A118 baseplate. Towards these
aims, antibodies against gp16 to gp21 were used in transmission
electron microscopy (TEM) experiments. The antibodies were used
to crosslink phage particles by their two antigen binding sites
(Fig. 4A and B). A secondary, gold conjugated anti-rabbit antibody
was employed to better visualize precise locations of the primary
antibodies attached to the phage particles (Fig. 4C). Antibody α-gp16
(directed against the C-terminus of Tmp) bound at the interconnec-
tion of tail tube and tail tip. Interestingly, α-gp17 crosslinked the virus
particles at two different positions within the phage baseplate: one

located directly below gp16 at the interconnection of tail to tail tip,
and the other in between the upper and lower baseplate “discs”.
These findings suggested that gp17 may form an inner core of the tail
tip, and remains accessible from different sites. A118 α-gp18 was able
to bind at the center of the lower baseplate ring, while binding of
α-gp19 was restricted to the lower baseplate ring. Antibody α-gp20
crosslinked phages at the upper baseplate ring. Lastly, α-gp21 cross-
linking demonstrated that the connection of upper and lower base-
plate ring is at least partly made up of A118 gp21. Since each of the
different antibodies bound in a characteristic pattern, we were able
to allocate all of the tested putative baseplate proteins to distinct
positions within the A118 baseplate structure. In conjunction with
data obtained by TEM, a hypothetical model of the A118 tail tip could
be generated (Fig. 5).

Discussion

The precise mechanism by which a phage particle recognizes,
adsorbs to, and infects a bacterial cell is only poorly understood,
especially for phages infecting Gram-positive pathogens. Most of our
current knowledge on the early steps of infection stems from
research on phages infecting Gram-negative bacteria, such as T4
(Leiman et al., 2010) and lambda (Wang et al., 2000; Werts et al.,
1994). However, these data are of only limited value for the study of
phages recognizing and attaching to Gram-positive cells. Research
on the latter has mostly focused on model organisms from dairy-
production environments and Bacillus phages (partially reviewed in
Jakutyte et al., 2012; Spinelli et al., 2014), and almost no data are
available on the adsorption process of phages of Gram-positive
pathogens such as Listeria and Staphylococcus (Habann et al.,
2014). In this work, we identified the receptor binding protein
(RBP) and its corresponding binding ligands (receptors) in the two
unrelated Listeria phages A118 and P35, which exclusively infect
strains of SV 1/2. A118 and the smaller P35 do not only differ in
terms of lifestyle (temperate vs. virulent), and lack of recognizable

Fig. 3. Gp18, gp19, and gp20 play an important role in phage A118 attachment. Bacteriophage particles were pre-incubated with six different antibodies (α) directed against
gp16 (Tmp) to gp21. Phages were then tested for their ability to attach to Listeria SV 1/2 host cells using pull down assays and determination of phage left in the supernatant.
Plaque forming units (pfu) are given in % (light gray bars) and were normalized to the controls, which were A118 particles exposed to the corresponding pre-immune sera
(dark gray bars) of the same animals, to exclude any variation introduced by individual antibody status of the different animals. Attachment of A118 on a serovar 4b strain
was used as negative control.

R. Bielmann et al. / Virology 477 (2015) 110–118 113



Fig. 4. EM-based identification of A118 baseplate proteins: (A) transmission electron microscopy of A118 particles crosslinked by pre-incubation with α-gp16 to α-gp21
antibodies. (B) Close-up of antibody-crosslinked baseplate proteins. Crosslinking sites are indicated by black arrows. (C) TEM images of immunogold-labeled A118 baseplate
proteins. Phages were incubated with α-gp16, α-gp17, α-gp18, α-gp19, α-gp20 and α-gp21 and labeled with secondary antibodies conjugated to 5 nm gold particles. All scale
bars correspond to 50 nm.
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sequence homology, but also seem to feature different strategies for
host recognition and phage attachment. In silico analysis revealed
structural homologies of the putative baseplate proteins to known
phage tail proteins, and allowed us to assign certain functions to
the A118- and P35-encoded proteins. Among the large Siphoviridae
group, two major clusters can be distinguished regarding baseplate
organization and host attachment (Bebeacua et al., 2012). Lacto-
coccus phages TP901-1, Tuc2009 or p2 exclusively interact with
cell-wall saccharides and exhibit complex baseplates harboring
multiple copies of RBPs for enhanced host affinity (Bebeacua
et al., 2013; Ricagno et al., 2006; Spinelli et al., 2006a, 2006b;
Tremblay et al., 2006). The other cluster comprises E. coli phage T5
and Bacillus phage SPP1, which feature a simpler tail-tip design and
recognize saccharidic receptors in a first step, followed by irrever-
sible binding to a proteinaceous host receptor (Baptista et al., 2008;
Boulanger et al., 2008; Flayhan et al., 2012). A previous study
proposed that both N-acetylglucosamine and rhamnose substituents
in the WTA polymers serve as receptors for Listeria phage A118
(Wendlinger et al., 1996), while very recent work demonstrated that
rhamnose alone is sufficient for host recognition and binding of A118
(Eugster et al., submitted for publication). Phage attachment is
restricted to strains which feature rhamnose residues in the WTAs,
and the recognition can effectively be inhibited by pre-incubation of
the virus with rhamnose (Eugster and Loessner, 2012). We here show
that A118 gp19 and gp20 acts as RBPs, and that rhamnose is required
as host cell receptor. The presence of two separate phage RBPs

indicates that A118 might use a TP901-1- or Tuc2009-like adsorption
mechanism. It is conceivable that attachment of A118 occurs in a two-
step process, in which the initial contact with the saccharide receptor
is accomplished by one of the proteins, followed by enhanced binding
via the secondary receptor, which triggers the subsequent events and
is therefore irreversible. However, the precise mechanism and kinetics
of this interaction remain to be determined.

The situation is somewhat different in phage P35, as only one
RBP protein could be identified: Binding of GFP-tagged gp16 to a
panel of 25 Listeria strains and mutants indicated that neither
rhamnose nor N-acetylglucosamine alone are sufficient, but both
are required for successful adsorption of the protein and the
phage. The available evidence suggests that gp16 in fact represents
the host specificity-determinant (Table 1). Interestingly, bioinfor-
matics indicated that it has a homolog in Listeria phage P40, which
seems taxonomically related to P35, but features a very different,
almost complementary host range including strains of serovars 4,
5, and 6 (Dorscht et al., 2009b). Recent examination of this
function showed that binding of P40 GFP-gp16 seems still limited
to SV 1/2 cells only (unpublished data). This strongly suggests that
other baseplate components should be involved in and responsible
for the receptor recognition process in P40 and thereby determine
host specificity.

Data obtained from antibody crosslinking and immunogold EM
experiments were used to combine in silico findings with struc-
tural data, and allowed us to propose a topological model of the
phage A118 tail and baseplate (Fig. 5). Based on the TEM images,
the bulk of the A118 baseplate is composed of two ring-like
structures. Gp19 could be localized at the lower ring of the
baseplate, while gp20 forms part of the upper ring. The presence
of such a double-disk structure has been previously proposed for
Lactococcus phages TP901-1 and Tuc2009 (Sciara et al., 2008;
Vegge et al., 2005). A118 gp20 features strong homologies to both
baseplate proteins BppU and BppL of TP901-1. The lower baseplate
of TP901-1 (BppL) and Tuc2009 (gp53) harbors the receptor
binding function and an exchange of both proteins resulted in an
altered host range of the chimeric phages (Vegge et al., 2006). Our
findings indicate that the situation seems strikingly different in
A118: both baseplate ring components exhibit a receptor binding
function, and both proteins play a role in phage attachment. Phage
adsorption can be completely inhibited by either α-gp19 or α-gp20
antisera (Fig. 3). Yet, the independent role of both elements awaits
confirmation by other experimental approaches, including tar-
geted mutagenesis of the respective phage genes.

The conserved order of Tmp (tape measure protein), Dit (distal
tail protein), and Tal (tail associated lysozyme) encoding genes in
several Siphoviridae genomes suggests a cross-talk between those
proteins (Veesler et al., 2010). These three elements form an
essential initiator complex for tail assembly. Phage propagation
in the absence of Tmp, Dit or Tal resulted in tail-less phage
particles (Vegge et al., 2005). This arrangement of Tmp, Dit and
Tal is also conserved in A118 and P35. The Tmp and Dit homologs
of P35 are directly followed by downstream gene specifying gp16,
which harbors the receptor binding function. P35 gp14 and A118
gp16 represent the tape measure proteins (Tmp). The Tmp C-
terminal domain is thought to possibly directly interact with the
N-terminal domain of the TP901-1 central tail fiber (¼Tal),
perhaps providing a pathway for signal transduction (Veesler
et al., 2012). An operon-based block cloning strategy including
Dit/Bpp/BppL in TP901-1 as well as p2 ORFs 15/16/18 was used to
demonstrate that Tal is not needed to obtain stable baseplates
in vitro, suggesting a possible function in anchoring the baseplate
to the phage tail, probably via interactions with the Tmp
(Campanacci et al., 2010). The fact that the C-terminal domain of
A118 Tmp is easily accessible to antibodies at the interconnection
between tail and baseplate (Fig. 4C) suggests that it might also be

Fig. 5. Proposed model of the A118 baseplate. Results of the antibody-binding and
crosslinking assays were summarized in a model of the phage tail tip, showing
some anatomical features and approximate dimensions. The model (right) is
aligned with TEM images (left). The central core is composed of the Dit-like protein
gp17 (purple). The upper and a lower baseplate structures consist of gp20 (green)
and gp19 (red) subunits, and are most likely arranged in a hexameric disk-like
structure around the distal tail protein (gp17). Gp21 (yellow) provides a possible
connection between both baseplate rings. The lower part of the baseplate is
terminated by a central hub, created by the Tal-like gp18 (blue), which also serves
as putative channel for DNA ejection and translocation (see text for explanation).
The Tmp (cyan) is located inside the tail tube, but also accessible to antibodies at
the interconnection of tail tube and tail tip, and provides a possible pathway for
signal transduction. The tail tube is enclosed in a tail sheath (top of the structure),
which is composed of Tsh/Tsh-L subunits (pink).
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involved in tail to baseplate connection and signal transduction
during infection.

A118 gp17 and P35 gp15 were identified as distal tail protein
(Dit) homologs, which forms a central hub providing a possible
anchor for tail tube, tail spike and possibly the baseplate, and
assumes an essential role in adsorption apparatus assembly (Sciara
et al., 2010; Veesler et al., 2010). TEM localization of A118 gp17 as
shown here demonstrated that gp17 is accessible to antibodies
from all sides (Fig. 4). It therefore likely forms the central core of
the A118 baseplate, providing an attachment point for other base-
plate proteins such as gp19 and gp20, which form the lower and
upper baseplate disks (Fig. 5). Phage pull down assays confirmed
that not only α-gp19 and α-gp20 can neutralize adsorption of A118,
but also the α-gp18 antiserum (Fig. 3). A118 gp18 is homologous to
baseplate protein gp44 of Enterobacteriaceae Myovirus Mu, which
plays an essential role in phage assembly and generation of viable
phages. It forms a hub-like structure with a central pore which was
proposed to serve as a transit channel for genomic DNA (Kondou et
al., 2005). Gp44 is a member of a group of gp27-like/Tal proteins,
including T4 gp27 (Kanamaru et al., 2002) and p2 gp16 (Sciara et
al., 2010), which feature structural similarities and a conserved
tertiary structure (Veesler and Cambillau, 2011). Thus, A118 gp18, as
well as P35 gp16, apparently represent the Tal proteins of these
phages. In general, Tal proteins have been reported to play
elemental roles in phage adsorption and infection as they are
involved in cell wall puncturing and DNA release (Kenny et al.,
2004; Kondou et al., 2005; Mc Grath et al., 2006). A central tail fiber
composed of Tal trimers was found in lactococcal phages Tuc2009
and TP901-1, and is believed to possess lytic activity for localized
degradation of the bacterial cell wall (Bebeacua et al., 2010; Kenny
et al., 2004). TEM investigations (Fig. 4) yielded no evidence for a
central tail spike at the A118 and P35 baseplates (Dorscht et al.,
2009b). However, we could still locate gp18 in the center of the
A118 lower baseplate. Previous work demonstrated that gp21 (Tal)
of Bacillus phage SPP1 closely interacts with Dit and conformational
changes from a “closed” to “open” position suggest a possible
trigger leading to a cascade signaling pathway ending up in viral
DNA ejection (Goulet et al., 2011; Plisson et al., 2007). The C-
terminus of Tal is responsible for specific adsorption of SPP1 to the
proteinaceous membrane receptor YueB (Baptista et al., 2008; Sao-
Jose et al., 2004, 2006). Taken together, the precise role of the A118
Tal protein remains to be elucidated.

Material and methods

Bacterial strains and growth conditions

E. coli strain XL1-Blue MRF' (Stratagene, La Jolla, USA) was used
for molecular cloning and protein production (Table S1). Cells were
grown at 30 1C in LB medium (1% tryptone, 0.5% yeast extract, 1%
NaCl, pH 7.4) under agitation and with the addition of Ampicillin
(100 μg/ml) to maintain plasmid stability. All Listeria strains (Table
S1) were grown in half-strength brain heart infusion (Biolife,
Milan, Italy) at 30 1C with agitation. Listeria cell wall mutants
had been constructed in the course of a previous project (Eugster
et al., 2011; Eugster et al., submitted for publication).

Bacteriophage propagation
Phages and their characteristics are listed in Table S1. Listeria

ivanovii strain WSLC 1001 (SV 1/2) was used for the propagation of
Listeria phage A118, and Listeria strain Mack (SV 1/2) was used for
propagation of phage P35. High titer phage stocks were obtained as
described (Klumpp et al., 2008), followed by PEG precipitation (1 M
NaCl, 10% PEG8000) (Yamamoto et al., 1970), and stepped CsCl-
density gradient centrifugation (Loessner et al., 2000; Sambrook

and Russell, 2001; Zink and Loessner, 1992). Phages stocks were
stored at 4 1C in CsCl and dialyzed (Spectrapor membrane, MWCO
50,000) against SM Buffer (100 mM NaCl, 8 mM MgSO4, 50 mM
Tris–HCl, pH 7.5) immediately before use.

DNA techniques
DNAwas amplified by PCR using Phusion polymerase (Finnzymes,

Vantaa, Finland), following the manufacturer's instructions.
Phage lysate or pure phage DNA was used as template. PCR
primers were designed to contain overhanging restriction sites
for cloning (Table S2). PCR products were digested with the
appropriate restriction enzyme BamHI, SacI or SalI (Fermentas,
Wohlen, Switzerland) and cloned into pQE-30 (Qiagen, Hilden,
Germany), or its derivative pHGFP (Loessner et al., 2002), linear-
ized with the same restriction enzymes. After transformation into
electrocompetent cells, plasmids were isolated (GenElute Plasmid
Miniprep Kit, Sigma-Aldrich, Buchs, Switzerland,) and the insert
sequence was confirmed by Sanger sequencing (GATC Biotech,
Konstanz, Germany).

Protein purification
Each protein of interest was produced in E. coli XL1-Blue after

transformation with the appropriate recombinant plasmid, essen-
tially as previously described (Schmelcher et al., 2010). Briefly,
protein production was induced in modified LB media (15 g/L
tryptose, 8 g/L yeast extract 5 g/L NaCl) with 100 mM IPTG (Sigma-
Aldrich) added as inducer once an OD600 nm of 0.5 was reached.
Protein expression was induced for 4 h at 15 1C and cells were
harvested by centrifugation and disrupted by passage through a
Stansted SPCH-10 pressure homogenizer (Stansted Fluid Power
Ltd, Harlow, UK) at 100 MPa pressure, then centrifuged and
filtered. Proteins were purified by immobilized metal affinity
chromatography (IMAC) by using MicroBiospin columns (Bio-
Rad, Cressier, Switzerland) packed with Ni-NTA Superflow resin
(Qiagen). Buffer B (500 mM NaCl, 50 mM Na2HPO4, 250 mM
imidazole, 0.1% Tween 20 [pH 8.0]) was used for the elution of
His-tagged proteins (Schmelcher et al., 2010).

Antibody generation
Polyclonal rabbit-antibodies were generated at the Institute of

Laboratory Animal Science, University of Zurich, Switzerland, in
accordance with all animal welfare regulations. A standard 10-
week immunization protocol was used. The protocols included
pre-immunization at day 0, an initial injection at day 1 (together
with Freund's Complete Adjuvant, Sigma), and boost injections
at days 28 and 56. A total of 250 mg protein was used for the
injections, with 500 ml volume per s.c. injection, together with
Freund's Incomplete Adjuvant (Sigma-Aldrich, 50 ml per injection
site). Sera obtained from the bleed 2 weeks after the final boost
were ProteinA purified (ProteinA-antibody purification Kit, Sigma)
to obtain the IgG fraction to be used for further experiments.

Cell wall decoration assays
Binding assays using purified GFP-RBP-fusion proteins were

carried out in order to assess cell wall binding by the recombinant
protein (Figs. 1 and 2). The assay was performed as described
earlier (Loessner et al., 2002). Purified GFP-RBP-fusion proteins
were centrifuged for 1 h with 30,000g at 4 1C to remove potential
protein aggregations. 0.5 ml of exponentially growing bacterial
cells were centrifuged and resuspended in 120 ml of SM buffer and
incubated together with 5 μg of GFP-RBP for 1 h at room tempera-
ture. Cells were washed twice with SM buffer and binding to the
bacterial cells was checked by confocal fluorescence microscopy
(Leica TCS SPE confocal microscope, Leica Microsystems GmbH,
Wetzlar, Germany).
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Phage host range
Host range analysis was performed as described elsewhere by

double agar overlay assays and spot-on-the-lawn assays (Kropinski
et al., 2009; Loessner and Busse, 1990). A total of 26 Listeria strains
were tested, including six cell wall mutants (Supplementary Table S1).

Phage adsorption pull down assay
Pull-down assays were performed to evaluate the adsorption

characteristics of phage to host cells. 100 μl of phage suspen-
sions (107 pfu/ml) were used, some were pre-incubated with
5 μl of antiserum for 1 h at room temperature (Fig. 3). Follow-
ing, samples were incubated for 10 min with 0.5 ml of an
overnight culture of the respective Listeria strains grown in
half-strength BHI media. Samples with pre-immune sera incu-
bation served as controls for antibody inhibition assays (Fig. 3).
Cells were centrifuged for 2 min with 12,000g and the pellet
was washed twice in PBST (pH 8.0). After dilution, double agar
overlay assays were performed, mixing host cells with either
supernatant or pellet. Following an overnight incubation at
30 1C, plaques were enumerated. All counts were normalized to
100% (propagation host strain in standard pull down assays
(Figs. S2 and S3); and pre-immune serum from same rabbit in
antibody pre-incubation pull down experiments (Fig. 3)), and
values above 25% were considered as positive for the composi-
tion of Table 1.

Transmission electron microscopy
CsCl-purified phage particles (10 μl of 1012 pfu/ml) were mixed

with 990 ml of TBT buffer (20 mM Tris, 50 mM NaCl, 10 mM
MgCl2), and incubated with 10 ml antiserum. After overnight
incubation, the sample was purified twice by passage of the
mixture through Sephacryl S-400 (Promega, Dübendorf, Switzer-
land) gravity-flow columns. Phages present in the flow-through
were then either directly prepared for TEM, or further incubated
with 5 ml of the secondary 5 nm gold conjugate goat anti-rabbit
IgG antibody (5 nm GAR, British Biocell, Cardiff, UK). Again,
phages were passed through Sephacryl S-400 columns after
incubation to remove unbound antibodies. Negative stains were
prepared with 2% uranyl acetate or 2% ammoniummolybdate
solution, and samples were adsorbed on carbon-coated G400
Hex-C3 grids (Science Services, Munich, Germany) (Steven et al.,
1988). The samples were observed in a Tecnai G2 Spirit micro-
scope at 120 kV, equipped with an EAGLE CCD camera (FEI,
Hillsboro, OR, USA).

Bioinformatics
Nucleotide and amino acid sequence analysis and interpretation

were performed using CLC Genomics Workbench (Version 7, CLC
Bio, Aarhus, Denmark). BLASTn, BLASTp and LALIGN algorithms
were used for pairwise sequence alignments (Altschul et al., 1990,
1997; Pearson et al., 1997). HHpred was used to determine structural
similarities and sequence homologs (Soding, 2005).

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at: http://dx.doi.org/10.1016/j.virol.2014.12.035.
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