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Abstract

We consider simple exclusion processes on Z for which the underlying random walk has a
2nite 2rst moment and whose initial distributions are product measures with di3erent densities
to the left and to the right of the origin. We prove a strong law of large numbers for the number
of particles present at time t in an interval growing linearly with t.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The simple exclusion process is a well studied interacting particle system. An ex-
cellent introduction to the subject is [6, Chapter 8]. We study the one-dimensional
case with state space X := {0; 1}Z and associated transition probability matrix p(x; y)
satisfying

(1) p(x; y) = p(0; y − x) ∀ x; y∈Z,
(2) M :=

∑
x∈Z |x|p(0; x)¡∞.
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The mean jump � :=
∑

x∈Z xp(0; x) is called the drift. For an arbitrary initial distri-
bution 	, we denote by P	 the probability measure on the space of trajectories of the
process associated to 	. The initial distribution will be a product measure 
�;� with
marginals 
�;�({: (x)=1})=� if x¿ 0 and 
�;�({: (x)=1})=� if x6 0. If �=�,
this measure will also be denoted by 
�. We recall that the measures 
� (06 �6 1)
are invariant for the process. Let t(x) indicate the presence/absence of a particle at
site x∈Z at time t¿ 0. Our main result is:

Theorem 1. Let 06 �6 �6 1 and let u¡v be real numbers. Then,

P
�; �

(
lim
t→∞

1
t

∑
ut6x6vt

t(x) =
∫ v

u
f(s) ds

)
= 1;

where

f(u) :=


� if u¡�(1 − 2�);
1
2

(
1 − u

�

)
if �(1 − 2�)6 u6 �(1 − 2�);

� if �(1 − 2�)¡u;

(1)

if �¿ 0 and

f(u) :=

{
� if u¡�(1 − � − �);

� if �(1 − � − �)6 u;
(2)

if �6 0.

Theorem 1 means that the number of particles in the interval [ut; vt] at time t satis2es
a strong law of large numbers as t goes to in2nity. The function f is the entropic so-
lution at time 1 of the Burgers equation associated to the exclusion process. The limit
in the Theorem is usually called “hydrodynamic limit”. Most of the hydrodynamic
results in the literature perform limits in probability or in distribution. In particular
Rezakhanlou [7] proved the convergence in probability of 1

t

∑
ut6x6vt t(x) for 2nite

range matrices p(x; y) and general initial pro2les in general mysanthrope processes
(the simple exclusion is a particular case of mysanthrope). A constructive proof of this
convergence has been recently extended for a larger class of attractive processes by
Bahadoran, Guiol, Ravishankar and Saada [3]. In the nearest neighbors totally asym-
metric case (p(x; x + 1) = 1 and p(x; y) = 0 otherwise) the almost sure convergence
was proven by Rost [8] using the subadditive ergodic theorem. This approach was
then taken by Benassi and Fouque [4] who stated the almost sure convergence under
the nearest-neighbors assumption p(x; y) = 0 if |x − y|¿ 1. Unfortunately their proof
contains a mistake, as will be explained later. Nevertheless the main ideas of their
proof, the use of a subadditive ergodic theorem and the introduction of various classes
of particles, are valuable and essential in this paper. SeppLalLainen [9] proved almost
sure convergence for general initial pro2les in the nearest neighbor totally asymmetric
case using a variational approach. Extension of this approach to more general jump
rates are not available.
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Our result is restricted to initial Riemann pro2les, i.e. the initial measure is a product
measure with density � to the right or the origin and density � to its left. Bahadoran,
Guiol, Ravishankar and Saada [3] extend hydrodynamic limits in probability from Rie-
mann to general initial pro2les, under 2nite range jumps. In the case their technique
could be further extended to a.s. convergence and unbounded jumps, our result together
with this extension would give a.s. hydrodynamic limits for general initial pro2les and
unbounded jumps. We leave this question open for future research.

The outline of the paper is as follows. In Section 2 we perform a graphical construc-
tion of the process, de2ne couplings and di3erent classes of particles; these are key
tools for the proofs. In Section 3 we use the subadditive ergodic theorem to show the
hydrodynamic limit for a particular initial measure with densities � and �; this measure
satis2es a stationary condition required by the subadditive ergodic theorem but is not
a product measure. In Section 4 we extend the result to initial product measures.

2. Graphical construction and coupling

2.1. Graphical construction

It is convenient to perform a Harris graphical construction of the process (see Harris
[5]. Let N = ((Nt(x; y); t¿ 0): x; y∈Z) be a family of independent Poisson pro-
cesses such that the rate of the process indexed by (x; y) is p(x; y). These processes
are constructed on a probability space denoted (�;A;P). We denote E the expec-
tation with respect to P. The rate of

∑
y∈Z Nt(x; y) is 1 for all x and the rates of∑

y¡x

∑
z¿x Nt(y; z) and

∑
z¡x

∑
y¿x Nt(y; z) are bounded by M for all x.

The process t is now constructed as follows: a particle at x∈Z waits until
∑

y Nt(x; y)
jumps. If this jump is due to a jump of Nt(x; z) then the particle either remains at x or
jumps to z according to whether or not z is occupied by another particle. We will now
show that on a set of probability 1, the trajectories of the process t are well de2ned
for all initial con2gurations. We ignore the set of probability 0 on which two Poisson
processes have a simultaneous jump. Fix z ∈Z and k ∈N. The number of crossings in
the time interval [0; k] of an arbitrary site i,∑

x¡i

∑
y¿i

(Nk(x; y) + Nk(y; x)); (3)

is a Poisson random variable with mean

k
∑
x¡i

∑
y¿i

(p(x; y) + p(y; x)) = k
∑
x

|x|p(0; x) = kM ¡∞; (4)

where the inequality follows from our hypothesis on p(x; y). In particular there is
a positive probability of no crossings: P(

∑
x¡i

∑
y¿i (Nk(x; y) + Nk(y; x)) = 0)¿ 0.

Then, by the Ergodic Theorem, with probability 1 there exist random integers i and j
such that i¡ z¡j and∑

x¡i

∑
y¿i

(Nk(x; y) + Nk(y; x)) =
∑
x¡j

∑
y¿j

(Nk(y; z) + Nk(z; y)) = 0:
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This means that, on a set �z;k of probability 1, up to time k no particles have crossed
(or attempted to cross) the boundaries of the interval [i; j − 1]. Hence the movement
of the particles which at time 0 were in that interval depend up to time k only on a
2nite number of Poisson processes and are therefore properly determined. Repeating the
argument for each z ∈Z and each k ∈N we see that on the set

⋂
z; k �z;k , t(z) is well

de2ned, as a function of N for all t¿ 0, z ∈Z and ∈X. When the dependence on
N needs to be emphasized we will write t(N). It is convenient to start the process
at di3erent times, with di3erent initial con2gurations; so we also use the notation ;s

t
to denote the con2guration at time t for a process that at time s started with the initial
con2guration ; when s = 0 we just denote 

t . In particular we have

;s
t (N) = ;0

t−s(�sN); (5)

where �sN = ((Nt(x; y) − Ns(x; y); t¿ s): x; y∈Z). Denote

P	(t ∈A) :=
∫

	(d)P(
t ∈A); E	F(t) :=

∫
	(d)E(F(

t )) (6)

for measurable sets A ⊂ X and continuous functions F :X → R.

2.2. Two types of particles (coupling)

The graphical construction allows the simultaneous construction (with the same Pois-
son processes) of various versions of the process starting with di3erent initial con2g-
urations. Let � and � two initial con2gurations and consider the coupled process

(�t; �t) := (�
t (N); �

t (N)): (7)

This is a Markov process in X2. We can continue using P and E as the probability
and expectation related to the coupled process because it is de2ned as a function
of N.

Let (Ux; x∈Z) be a sequence of aid random variables uniformly distributed in [0; 1]
and de2ne �(x)= 1{Ux6 �} and �(x)= 1{Ux6 �}. Call O
�;� the resulting distribution
of (�; �). Then, O
�;� is a product measure on X2 with marginals

O
�;�({(�; �): �(x) = 1; x∈A}) = �|A|

O
�;�({(�; �): �(x) = 1; x∈A}) = �|A|

for any 2nite A ⊂ Z. Furthermore, if 06 �¡�6 1, then

O
�;�({(�; �): �6 � coordinatewise}) = 1: (8)

Lemma 2. The process (�t; �t) de@ned in (7) has an invariant measure O	�;� with
marginals

O	�;�({(�; �): �(x) = 1; x∈A}) = �|A|;

O	�;�({(�; �): �(x) = 1; x∈A}) = �|A|



E. Andjel et al. / Stochastic Processes and their Applications 113 (2004) 217–233 221

for any @nite A ⊂ Z. For this measure, if 06 �¡�6 1, then

O	�;�({(�; �): �6 � coordinatewise}) = 1: (9)

Furthermore, it is possible to construct a measure =
 on X2 ×X2 with marginals O	�;�

and O
�;� such that

=
{((�; �); (�̃; �̃)): � = �̃} = 1: (10)

Proof. For the 2rst part we follow Liggett [6]. Start the process (�t; �t) with the product
measure O
�;�. Since the marginals are invariant measures for the marginal process, the
2rst and second marginal law of (�t; �t) are 
� and 
�, respectively for all t¿ 0.
Therefore, we can obtain O	�;� as any weak limit as t goes to in2nity of

1
t

∫ t

0
O
�;� OS(s) ds:

where OS(t) is the semi group describing the evolution of (�t; �t) which is de2ned by
O
 OS(t)f :=

∫
O
(d(�; �))f(�t; �t). The invariance of the limit is proven in Liggett [6].

The domination (9) follows because it is satis2ed by the initial distribution and any
transition keeps it (this property is usually referred to as attractiveness).

To construct a measure with the property (10) choose (�; �) with O	�;� and de2ne

�̃(x) := �(x);

�̃(x) := �(x) + 1{�(x) = 0; Ux ∈ [�; �]};
where (Ux) is the sequence of iid uniform random variables in [0; 1]. Since the �
marginal of O	�;� is the product measure with density �, the law of ((�; �); (�̃; �̃))
satis2es the requirements.

3. The subadditive ergodic theorem

Let T :X2 → X be de2ned by

T (�; �)(x) =


1 if �(x) = 1; �(x) = 1;

1 if �(x) = 0; �(x) = 1 and x6 0;

0 otherwise:

This operator erases the � particles to the right of the origin, keeps the � particles
to the left of the origin and all the � particles and identi2es the labels � and �. The
operator T induces a map from probability measures on X2 to probability measures on
X which will be called T too. Note that


�;� = T O
�;�: (11)
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Proposition 3. For all u¡v; �6 �, there exists a random variable G(u; v; �; �) such
that:

PT O	�; �

(
lim
t→∞

1
t

∑
ut6x6vt

t(x) = G(u; v; �; �)

)
= 1 (12)

The proof of this proposition follows Benassi and Fouque [4]. However, in that paper
the result is stated for the initial measureT O
�;� instead of T O	�;�. Because the measure
O
�;� is not invariant for the process (�t; �t), their random variables fail to satisfy con-
dition (b) of the Subadditive Ergodic Theorem (see below). We therefore apply that
theorem to the initial measure T O	�;� and then have to show that a strong law of large
numbers for this measure implies that a similar result holds for the more natural initial
product measure.

We state now the subadditive ergodic theorem (taken from Liggett [6]), introduce
the notion of processes with di3erent classes of particles and remark some hole-particle
symmetries inherent to the exclusion process. Then we prove the proposition.

3.1. The subadditive ergodic theorem

Let {Xm;n} a family of random variables satisfying:

(a) X0;0 = 0, X0; n6X0;m + Xm;n for 06m6 n.
(b) {X(n−1)k;nk ; n¿ 1} is a stationary sequence for each k¿ 1.
(c) {Xm;m+k ; k¿ 0} = {Xm+1;m+k+1; k¿ 0} in distribution for each m.
(d) E(X0;1)¡∞.

Then

lim
n→∞

X0; n

n
= X∞ exists a:s:

3.2. Particle–hole symmetry

Holes behave as particles but with rePected rates. More precisely, given a particle
con2guration  de2ne the reAected hole con@guration Q by Q(x) := 1 − (−x). The
rePected hole process Qt is an exclusion process with (the same) rates p(x; y). If the
particle con2guration  is distributed with 
�;�, then the rePected hole con2guration Q
is distributed with 
1−�;1−�. Analogously, if the two-type particle con2guration (�; �) is
distributed with 	�;�, then the two-type rePected hole con2guration ( Q�; Q�) is distributed
with O	1−�;1−�, an invariant measure for the two-type rePected hole process ( Q�t ; Q�t);
furthermore O	1−�;1−� has marginals 
1−� and 
1−�. The coordinates are interchanged
because Q�6 Q� and we want to keep the 2rst coordinate smaller than or equal to
the second as in (9). In particular, if (�; �) has law O	�;�, then Q = T ( Q�; Q�) has law
T O	1−�;1−�.
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3.3. Processes with diBerent classes of particles

Suppose � and - are elements of X such that � + -∈X, where the sum is taken
coordinatewise. Then we can interpret the process (�

t (N); �+-
t (N)) as follows: a

given site x∈Z is at time t occupied by a 2rst class particle, occupied by a second class
particle or vacant according to whether �

t (x) + �+-
t (x) equals 2, 1 or 0, respectively.

The reader can easily check that 2rst class particles ignore the presence of second class
particles and evolve as an exclusion process. In turn, a second class particle jumps to
empty sites as a 2rst class particle, but when a 2rst class particle jumps over a second
class one, they interchange sites. When � and - are as above we de2ne:

�t = �
t (N)

-t = �+-
t (N) − �

t (N):
(13)

So that �t are the 2rst class particles and -t the second class ones.
Let Tm, Vm :X → X be the truncations de2ned by

Tm-(x) = -(x)1{x6m}; Vm-(x) = -(x)1{x¿m}: (14)

Note that if � + -∈X, then T (�; � + -) = � + T0-.

Proof of Proposition 3. Let (�; �) be distributed according to O	�;�,

- := T0(� − �) (15)

and let (�t; -t) be the process de2ned by (13) with initial condition (�; -). Note that

t := �t + -t ; (16)

is an exclusion process with initial distribution T O	�;� and that �t is an exclusion process
with initial distribution 
�. Since this initial distribution is invariant, by the law of large
numbers for triangular arrays we have that for n∈N,

lim
n→∞

1
n

∑
un6x6vn

�n(x) = �(v − u) P O	�; � a:s:; (17)

Now taking n = [t] as the integer part of t,∑
u[t]6x6v[t]

�[t](x) −
∑

ut6x6vt

�t(x)

=

 ∑
u[t]6x6v[t]

−
∑

ut6x6vt

 �[t](x) +
∑

ut6x6vt

(�[t](x) − �t(x)): (18)

The absolute value of 2rst term is bounded by |ut − [ut]| + |vt − [vt]|. The absolute
value of the second term is bounded by the number of Poisson jumps crossing either
ut or vt in the interval t− [t]. Both terms converge to zero almost surely when divided
by t. This implies

lim
t→∞

1
t

∑
ut6x6vt

�t(x) = �(v − u) P O	�; � a:s:; (19)

where the limit is now taken for t ∈R.
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In Proposition 4, below we show that for u¿ 0 there exists a random variable
X (u; �; �) such that

lim
t→∞

1
t

∑
x¿ut

-t(x) = X (u; �; �) P O	�; � a:s: (20)

Then for u¿ 0 the proposition follows from (16), (19) and (20); the random variable
G is given by

G(u; v; �; �) := �(v − u) + X (u; �; �) − X (v; �; �): (21)

For u¡ 0 we use the particle-hole symmetry. By additivity of the limits, we can assume
v = 0. For convenience we consider u¿ 0 and compute the limits for −u.∑

−ut6x¡0

t(x) = [ut] −
∑

0¡x6ut

Qt(x); (22)

where Qt(x) is the rePected hole process. By the remarks made in the particle-hole
symmetry paragraph above, Q0 has law T O	1−�;1−�, so that we can apply the result for
positive u to get that (22) divided by t converges PT O	�; � a.s. to G(−u; 0; �; �) = u −
(1 − �)u − X (0; 1 − �; 1 − �) + X (u; 1 − �; 1 − �). This shows the proposition for all
u¡v∈R.

Proposition 4. Let u¿ 0. Let (�; �) be O	�;�-distributed and let (�t; -t) be the two-classes
particle process (13) with initial con@guration (�; T0(�−�)). Then there exists a ran-
dom variable X (u; �; �) such that (20) holds.

Proof. We prove the proposition for u¿ 0. Then, the case u = 0 follows by letting u
decrease to 0 in the following inequalities:

lim
t→∞

1
t

∑
x¿ut

-t(x)6 lim
t→∞

1
t

∑
x¿0

-t(x)6 u + lim
t→∞

1
t

∑
x¿ut

-t(x):

We need to introduce more classes of particles. If �, -, 0 and 1 are such that � + -+
1 + 0∈X, then

(�
t (N); �+-

t (N); �+-+1
t (N); �+-+1+0

t (N))

induces a process with 2rst, second, third and fourth class particles by de2ning, for
t¿ 0,

�t := �
t (N);

-t := �+-
t (N) − �

t (N);

1t := �+-+1
t (N) − �+-

t (N);

0t := �+-+1+0
t (N) − �+-+1

t (N):

(23)
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Let (�; �) be distributed according to O	�;� and

- := T0(� − �); 1 :≡ 0; 0 := � − � − - (24)

and let (�t; -t ; 1t ; 0t) be the four-classes process de2ned by (23) with this initial condi-
tion. For each integer m¿ 0, we de2ne a process on X4 in the time interval [m=u;∞)
as follows: the initial (random) con2gurations at time m=u are

�m := �m=u; -m := Tm(-m=u + 0m=u);

1m := Vm(-m=u); 0m := Vm(0m=u)
(25)

and for t¿m=u,

�m
t := �m; m=u

t (N);

-m
t := �m+-m; m=u

t (N) − �m; m=u
t (N);

1mt := �m+-m+1m; m=u
t (N) − �m+-m; m=u

t (N);

0mt := �m+-m+1m+0m; m=u
t (N) − �m+-m+1m; m=u

t (N):

(26)

Note that for m = 0 this is the same process as (�t; -t ; 1t ; 0t), and that for any m the
process (�m

t ; �
m
t +-m

t +1mt +0mt ) de2ned for t¿m=u is a version of the coupled process
(7) under the invariant measure O	�;�.

Let u¿ 0 and for 06m6 n de2ne an array Xm;n of random variables:

Xm;n :=


0 if m = n;∑
y¿n

-m
n=u(y) if 06m¡n: (27)

This array satis2es the hypothesis of the subadditive ergodic theorem:
(a) Assume 0¡m¡n since the other cases are trivial. De2ne

O-m := Tm-m=u: (28)

It follows from De2nitions (25) and (28) that for t¿m=u,

-t = �m+ O-m+1m; m=u
t (N) − �m; m=u

t (N)

6 �m+-m+1m; m=u
t (N) − �m; m=u

t (N):

Hence -n=u is bounded above by

�m+-m+1m; m=u
n=u (N) − �m+-m; m=u

n=u (N) + �m+-m; m=u
n=u (N) − �m; m=u

n=u (N)

= 1mn=u + -m
n=u:

Therefore

X0; n =
∑
y¿n

-n=u(y)6
∑
y∈Z

1mn=u(y) +
∑
y¿n

-m
n=u(y)
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and, since all the 1 particles are created at time m=u, the 2rst term of the right-hand
side is equal to

∑
y∈Z 1m(y), which by (25) is the same as

∑
y¿m -m=u(y). Hence,

X0; n6
∑
y¿m

-m=u(y) +
∑
y¿n

-m
n=u(y) = X0;m + Xm;n:

(b) and (c) These stationary conditions follow from the space and time translation
invariance of the Poisson processes and the stationarity of the initial measure O	�;�. See
the comment after (26).

(d) Since - particles can only jump when a Poisson jump is present, X0;1, the number
of - particles to the right of the origin at time 1, is bounded by

∑
x60

∑
y¿0 (N1(x; y)+

N1(y; x)), the number of Poisson jumps across the origin in the interval [0; 1]. As in
(3) and (4) (with k = 1) this is a Poisson variable with mean M which is 2nite by
hypothesis.

Then, by the subadditive ergodic theorem,

lim
n→∞

X0; n

n
= X∞ exists P O	�; � a:s:

By the de2nition of X0; n, calling n = [ut] (integer part)∑
x¿ut

-t(x) = X0; n + rest; (29)

where the absolute value of the rest in (29) is∣∣∣∣∣∑
x¿ut

-t(x) −
∑
x¿n

-n=u(x)

∣∣∣∣∣6∑
x¿n

|-t(x) − -n=u(x)| + 1

6

(∑
x6n

∑
y¿n

+
∑
y6n

∑
x¿n

)
(Nt(x; y) − N[ut]=u(x; y)) + 1

(30)

(The di3erence of the number of - particles to the right of n at two di3erent times is
dominated by the number of Poisson crossings of n between those times; the addition
of 1 is to cover the case ut = n.) Reasoning as in (4) (with k = ut − [ut]), the sum in
the second line of (30) is a Poisson random variable with mean∑

x

|x|p(0; x)(ut − [ut])=u6
M
u

:

Hence, the rest in (29) divided by t goes to zero almost surely as t → ∞ and we have
proved that for u¿ 0,

lim
t→∞

1
t

∑
x¿ut

-t(x) = uX∞ := X (u; �; �): (31)
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4. Proof of Theorem 1

In the previous section we proved a law of large numbers when the initial measure
is T O	�;�. In this section we show that the same is true for 
�;� and identify the limit
G as being the function f.

Proposition 5. There exists a measure O3�;� on X2 with marginals T O	�;� and T O
�;�

such that the coupled process (t ; ̃t) de@ned as in (7) satis@es that for all K ¿M ,

P O3�; �

(
lim
t→∞

1
t

∑
−Kt6x6Kt

(t(x) − ̃t(x)) = 0

)
= 1: (32)

Proof. Choose ((�; �); (�; �̃)) distributed according to =
 of Lemma 2 and de2ne -=�−�
and -̃ = �̃ − �. Let O3�;� be the law of

(; ̃) := (� + T0-; � + T0-̃): (33)

It is clear that O3�;� has marginals T O	�;� and T O
�;�. The coupling with initial distribution
O3�;� is de2ned by

(t ; ̃t) := (
t (N); ̃

t (N)): (34)

De2ne the Aux J ;r
t as the number of  particles that at time zero were to the left of r

and at time t are strictly to the right of r minus the number of  particles that at time
zero were strictly to the right of r and at time t are to the left of r. Then for arbitrary
positive K we can write∑

−Kt6x6Kt

(t(x) − ̃t(x)) =
∑

−Kt6x6Kt

(0(x) − ̃0(x))

+ J ;−Kt
t − J ;Kt

t − J ̃;−Kt
t + J ̃;Kt

t : (35)

But ∑
−Kt6x6Kt

(0(x) − ̃0(x)) =
∑

−Kt6x60

(�0(x) − �̃0(x))

+
∑

0¡x6Kt

(�0(x) − �0(x)):

By the law of large numbers for the marginals of both T O	�;� and T O
�;� the 2rst term
divided by t goes to zero. Indeed both �0 and �̃0 have law 
�. The second term is
zero.

We prove now that limt→∞ (1=t)(J ;Kt
t − J ̃;Kt

t ) = 0 almost surely. We couple three
exclusion processes with initial con2gurations �, � + T0- and � + T0-̃ and de2ne:

�t := �
t (N);
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-t := �+T0-
t (N) − �

t (N); (36)

-̃t := �+T0-̃
t (N) − �

t (N):

In this way, (t ; ̃t) = (�t + -t ; �t + -̃t) and

J ;Kt
t − J ̃;Kt

t = J -;Kt
t − J -̃;Kt

t : (37)

The second-class particle con2gurations - and -̃ are dominated by T0(1 − �) and
dominate the null con2guration. Since the dynamics is attractive, this domination is
valid at all positive times as well. This implies that the absolute value of (37) assumes
its maximal value when - = T0(1 − �) and -̃ ≡ 0, which we assume for the sequel.
We label the - particles at time zero and follow the positions of the labeled particles.
Call Rx

t the position of the - particle starting at x6 0. Then

J -;Kt
t − J -̃;Kt

t 6
∑
x60

(1 − �(x))1{Rx
t ¿Kt}: (38)

To dominate this, consider independent Poisson random variables Nx, x¡ 0, with mean
1 + 7. Let Y x;‘

t , ‘ = 1; : : : ; Nx be independent random walks that jump from y to y + n
at rate p(0; n)+p(0;−n) for all y∈Z. Order the Y particles at time zero and call the
ordered particles Zi

0 so that Zi
0¿Zi+1

0 for all i (here the superlabel does not coincide
necessarily with the initial position as for the R and Y particles). Since the mean
number of Y particles in each x is bigger than one, using independence and the Poisson
law of Nx, we have Zi

0¿Ri
0 for all but a 2nite (random) number W of i’s. The law

of W decays exponentially.
Since the R particles jump from site x to site x+n at most at rate p(0; n)+p(0;−n),

obvious coupling shows

Zi
0¿Ri

0 implies Zi
t ¿Ri

t for all t¿ 0: (39)

Then the number of R particles to the right of Kt is dominated by the number of Z
particles to the right of Kt plus W :∑

x60

(1 − �(x))1{Rx
t ¿Kt}6Zt + W; (40)

where

Zt :=
∑
i60

1{Zi
t ¿Kt}: (41)

The variable Zt is Poisson with mean

EZt = (1 + 7)
∑
x60

P(Y x
t ¿Kt) = (1 + 7)

∑
j¿Kt

P(Y 0
t ¿ j); (42)

where Y x
t is a random walk starting at x that jumps from x to x+n with rate p(0; n)+

p(0;−n). Hence

1
t
EZt = (1 + 7)

1
t

∑
j¿0

P
(
Y 0
t

t
¿K +

j
t

)
(43)
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6 (1 + 7)
[t] + 1

t

∑
j¿0

P
(
Y 0
t

t
¿K + j

)
(44)

6 (1 + 7)
[t] + 1

t
E
(
Y 0
t

t
− K

)+

(45)

which goes to zero as t → ∞ by the law of large numbers for the random walk Y 0
t if

K ¿M , because

M =
∑
n

n(p(0; n) + p(0;−n)) = EY 0
t =t: (46)

On the other hand, using the subadditive ergodic theorem we can show that (1=t)Zt

converges almost surely. The Poisson distribution of the Y particles is used here to
show the stationary conditions (b) and (c) of the subadditive ergodic theorem. Indeed,
the product measures with Poisson marginals with constant mean are invariant for the
process of independent particles. Since (1=t)Zt is positive and its expectation converges
to zero, (1=t)Zt converges almost surely to zero.

This, (37), (38) and (40), imply

∀K ¿M lim
t→∞

1
t

(J ;Kt
t − J ̃;Kt

t ) = 0 P O3�; � a:s: (47)

The Pux of particles is equal to minus the Pux of holes. Indeed, each time a particle
jumps from x to y there is a hole jumping from y to x. Hence, by the particle-hole
symmetry, the Pux J ;−Kt

t − J ̃;−Kt
t for (; ̃) chosen with O3�;� has the same law as

J ;Kt
t − J ̃;Kt

t for (; ̃) chosen with O31−�;1−�. This implies that

∀K ¿M lim
t→∞

1
t

(J ;−Kt
t − J ̃;−Kt

t ) = 0 P O3�; � a:s: (48)

The following is a corollary to Propositions 3 and 5.

Corollary 6. For all K ¿M

PT O
�; �

(
lim
t→∞

1
t

∑
−Kt6x6Kt

t(x) = G(−K; K; �; �)

)
= 1:

Proposition 7. For all u¡v,

lim
t→∞

1
t

∑
ut6x6vt

t(x) =
∫ v

u
f(s) ds in PT O
�; � probability;

where f is de@ned in (1).

Remark. If p(x; y) vanishes when |x − y| is bigger than a constant, then the above
proposition is contained in Rezakhanlou [7]. To include random walks with in2nite
range, we will derive it from Theorems (2.4) and (2.10) in Andjel and Vares [1],
Andjel and Vares [2]. Although their proofs are written for the zero range process,
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they also apply to the exclusion process (see Remark (5.3) in that reference). For this
process their results can be stated as follows:

lim
t→∞ (T O
�;�)S(t)�[ut] = 
f(u) ∀u if �¿ 0 and ∀u �= 1 − � − � if �6 0; (49)

where f is given in (1) (if �¿ 0) and in (2) (if �6 0), and �x is the translation
operator �x(y) = (y − x). Note that Theorem (2.4) of Andjel and Vares [1] is stated
for random walks with nonzero drift but their proof applies to random walks with no
drift too. The limit (49) is usually referred to as local equilibrium. It says that at the
macroscopic point u at macroscopic time 1 the law of the process is the invariant
distribution (equilibrium) with parameter determined by the value of the function f in
site u.

Proof. In the sequel we write P instead of PT O
�; � to simplify notation and
∑b

x=a instead
of
∑

a6x6b (for a; b∈R). To prove the proposition we start showing that for all u¡v
and j¿ 0 we have:

lim
t→∞P

[
1
t

vt∑
x=ut

t(x)¿ (v − u)(f(u) + j)
]

= 0: (50)

Since 1
t

∑(u+r)t−1
x=ut t(x)6 r, we may assume that u �= 1 − � − � if �¡ 0 and apply

(49). Let <¿ 0. Then, it follows from (49) that there exist n and t0 such that:

P
[

1
n

ut+n−1∑
x=ut

t(x)¿f(u) + <

]
6 <2 ∀t¿ t0:

Since (t(x); x∈Z) is stochastically larger than (t(x + 1); x∈Z), we have

P
[

1
n

ut+(k+1)n−1∑
x=ut+kn

t(x)¿f(u) + <

]
6 <2 ∀t¿ t0; k ∈N: (51)

Let k = k(t) =: max{‘: [ut + ‘n − 1 ≤ [vt]]} then:

1
t

vt∑
x=ut

t(x) =

(
1
t

k−1∑
i=0

ut+(i+1)n−1∑
x=ut+in

t(x)

)
+

g(t; )
t

; (52)

where g(t; )6 n for all t. The 2rst term of the right-hand side of (52) can be written
as

nk
t

1
k

k−1∑
i=0

Ai(t; );

where limt→∞ nk=t = v− u and Ai(t; ) = 1=n
∑ut+(i+1)n−1

x=ut+in t(x). Since Ai(t; )6 1, we
have:

Ai(t; )6Ai(t; )1{Ai(t; )6f(u) + <} + Bi(t; );
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where 06Bi(t; ) = 1{Ai(t; )¿f(u) + <}. Therefore,

P
(

1
k

k−1∑
i=0

Ai(t; )¿f(u) + 2<

)
6P

(
1
k

k−1∑
i=0

Bi(t; )¿ <

)

6
1
k<
E
(

k−1∑
i=0

Bi(t; )

)
6 <; ∀t¿ t0; (53)

where the last inequality follows from (51). Using (52) we get:

P
[

1
t

vt∑
x=ut

t(x)¿
nk
t

(f(u) + 2<) +
g(t; )

t

]
6 < ∀t¿ t0:

Since limt→∞ nk=t = v − u and limt→∞ g(t; )=t = 0, for all t large enough we have:

P
[

1
t

vt∑
x=ut

t(x)¿ (v − u)(f(u) + 3<)

]
6 <;

which implies (50).
Similarly one shows that

lim
t→∞P

[
1
t

vt∑
x=ut

t(x)6 (v − u)(f(v) − j)
]

= 0: (54)

We now derive the proposition from (50) and (54). Let k be a positive integer and
write:

1
t

vt∑
x=ut

t(x) =
k−1∑
i=0

1
t

ut+(v−u)t i+1
k∑

x=ut+(v−u)t ik

t(x):

Then apply (50) to each of the terms of the sum on i to obtain:

lim
t→∞P

[
1
t

vt∑
x=ut

t(x)¿
k−1∑
i=0

v − u
k

(
f
(
u +

i(v − u)
k

)
+ j
)]

= 0;

for all j¿ 0. Letting k go to in2nity and then j go to 0 we see that:

lim
t→∞P

[
1
t

vt∑
x=ut

t(x)¿
∫ v

u
f(s) ds

]
= 0:

Similarly, using (54) we get

lim
t→∞P

[
1
t

vt∑
x=ut

t(x)¡
∫ v

u
f(s) ds

]
= 0;

and the proposition follows.
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Corollary 8. For all K ¿M

PT O
�; �

(
lim
t→∞

1
t

∑
−Kt6x6Kt

t(x) =
∫ K

−K
f(s) ds

)
= 1:

Proposition 9. For all u¡v and �6 �

PT O
�; �

(
lim inf
t→∞

1
t

∑
ut6x6vt

t(x)¿
∫ v

u
f(s) ds

)
= 1:

Proof. Let (�0; �0) be distributed according to O
�;�. Then, let -0 = T0(�0 − �0) and let
(�t; -t) be the process de2ned by (13) with this initial condition. Then,

t := �t + -t (55)

is the exclusion process with initial distribution T O
�;�, and �t is the exclusion process
with initial distribution 
�. Then, as in the proof of (19),

P O
�; �

(
lim
t→∞

1
t

∑
ut6x6vt

�t(x) = �(v − u)

)
= 1:

This and (55) imply that

PT O
�; �

(
lim inf
t→∞

1
t

∑
ut6x6vt

t(x)¿ �(v − u)

)
= 1:

Since f(s) = � if s¿ �(1 − 2�), this proves the proposition for �(1 − 2�)6 u¡v.
For the case u¡v6 �(1− 2�), note that T O
�;�¿T O
�;0 =T O	�;0. Thus, the result for

these values of u and v follows from Proposition 7 and the fact that the function f
in (1) does not change its values in the interval (−∞; �(1 − 2�)] if we substitute 0
for �.

Finally for u¡�(1 − 2�)¡v the result follows from the inequality

lim inf
t→∞

1
t

vt∑
x=ut

t(x)¿ lim inf
t→∞

1
t

�(1−2�)t∑
x=ut

t(x) + lim inf
t→∞

1
t

vt∑
x=�(1−2�)t

t(x)

and the two previous cases.

Proof of Theorem 1. Fix u¡v and let K = 1 + max{M; |u|; |v|}. Then, by Corollary 8
we have PT O
�; � -a.s.∫ K

−K
f(s) ds = lim

t→∞
1
t

Kt∑
x=−Kt

t(x)

¿ lim inf
t→∞

1
t

ut−1∑
x=−Kt

t(x) + lim sup
t→∞

1
t

vt∑
x=ut

t(x) + lim inf
t→∞

1
t

Kt∑
x=vt+1

t(x):



E. Andjel et al. / Stochastic Processes and their Applications 113 (2004) 217–233 233

Therefore, by Proposition 9

lim sup
t→∞

1
t

vt∑
x=ut

t(x)6
∫ K

−K
f(s) ds −

∫ u

−K
f(s) ds −

∫ K

v
f(s) ds =

∫ v

u
f(s) ds;

PT O
�; � -a.s. The theorem follows from Proposition 9, this last inequality and (11).
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