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1. Introduction

In [1] a remarkable proposal, now called the AGT conjecture, was given on the relation between
the Liouville theory conformal blocks and the Nekrasov partition function. Among the related investi-
gations, Gaiotto proposed several degenerated versions of the AGT conjecture in [9]. In that paper, he
conjectured that the inner product of a certain element in the Verma module of Virasoro algebra co-
incides with the Nekrasov partition function for the four-dimensional N = 2 pure gauge theory [15].
Actually, the element considered is a kind of Whittaker vector in the Verma module of the Virasoro
algebra.

Whittaker vectors and Whittaker modules are important gadgets in the representation theory since
its emergence in the study of finite dimensional Lie algebras [11]. Although numerous analogues and
generalizations have been proposed for other algebras, such as affine algebras and quantum groups,
not so many investigations have been given for the Whittaker vectors of the Virasoro algebra. A gen-
eral theory on the properties of Whittaker modules for the Virasoro algebra was recently given in [18].
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Fig. 1. The Young diagram for (4,4,2,1,1,1).

In this paper we give an explicit expression of the Whittaker vector for the Verma module of
Virasoro algebra in terms of Jack symmetric functions [13, VI §10]. We use the Feigin–Fuchs bosoniza-
tion [7] to identify the Verma module and the ring of symmetric function, and then utilize the split
expression of the Calogero–Sutherland Hamiltonian [20] to derive a recursion relation on the coeffi-
cients of the Whittaker vector in its expansion with respect to Jack symmetric functions.

Our result is related to a conjecture given by Awata and Yamada in [3]. They proposed the five-
dimensional AGT conjecture for pure SU(2) gauge theory using the deformed Virasoro algebra, and
as a related topic, they also proposed a conjectural formula on the explicit form of the deformed
Gaiotto state in terms of Macdonald symmetric functions [3, (3.18)]. Our formula is the non-deformed
Virasoro, or four-dimensional, counterpart of their conjectural formula.

The motivation of our study also comes from the work [14], where singular vectors of the Virasoro
algebra are expressed by Jack polynomials.

Before presenting the detail of the main statement, we need to prepare several notations on Vi-
rasoro algebra, symmetric functions and some combinatorics. The main theorem will be given in
Section 1.6.

1.1. Partitions

Throughout in this paper, notations of partitions follow [13]. For the positive integer n, a parti-
tion λ of n is a (finite) sequence of positive integers λ = (λ1, λ2, . . .) such that λ1 � λ2 � · · · and
λ1 + λ2 + · · · = n. The symbol λ � n means that λ is a partition of n. For a general partition we also
define |λ| := ∑

i λi . The number �(λ) is defined to be the length of the sequence λ. The conjugate
partition of λ is denoted by λ′ .

We also consider the empty sequence ∅ as the unique partition of the number 0.
In addition we denote by P the set of all the partitions of natural numbers including the empty

partition ∅. So that we have

P = {∅, (1), (2), (1,1), (3), (2,1), (1,1,1), . . .
}
.

As usual, p(n) := #{λ ∈ P | |λ| = n} = #{λ | λ � n} denotes the number of partitions of n.
In the main text, we sometimes use the dominance semi-ordering on the partitions: λ � μ if and

only if |λ| = |μ| and
∑i

k=1 λk �
∑i

k=1 μk (i = 1,2, . . .).
We also follow [13] for the convention of the Young diagram. Moreover we will use the coordinate

(i, j) on the Young diagram defined as follows: the first coordinate i (the row index) increases as one
goes downwards, and the second coordinate j (the column index) increases as one goes rightwards.
For example, in Fig. 1 the left-top box has the coordinate (1,1) and the left-bottom box has the
coordinate (6,1). We will often identify a partition and its associated Young diagram.

Let us also use the notation (i, j) ∈ λ, which means that i, j ∈ Z�1, 1 � i � �(λ) and 1 � j � λi . On
the Young diagram of λ the symbol (i, j) ∈ λ corresponds to the box located at the coordinate (i, j).
In Fig. 1, we have (2,3) ∈ λ := (4,4,2,1,1) but (4,3) /∈ λ.
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1.2. Virasoro algebra

Let us fix notations on Virasoro algebra and its Verma module. Let c ∈ C be a fixed complex
number. The Virasoro algebra Virc is a Lie algebra over C with central extension, generated by Ln

(n ∈ Z) with the relation

[Lm, Ln] = (m − n)Lm+n + c

12
m

(
m2 − 1

)
δm+n,0. (1.1)

Virc has the triangular decomposition Virc = Virc,+ ⊕ Virc,0 ⊕ Virc,− with Virc,± := ⊕
±n>0 CLn and

Virc,0 := CL0 ⊕ C.
Let h be a complex number. Let Ch be the one-dimensional representation of the subalgebra

Virc,�0 := Virc,0 ⊕ Virc,+ , where Virc,+ acts trivially and L0 acts as the multiplication by h. Then
one has the Verma module Mh by

Mh := IndVirc
Virc,�0

Ch.

Obeying the notation in physics literature, we denote by |h〉 a fixed basis of Ch . Then one has Ch =
C|h〉 and Mh = U (Virc)|h〉.

Mh has the L0-weight space decomposition:

Mh =
⊕

n∈Z�0

Mh,n, with Mh,n := {
v ∈ Mh

∣∣ L0 v = (h + n)v
}
. (1.2)

A basis of Mh,n can be described simply by partitions. For a partition λ = (λ1, λ2, . . . , λk) of n we
define the abbreviation

L−λ := L−λk L−λk−1 · · · L−λ1 (1.3)

of the element of U (Virc,−), the enveloping algebra of the subalgebra Virc,− . Then the set{
L−λ|h〉 ∣∣ λ � n

}
is a basis of Mh,n .

1.3. Bosonization

Next we recall the bosonization of the Virasoro algebra [7]. Consider the Heisenberg algebra H
generated by an (n ∈ Z) with the relation

[am,an] = mδm+n,0.

Consider the correspondence

Ln �→ Ln := 1

2

∑
m∈Z

◦
◦aman−m

◦
◦ − (n + 1)ρan, (1.4)

where the symbol ◦
◦

◦
◦ means the normal ordering. This correspondence determines a well-defined

morphism

ϕ : U (Virc) → Û (H). (1.5)
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Here Û (H) is the completion of the universal enveloping algebra U (H) in the following sense [8]. For
n ∈ Z�0, let In be the left ideal of the enveloping algebra U (H) generated by all polynomials in am

(m ∈ Z�1) of degrees greater than or equal to n (where we defined the degree by deg am := m). Then
we define

Û (H) := lim←−
n

Û (H)/In.

Next we recall the functorial correspondence of the representations. First let us define the
Fock representation Fα of H. H has the triangular decomposition H = H+ ⊕ H0 ⊕ H− with
H± := ⊕

±n∈Z+ Can and H0 := Ca0. Let Cα = C|α〉F be the one-dimensional representation of
H0 ⊕ H+ with the action a0|α〉F = α|α〉F and an|α〉F = 0 (n ∈ Z�1). Then the Fock space Fα is
defined to be

Fα := IndH
H0⊕H− Cα.

It has the a0-weight decomposition

Fα =
⊕
n�0

Fα,n, Fα,n := {
w ∈ Fα

∣∣ a0 w = (n + α)w
}
. (1.6)

Each weight space Fα,n has a basis {
a−λ|α〉F

∣∣ λ � n
}

(1.7)

with a−λ := a−λk · · ·a−λ1 for a partition λ = (λ1, . . . , λk). Note also that the action of Û (H) on Fα is
well defined.

Similarly the dual Fock space F ∗
α is defined to be IndH

H0⊕H− C∗
α , where C∗

α = C · F 〈α| is the one-
dimensional right representation of H0 ⊕ H− with the action F 〈α|a0 = α · F 〈α| and F 〈α|a−n = 0
(n ∈ Z�1).

Then one has the bilinear form

· : F ∗
α × Fα → C

defined by

F 〈α| · |α〉F = 1, 0 · |α〉F = F 〈α| · 0 = 0,

F 〈α|uu′ · |α〉F = F 〈α|u · u′|α〉F = F 〈α| · uu′|α〉F
(
u, u′ ∈ H

)
.

As in the physics literature, we often omit the symbol · and simply write F 〈α|α〉F , F 〈α|u|α〉F and
so on.

Now we can state the bosonization of representation: (1.4) is compatible with the map

ψ : Mh → Fα, L−λ|h〉 �→ L−λ|α〉F (1.8)

with L−λ := L−λ1 · · · L−λk for λ = (λ1, . . . , λk) ∈ P and

c = 1 − 12ρ2, h = 1

2
α(α − 2ρ). (1.9)

In other words, we have

ψ(xv) = ϕ(x)ψ(v) (x ∈ Virc, v ∈ Mh)

under the parametrization (1.9) of highest weights.
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1.4. Fock space and symmetric functions

The Fock space Fα is naturally identified with the space of symmetric functions. In this paper
the term “symmetric function” means the infinite-variable symmetric “polynomial”. To treat such an
object rigorously, we follow the argument of [13, §I.2].

Let us denote by ΛN the ring of N-variable symmetric polynomials over Z, and by Λd
N the space

of homogeneous symmetric polynomials of degree d. The ring of symmetric functions Λ is defined as
the inverse limit of the ΛN in the category of graded rings (with respect to the gradation defined by
the degree d). We denote by ΛK = Λ⊗Z K the coefficient extension to a ring K . Among several bases
of Λ, the family of the power sum symmetric functions

pn = pn(x) :=
∑

i∈Z�1

xn
i , pλ := pλ1 · · · pλk ,

plays an important role. It is known that {pλ | λ � d} is a basis of Λd
Q

, the subspace of homogeneous
symmetric functions of degree d.

Now following [2], we define the isomorphism between the Fock space and the space of symmetric
functions. Let β be a non-zero complex number and consider the next map between Fα and ΛC:

ιβ : Fα → ΛC

∈ ∈

v �→ F 〈α|exp

(√
β

2

∞∑
n=1

1

n
pnan

)
v.

(1.10)

Under this morphism, an element a−λ|α〉F of the base (1.7) is mapped to

ιβ
(
a−λ|α〉F

) = (
√

β/2 )�(λ)pλ(x).

Since {a−λ|α〉F } is a basis of Fα and {pλ} is a basis of ΛQ , ιβ is an isomorphism.

1.5. Jack symmetric function

Now we recall the definition of Jack symmetric function [13, §VI.10]. Let b be an indeterminate1

and define an inner product on ΛQ(b) by

〈pλ, pμ〉b := δλ,μzλb�(λ). (1.11)

Here the function zλ is given by

zλ :=
∏

i∈Z�1

imi(λ)mi(λ)! with mi(λ) := #
{

1 � i � �(λ)
∣∣ λ j = i

}
.

Then the (monic) Jack symmetric function P (b)
λ is determined uniquely by the two following condi-

tions:

1 Our parameter b is usually denoted by α in the literature, for example, in [13]. We avoid using α since it is already defined
to be the highest weight of the Heisenberg–Fock space Fα .



278 S. Yanagida / Journal of Algebra 333 (2011) 273–294
(i) It has an expansion via monomial symmetric function mν in the form

P (b)
λ = mλ +

∑
μ<λ

cλ,μ(b)mμ.

Here cλ,μ(b) ∈ Q(b) and the ordering < among the partitions is the dominance semi-ordering.
(ii) The family of Jack symmetric functions is an orthogonal basis of ΛQ(b) with respect to 〈·,·〉b:〈

P (b)
λ , P (b)

μ

〉
b = 0 if λ �= μ.

1.6. Main theorem

Finally we can state our main statement.
Consider the Verma module Mh of the Virasoro algebra Virc with generic complex numbers c

and h. Let a be an arbitrary complex number, and let vG be an element of the Verma module Mh
such that

L1 vG = avG , Ln vG = 0 (n � 2).

Then vG exists uniquely up to scalar multiplication (see Fact 3.2).
Introduce the complex numbers ρ , α and β by the relations

c = 1 − 12ρ2, h = 1

12
α(α − 2ρ), ρ = β1/2 − β−1/2

√
2

.

Then by the Feigin–Fuchs bosonization ψ : Mh → Fα (1.8) and the isomorphism ιβ : Fα → ΛC (1.10),
one has an element ιβ ◦ ψ(vG) ∈ ΛC .

Theorem. We have

ιβ ◦ ψ(vG) =
∑
λ∈P

a|λ|cλ(α,β)P (β−1)
λ , (1.12)

where λ runs over all the partitions and the coefficient cλ(α,β) is given by

cλ(α,β) =
∏

(i, j)∈λ

1

λi − j + 1 + β(λ′
j − i)

∏
(i, j)∈λ

(i, j) �=(1,1)

β

( j + 1) + √
2β1/2α − (i + 1)β

. (1.13)

(See Section 1.1 for the symbol “(i, j) ∈ λ”.)

The proof of this theorem will be given in Section 3.1.
In the main theorem above, the element vG is the Whittaker vector associated to the degenerate

Lie algebra homomorphism η : Virc,+ → C, that is, η(L2) = 0. We shall call this element “Gaiotto
state”, following [3]. A general theory of Whittaker vectors usually assumes the non-degeneracy of
the homomorphism η, i.e., η(L1) �= 0 and η(L2) �= 0. This non-degenerate case will be treated in
Proposition 3.11, although there seem to be no factored expressions for the coefficients as (1.13).

The content of this paper is as follows. In Section 2 we recall the split expression of the Calogero–
Sutherland Hamiltonian, which is a key point in our proof. In Section 3 we investigate the Whittaker
vectors in terms of symmetric functions. The main theorem will be proved Section 3.1, using some
combinatorial identities shown in Section 4. The Whittaker vector with respect to the non-degenerate
homomorphism will be treated in Section 3.3. In the final Section 5 we give some remarks on possible
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generalizations and the related works. We also added Appendix A concerning the AGT relation and its
connection to our argument.

2. Preliminaries on Jack symmetric functions and bosonized Calogero–Sutherland Hamiltonian

This section is a preliminary for the proof of the main theorem. We need the following Defini-
tion 2.1 and Proposition 2.2:

Definition 2.1. (1) Let λ be a partition and b, β be generic complex numbers. Define f (b,β)
λ ∈ Fα to be

the element such that

ιβ
(

f (b,β)
λ

) = P (b)
λ , (2.1)

where ιβ is the isomorphism given in (1.10).
(2) For a complex number β , define an element of Û (H) by

Êβ = √
2β

∑
n>0

a−n Ln +
∑
n>0

a−nan(β − 1 − √
2βa0). (2.2)

Here Ln ∈ Û (H) is the bosonized Virasoro generator (1.4), and we have put the assumption

ρ = (
β1/2 − β−1/2)/√2. (2.3)

Proposition 2.2. For a generic complex number β we have

Êβ f (β−1,β)
λ = ελ(β) f (β−1,β)

λ , (2.4)

ελ(β) :=
∑

i

(
λ2

i + β(1 − 2i)λi
)
, (2.5)

for any partition λ.

The proof of this proposition is rather complicated, since we should utilize Jack symmetric poly-
nomials with finite variables.

2.1. Jack symmetric polynomials

Recall that in Section 1.4 we denoted by ΛN the space of symmetric polynomials of N variables,
and by Λd

N its degree d homogeneous subspace. In order to denote N-variable symmetric polyno-
mials, we put the superscript “(N)” on the symbols for the infinite-variable symmetric functions.
For example, we denote by p(N)

λ (x) := p(N)
λ1

(x)p(N)
λ2

(x) · · · the product of the power sum polynomials

p(N)

k (x) := ∑N
i=1 xk

i , and by m(N)
λ (x) the monomial symmetric polynomial.

Let us fix N ∈ Z�1 and an indeterminate2 t . For a partition λ with �(λ) � N , the N-variable Jack

symmetric polynomial P (N)
λ (x; t) is uniquely specified by the two following properties:

(i) P (N)
λ (x; t) = m(N)

λ (x) +
∑
μ<λ

c̃λ,μ(t)m(N)
μ (x), c̃λ,μ(t) ∈ Q(t).

2 In the literature this indeterminate is usually denoted by β = α−1, and we will also identify it with our β given in (2.3)
later. But at this moment we don’t use it to avoid confusion.
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(ii)

H (N)
t P (N)

λ (x; t) = ε
(N)
λ (t)P (N)

λ (x; t), (2.6)

H (N)
t :=

N∑
i=1

(
xi

∂

∂xi

)2

+ t
∑

1�i< j�N

xi + x j

xi − x j

(
xi

∂

∂xi
− x j

∂

∂x j

)
, (2.7)

ε
(N)
λ (t) :=

∑
i

(
λ2

i + t(N + 1 − 2i)λi
)
. (2.8)

The differential operator (2.7) is known to be equivalent to the Calogero–Sutherland Hamiltonian (see
[2, §2] for the detailed explanation). In (i) we have used the dominance partial semi-ordering on the
partitions. If N � d, then {P (N)

λ (x; t)}λ�d is a basis of Λd
N,Q(t) .

Definition 2.3. For M � N , we denote the restriction map from ΛM to ΛN by

ρM,N : ΛM → ΛN

∈ ∈
f (x1, . . . , xM) �→ f (x1, . . . , xN ,0, . . . ,0),

and the induced restriction map from Λ to ΛN by

ρN : Λ → ΛN

∈ ∈

f (x1, x2, . . .) �→ f (x1, . . . , xN ,0, . . .).

We denote the maps on the tensored spaces ΛM,C → ΛN,C and ΛC → ΛN,C by the same sym-
bols ρM,N and ρN .

Fact 2.4. For any λ ∈ P , every N ∈ Z�1 with N � �(λ), and any generic t ∈ C we have

ρN
(

P (t−1)
λ

) = P (N)
λ (x; t).

2.2. Split form of the Calogero–Sutherland Hamiltonian

We recall the collective field method in the Calogero–Sutherland model following [2, §3]. Recall
that the Calogero–Sutherland Hamiltonian H (N)

t (2.7) acts on the space of symmetric polynomi-
als ΛN,Q(t) .

Fact 2.5. (1) Let t, t′ be non-zero complex numbers. Define an element of Û (H) by

Ĥ (N)

t,t′ :=
∑

n,m>0

(
t′a−m−naman + t

t′ a−ma−nam+n

)
+

∑
n>0

(
n(1 − t) + Nt

)
a−nan.

Then for any v ∈ Fα and every N ∈ Z�1 we have

ρN ◦ ιt
(

Ĥ (N)
′ v

) = H (N)
t

(
ρN ◦ ιt(v)

)
. (2.9)
t,t
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(2) Under the relation

ρ = (
t1/2 − t−1/2)/√2

we have

Ĥ (N)

t,
√

t/2
= √

2t
∑
n>0

a−n Ln +
∑
n>0

a−nan(Nt + t − 1 − √
2ta0). (2.10)

Here Ln ∈ Û (H) is the bosonized Virasoro generator (1.4).

Proof. These are well-known results (for example, see [19, Prop. 4.47], [2] and the references therein).
We only show the sketch of the proof.

As for (1), note that {a−λ|α〉F | λ ∈ P } is a basis of F . So it is enough to show (2.9) for each λ.
One can calculate the left hand side using the commutation relation of H only. On the right hand
side, one may use ιt(a−λ|α〉F ) ∝ pλ , and calculate it using the expression (2.7).

(2) is proved by a direct calculation. �
Remark 2.6. The form (2.10) is called the split expression in [20, §1].

2.3. Proof of Proposition 2.2

By Fact 2.5 we have the left commuting diagram in (2.11). Note that we set the parameters t and t′
in Ĥ(N)

t,t′ to be β and
√

β/2, so that we may use Fact 2.5(2). In the right diagram of (2.11) we show how

the element f (b,β)
λ ∈ Fα given in (2.1) behaves under the maps indicated in the left diagram. Here we

set the parameter b to be β−1 so that ιβ f (β−1,β)
λ = P (β−1)

λ ∈ ΛC and ρN ◦ ιβ f (β−1,β)
λ = P (N)

λ (x;β) ∈
ΛN,C . At the bottom line we have used the eigen-equation of Jack symmetric polynomial (2.6).

Fα

Ĥ(N)

β,
√

β/2

ιβ

∼

Fα

ιβ

∼

f (β−1,β)
λ

Ĥ (N)

β,
√

β/2
( f (β−1,β)

λ )

ΛC

ρN

� ΛC

ρN

P (β−1)
λ

ιβ ◦ Ĥ (N)

β,
√

β/2
( f (β−1,β)

λ )

ΛN,C

H(N)
β

ΛN,C P (N)
λ (x;β) P (N)

λ (x;β) · ε(N)
λ (β)

(2.11)

Since these diagrams hold for every N with N � �(λ), we have

Ĥ (N)

β,
√

β/2
f (β−1,β)
λ = ε

(N)
λ (β) f (β−1,β)

λ .

Therefore we have [√
2t

∑
n>0

a−n Ln +
∑
n>0

a−nan(Nt + t − 1 − √
2ta0)

]
f (β−1,β)
λ

= f (β−1,β)
λ ·

∑(
λ2

i + t(N + 1 − 2i)λi
)
.

i
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We can subtract N-dependent terms from both sides. The result is nothing but the desired state-
ment of Proposition 2.2.

3. Whittaker vectors

Recall the notion of the Whittaker vector for a finite dimensional Lie algebra g given in [11]. Let n

be a maximal nilpotent Lie subalgebra of g and η : n → C be a homomorphism. Let V be any U (g)-
module. Then a vector w ∈ V is called a Whittaker vector with respect to η if xw = η(x)w for all
x ∈ n.

We shall discuss an analogue of this Whittaker vector in the Virasoro algebra Virc . In the triangular
decomposition Virc = Virc,+ ⊕ Virc,0 ⊕ Virc,− , the elements L1, L2 ∈ Virc,+ generate Virc,+ . Thus if
we take Virc,+ as the η in the above definition, what we should consider is a homomorphism η :
Virc,+ → C, which is determined by η(L1) and η(L2).

In [18], a characterization of Whittaker vectors in general U (Vir)-modules is given under the as-
sumption that η is non-degenerate, i.e. η(L1) �= 0 and η(L2) �= 0.

In this section we shall express Whittaker vectors in the Verma module Mh using Jack symmet-
ric functions. Before starting the general treatment, we first investigate a degenerate version of the
Whittaker vector, i.e. we assume η(L2) = 0. We will call this vector Gaiotto state of Virasoro algebra,
although the paper [9] treated both degenerate and non-degenerate Whittaker vectors.

3.1. Gaiotto state via Jack polynomials

Definition 3.1. Fix a non-zero complex number a. Let vG be a non-zero element of the Verma mod-
ule Mh satisfying

L1 vG = avG , Ln vG = 0 (n ∈ Z�2).

We call such an element vG a Gaiotto state of Mh .

Fact 3.2. Assume that c and h are generic. Then vG exists uniquely up to constant multiplication.

Proof. This statement is shown in [18]. �
Lemma 3.3. Decompose a Gaiotto state vG in the way (1.2) as

vG =
∑

n∈Z�0

an vG,n, vG,n ∈ Mh,n.

Then we have

vG,n = L1 vG,n+1 (n ∈ Z�0). (3.1)

Proof. This follows from the commutation relation [L0, L1] = −L1. �
Now consider the bosonized Gaiotto state

wG,n := ψ(vG,n) ∈ Fα,n

where ψ : Mh → Fα is the Feigin–Fuchs bosonization (1.8) and Fα,n is the a0-weight space (1.6).
At this moment the Heisenberg parameters ρ,α are related to the Virasoro parameters c,h by the
relations

c = 1 − 12ρ2, h = 1
α(α − 2ρ).
12
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From the condition (3.1) we have

L1 wG,n+1 ∈ Fh,n, wG,n = L1 wG,n+1. (3.2)

Next we map this bosonized state wG,n into a symmetric function by the isomorphism ιβ : Fα →
ΛC (1.10):

ιβ(wG,n) = ιβ ◦ ψ(vG,n) ∈ Λn
C.

Here Λn
C

is the space of degree n symmetric functions. We take the parameter β so that the Heisen-
berg parameter ρ is expressed by

ρ = (
β1/2 − β−1/2)/√2.

Recall also that the family of Jack symmetric functions {P (β−1)
λ | λ � n} is a basis of Λn

C
for a generic

β ∈ C. Thus we can expand ιβ(wG,n) ∈ Λn
C

by P (β−1)
λ ’s. Let us express this expansion as:

ιβ(wG,n) = ιβ ◦ ψ(vG,n) =
∑
λ�n

cλ(α,β)P (β−1)
λ , cλ(α,β) ∈ C. (3.3)

Note that this expansion is equivalent to

wG,n =
∑
λ�n

cλ(α,β) f (β−1,β)
λ ∈ Fα (3.4)

by (2.1). Now the correspondence of the parameters becomes:

c = 1 − 12ρ2, h = 1

12
α(α − 2ρ0), ρ = β1/2 − β−1/2

√
2

. (3.5)

The main result of this paper is

Theorem 3.4. Assume that c and h are generic. (Then vG exists uniquely up to constant multiplication by
Fact 3.2.) If c∅(α,β) is set to be 1 in the expansion (3.3), then the other coefficients are given by

cλ(α,β) =
∏

(i, j)∈λ

1

λi − j + 1 + β(λ′
j − i)

∏
(i, j)∈λ\{(1,1)}

1

( j + 1)β + √
2β1/2α − (i + 1)

. (3.6)

Here we have used the notation (i, j) ∈ λ as explained in Section 1.1.

3.2. Proof of Theorem 3.4

Before starting the proof, we need to prepare the following Proposition 3.7. Recall the Pieri formula
of Jack symmetric function. We only need the case of “adding one box”, that is, the case of multiplying
the degree one power sum function p1 = x1 + x2 + · · · .

Definition 3.5. For partitions μ and λ, we denote μ <k λ if |μ| = |λ| − k and μ ⊂ λ.
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Fact 3.6. (See [13, p. 340, VI (6.24), p. 379, VI (10.10)].) We have

p1 P (β−1)
μ =

∑
λ>1μ

ψ ′
λ/μ(β)P (β−1)

λ , (3.7)

ψ ′
λ/μ(β) :=

I−1∏
i=1

λi − λI + β(I − i + 1)

λi − λI + 1 + β(I − i)

λi − λI + 1 + β(I − i − 1)

λi − λI + β(I − i)
. (3.8)

In the expression in (3.8) the partitions λ and μ are related by λI = μI + 1 and λi = μi for i �= I .

Proposition 3.7. cλ(α,β) satisfies the next recursion relation:

(
ελ(β) + |λ|(1 + √

2βα − β)
)
cλ(α,β) = β

∑
μ<1λ

ψ ′
λ/μ(β)cμ(α,β). (3.9)

Here the function ελ(β) is given in (2.5).

Proof. We will calculate Êβ wG,n ∈ Fα in two ways. By comparing both expression we obtain the
recursion relation.

First, by the definition of Êβ given in (2.2) and by the condition (3.2) of vG,n we have

Êβ wG,n =
[√

2β
∑
m�1

a−m Lm +
∑
m�1

a−mam(β − 1 − √
2βa0)

]
wG,n

=
[√

2βa−1 L1 +
∑
m�1

a−mam(β − 1 − √
2βa0)

]
wG,n

= √
2βa−1 wG,n−1 + n(β − 1 − √

2βα)wG,n ∈ Fα.

Now applying the isomorphism ιβ : Fα → ΛC on both sides and substituting wG,n and wG,n−1 by
their expansions (3.3), we have

ιβ (̂Eβ wG,n) = βp1

∑
μ�n−1

cμ(α,β)P (β−1)
μ + n(β − 1 − √

2βα)
∑
λ�n

cλ(α,β)P (β−1)
λ ∈ ΛC.

Using the Pieri formula (3.7) in the first term, we have

ιβ (̂Eβ wG,n) = β
∑

μ�n−1

cμ(α,β)
∑

λ>1μ

ψ ′
λ/μ(β)P (β−1)

λ

+ n(β − 1 − √
2βα)

∑
λ�n

cλ(α,β)P (β−1)
λ . (3.10)

Next, by (3.4) and by (2.4) we have

Êβ wG,n = Êβ

∑
cλ(α,β) f (β−1,β)

λ =
∑

cλ(α,β)ελ(β) f (β−1,β)
λ ∈ Fα.
λ�n λ�n
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Therefore we have

ιβ (̂Eβ wG,n) =
∑
λ�n

cλ(α,β)ελ(β)P (β−1)
λ ∈ ΛC. (3.11)

Then comparing (3.10) and (3.11) we have∑
λ�n

(
ελ(β) + n(1 + √

2βα − β)
)
cλ(α,β)P (β−1)

λ = β
∑

μ�n−1

cμ(α,β)
∑

λ>1μ

ψ ′
λ/μ(β)P (β−1)

λ ∈ Λn
C.

Since {P (β)
λ | λ � n} is a basis of Λn

C
, we have

(
ελ(β) + n(1 + √

2βα − β)
)
cλ(α,β) = β

∑
μ<1λ

cμ(α,β)ψ ′
λ/μ(β). �

Proof of Theorem 3.4. The recursion relation (3.9) of Propositions 3.7 determines cλ(α,β) uniquely if
we set the value of c∅(α,β). Since the existence and uniqueness of vG is known by Fact 3.2, we only
have to show that the ansatz (3.6) satisfies (3.9).

For partitions λ and μ which are related by λI = μI + 1 and λi = μi for i �= I , we have the two
following formulas:[ ∏

(i,k)∈μ

1

λi − k + 1 + β(λ′
k − i)

]/[ ∏
(i,k)∈λ

1

λi − k + 1 + β(λ′
k − i)

]

=
I−1∏
i=1

λi − λI + 1 + β(I − i)

λi − λI + 1 + β(I − 1 − i)
×

λI −1∏
i=1

λI − i + 1 + β(λ′
i − I)

λI − i + β(λ′
i − I)

,

[ ∏
(i,k)∈μ
μ �=(1,1)

β

(k + 1) + √
2βα − (i + 1)β

]/[ ∏
(i,k)∈λ
μ �=(1,1)

β

(k + 1) + √
2βα − (i + 1)β

]

= (λI + 1) + √
2βα − (I + 1)β

β
.

Substituting the cμ(α,β) in the right hand side of (3.9) by the ansatz (3.6) and using the above two
equations, we have

RHS of (3.9) =
∑

(I,λI )∈C(λ)

I−1∏
i=1

λi − λI + β(I − i + 1)

λi − λI + β(I − i)
×

λI −1∏
i=1

λI − i + 1 + β(λ′
i − I)

λI − i + β(λ′
i − I)

× (
(λI + 1) + √

2βα − (I + 1)β
)
cλ(α,β), (3.12)

where C(λ) is the set of boxes � in the Young diagram of λ such that λ \ {�} is also a partition. In
particular, if � = (I, λI ) ∈ C(λ), then μ := λ \ {�} is the partition satisfying μI = λI − 1 and μi = λi
for i �= I , recovering the previous description.

As for the left hand side of (3.9), we have by (2.5):

ελ(β) + |λ|(1 + √
2βα − β) = |λ|(1 + √

2βα) +
∑(

λ2
i − 2iλiβ

)
. (3.13)
i
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Thus by (3.12) and (3.13), Eq. (3.9) under the substitution (3.6) is equivalent to the next one:

|λ|(1 + √
2βα) +

∑
i

(
λ2

i − 2iλiβ
)

=
∑

(I,λI )∈C(λ)

I−1∏
i=1

λi − λI + β(I − i + 1)

λi − λI + β(I − i)
×

λI −1∏
i=1

λI − i + 1 + β(λ′
i − I)

λI − i + β(λ′
i − I)

× (
1 + √

2βα + λI − (I + 1)β
)
.

This is verified by Propositions 4.1 and 4.2 which will be shown in Section 4. �
3.3. Non-degenerate Whittaker vector via Jack polynomials

Definition 3.8. Fix non-zero complex numbers a and b. Let vW be an element of the Verma mod-
ule Mh satisfying

L1 vW = avW , L2 vW = bvW , Ln vW = 0 (n ∈ Z�3).

We call such an element vW (non-degenerate) Whittaker vector of Mh .

Fact 3.9. Assume that c and h are generic complex numbers. Then v W exists uniquely up to scalar multiplica-
tion.

Proof. This is shown in [18]. �
Lemma 3.10. Let us decompose vW as

vW =
∑

n∈Z�0

an vW ,n, vW ,n ∈ Mh,n.

Then we have

L1 vW ,n+1 = vW ,n, L2 vW ,n+2 = a−2b · vW ,n.

Proof. This follows from the commutation relations [L0, L1] = −L1 and [L0, L2] = −2L2. �
Now we expand the bosonized Whittaker vector

wW ,n := ψ(vW ,n) ∈ Fα,n

by f (β−1,β)
λ ’s (2.1) and express it as

wW ,n =
∑
λ�n

dλ(α,β) f (β−1,β)
λ , dλ(α,β) ∈ C.

Proposition 3.11. Using the notation λ >k μ given in Definition 3.5, we have the next recursion relation
for dλ(α,β):
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(
ελ(β) + |λ|(1 + √

2βα − β)
)
cλ(α,β)

= β
∑
ν<2λ

dν(α,β)ψ ′(2)
λ/ν(β) + β

∑
μ<1λ

dμ(α,β)ψ ′
λ/μ(β). (3.14)

ψ ′(2)
λ/ν(β) is the coefficient in the next Pieri formula:

p2 P (β−1)
ν =

∑
λ

ψ ′(2)
λ/ν(β)P (β−1)

λ .

Proof. Similar as the proof of Proposition 3.7. �
Remark 3.12. The author doesn’t know whether dλ has a good explicit formula, although cλ has the
factored formula (3.6).

4. Combinatorial identities of rational functions

Proposition 4.1. For a partition λ, let C(λ) be the set of boxes � of λ such that λ \ {�} is also a partition. Then

∑
(I,λI )∈C(λ)

I−1∏
i=1

λi − λI + β(I − i + 1)

λi − λI + β(I − i)
×

λI −1∏
i=1

λI − i + 1 + β(λ′
i − I)

λI − i + β(λ′
i − I)

= |λ|. (4.1)

Proof. Let λ be the partition such that

λ = (

j1︷ ︸︸ ︷
n1, . . . ,n1,

j2︷ ︸︸ ︷
n2, . . . ,n2, . . . ,

jl︷ ︸︸ ︷
nl, . . . ,nl ). (4.2)

Then we have

C(λ) = {
(m1,n1), (m2,n2), . . . , (ml,nl)

}
(4.3)

with mk := j1 + · · · + jk (k = 1, . . . , l), where we have used the coordinate (i, j) of Young diagram
associated to λ as explained in Section 1.1.

Let us choose an element � = (mk,nk) of C(λ), and calculate the corresponding factor in (4.1). The
first product reads

∏
1�i�m1

(n1 − nk) + β(mk − i + 1)

(n1 − nk) + β(mk − i)

∏
m1+1� j�m2

(n2 − nk) + β(mk − i + 1)

(n2 − nk) + β(mk − i)

× · · · ×
∏

mk−1+1�i�mk−1

mk − i + 1

mk − i

=
k−1∏
i=1

(ni − nk) + β(mk − mi−1)

(ni − nk) + β(mk − mi)
× (mk − mk−1).

Here we have used the notation m0 := 0. The second product reads



288 S. Yanagida / Journal of Algebra 333 (2011) 273–294
∏
1� j�nl

(nk − j + 1) + β(ml − nk)

(nk − j) + β(ml − nk)

∏
nl+1� j�nl−1

(nk − j + 1) + β(ml−1 − nk)

(nk − j) + β(ml−1 − nk)

× · · · ×
∏

nk+1+1� j�nk−1

(nk − j + 1)

(nk − j)

= (nk − nk+1) ×
l∏

j=k+1

(nk − n j+1) + β(m j − mk)

(nk − n j) + β(m j − mk)
.

Here we have used the notation nl+1 := 0.
Now let us define

F1
({mk}, {nk}, β

) :=
l∑

k=1

F1,k
({mk}, {nk}, β

)
,

F1,k
({mk}, {nk}, β

) := (mk − mk−1)(nk − nk+1)

×
k−1∏
i=1

(ni − nk) + β(mk − mi−1)

(ni − nk) + β(mk − mi)

l∏
j=k+1

(nk − n j+1) + β(m j − mk)

(nk − n j) + β(m j − mk)
.

Then for the proof of (4.1) it is enough to show that F1 is equal to |λ| if {mk} and {nk} correspond
to λ as in (4.2) and (4.3).

Hereafter we consider F1 as a rational function of the valuables {mk}, {nk} and β . As a rational
function of β , F1 has the apparent poles at β j,k :=−(n j −nk)/(mk −m j) ( j = 1,2, . . . ,k−1,k+1, . . . , l).
We may assume that these apparent poles are mutually different so that all the poles are at most
single. Then the residue at β = β j,k comes from the factors F1, j and F1,k . Now we may assume j < k.
Then a direct computation yields

Resβ=β j,k F1, j = (m j − m j−1)(n j − n j+1)(nk − nk+1)

(m j − mk)
(4.4)

×
j−1∏
i=1

(ni − n j)(mk − m j) − (n j − nk)(m j − mi−1)

(ni − n j)(mk − m j) − (n j − nk)(m j − mi)
(4.5)

×
k−1∏

i= j+1

(n j − ni+1)(mk − m j) − (n j − nk)(mi − m j)

(n j − ni)(mk − m j) − (n j − nk)(mi − m j)
(4.6)

×
l∏

i=k+1

(n j − ni+1)(mk − m j) − (n j − nk)(mi − m j)

(n j − ni)(mk − m j) − (n j − nk)(mi − m j)
, (4.7)

and

Resβ=β j,k F1,k = (mk − mk−1)(nk − nk+1)(n j − nk)(m j−1 − m j)

(mk − m j)
2

(4.8)

×
j−1∏ (ni − nk)(mk − m j) − (n j − nk)(mk − mi−1)

(ni − nk)(mk − m j) − (n j − nk)(mk − mi)
(4.9)
i=1
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×
k−2∏

i= j+1

(ni − nk)(mk − m j) − (n j − nk)(mk − mi−1)

(ni − nk)(mk − m j) − (n j − nk)(mk − mi)
(4.10)

×
l∏

i=k+1

(nk − ni+1)(mk − m j) − (n j − nk)(mi − mk)

(nk − ni)(mk − m j) − (n j − nk)(mi − mk)
. (4.11)

Using the identity (a − b)(x − y) − (c − b)(x − z) = (a − c)(x − y) − (c − b)(y − z), one finds that the
factors (4.5) and (4.9) are equal. Similarly (4.7) and (4.11) are equal. Shifting the index i in (4.6) and
using the above identity, one also finds that

(4.6)

(4.10)
= − (n j − nk)(mk − mk−1)

(n j+1 − n j)(mk − m j)
.

Thus we have

Resβ=β j,k F1, j

Resβ=β j,k F1,k
= − (n j − nk)(mk − mk−1)

(n j+1 − n j)(mk − m j)

(4.5)

(4.9)
= −1.

Therefore we have

Resβ=β j,k F1
({mk}, {nk}, β

) = 0,

such that F1 is a polynomial of β .
Then from the behavior F1 in the limit β → ∞, we find that F1 is a constant as a function of β .

This constant can be calculated by setting β = 0, and the result is

F1
({mk}, {nk}, β

) =
l∑

k=1

(mk − mk−1)nk.

It equals to |λ| if λ is given by (4.2) and mk = j1 + · · · + jk . This is the desired consequence. �
Proposition 4.2. Using the same notation as in Proposition 4.1, we have

∑
(I,λI )∈C(λ)

I−1∏
i=1

λi − λI + β(I − i + 1)

λi − λI + β(I − i)
×

λI −1∏
i=1

λI − i + 1 + β(λ′
i − I)

λI − i + β(λ′
i − I)

× (
λI − (I + 1)β

) =
∑

i

(
λ2

i − 2iλiβ
)
. (4.12)

Proof. As in the proof of Proposition 4.1, set λ = (

j1︷ ︸︸ ︷
n1, . . . ,n1,

j2︷ ︸︸ ︷
n2, . . . ,n2, . . . ,

jl︷ ︸︸ ︷
nl, . . . ,nl ) and mk := j1 +

· · · + jk (k = 1, . . . , l). We can write the left hand side of (4.12) as

F2
({mk}, {nk}, β

) =
l∑

F2,k
({mk}, {nk}, β

)
,

k=1



290 S. Yanagida / Journal of Algebra 333 (2011) 273–294
F2,k
({mk}, {nk}, β

) := (
nk − (mk + 1)β

)
(mk − mk−1)(nk − nk+1)

×
k−1∏
i=1

(ni − nk) + β(mk − mi−1)

(ni − nk) + β(mk − mi)

l∏
j=k+1

(nk − n j+1) + β(m j − mk)

(nk − n j) + β(m j − mk)
.

The residues of F2 are the same as those of F1, and by a similar calculation as in Proposition 4.1,
one can find that F2 is a polynomial of β . The behavior of F2 in the limit β → ∞ shows that F2 is a
linear function of β .

Using the original expression (4.12), we find that

F2
({mk}, {nk},0

) =
∑

i

λ2
i .

In order to determine the coefficient of β in F2, we rewrite F2 as the rational function of β−1, and
take the limit β−1 → ∞. The result is

lim
β→∞

(
β−1 F2

({mk}, {nk}, β
)) = −

l∑
k=1

(mk + 1)(mk − mk−1)(nk − nk+1)
mk

mk − mk−1

= −
l∑

k=1

nk(mk − mk−1)(mk + mk−1 + 1).

A moment thought shows that this becomes −∑
i 2iλi if {mk} and {nk} correspond to λ. Thus the

proof is complete. �
5. Conclusion and remarks

We have investigated the expansions of Whittaker vectors for the Virasoro algebra in terms of Jack
symmetric functions. As we have mentioned in Section 1, the paper [3, (3.18)] proposed a conjecture
on the factored expression for the Gaiotto state of the deformed Virasoro algebra using Macdonald
symmetric functions. However, our proof cannot be applied to this deformed case. The main obstruc-
tion is that the zero-mode T0 of the generating field T (z) of the deformed Virasoro algebra behaves
badly, such that one cannot analyze its action on Macdonald symmetric functions, and cannot obtain
a recursive formula similar to the one in Proposition 3.7.

It is also valuable to consider the W (sln)-algebra case. In [21] a degenerate Whittaker vector is
expressed in terms of the contravariant form of the W (sl3)-algebra. At this moment, however, we
don’t know how to treat Whittaker vectors for W (sln)-algebra. It seems to be related to the higher
rank analogues of the AGT conjecture (see [23] for examples).
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Appendix A. AGT relation

This appendix is devoted to the explanation of the AGT relation for pure SU(2) gauge theory, and
its connection to the formula given in our main theorem. This section is not necessary for the main
argument of this paper.
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A.1. AGT relation for pure SU(2) gauge theory

The original AGT conjecture [1] states the equivalence between the Liouville conformal blocks and
the Nekrasov partition functions [15]. In [9] the degenerated versions of the conjecture were pro-
posed. As the most simplified case, it was conjectured that the norm of the Gaiotto state of Virasoro
algebra coincides with the Nekrasov partition function for the four-dimensional pure SU(2) gauge
theory.

First we introduce the contravariant form (Shapovalov form) on the Verma module Mh . Let us
denote the (restricted) dual Verma module by M∗

h . This is a right Virc-representation generated by 〈h|
with 〈h|Virc,+ = 0 and 〈h|L0 = h〈h|. The contravariant form is the bilinear map

· : M∗
h × Mh → C

determined by

〈h| · |h〉 = 1, 0 · |h〉 = 〈h| · 0 = 0, 〈h|u · |h〉 = 〈h| · u|h〉 (u ∈ Vir).

Fix a complex number Λ.3 In this section we denote by |G〉 ∈ Mh
4 the Gaiotto state

L1|G〉 = Λ2|G〉, Ln|G〉 = 0 (n > 1).

normalized as

|G〉 = |h〉 + · · · .

This normalization condition means that the homogeneous component of |G〉 in Mh,0 is |h〉, i.e., the
coefficient c∅(α,β) in (1.12) is set to be one.

Let us also define the anti-homomorphism

† : U (Virc,−) → U (Virc,+), L−n �→ Ln.

We will also denote the action of this map as L†
−n = Ln . It induces a linear map Mh → M∗

h , which is
also written by †. We define 〈G| := (|G〉)†.

Next we recall the Nekrasov partition function (see [15] and [4,5,16,17]). It has a geometric
meaning, but here we only give the next combinatorial expression. Let r ∈ Z�2 and x, ε1, ε2,

−→a =
(a1, . . . ,ar) be indeterminates. Then the Nekrasov partition function Z rank=r(x;ε1, ε2,

−→a ) for pure
SU(r) gauge theory is defined to be:

Z rank=r(x;ε1, ε2,
−→a ) :=

∑
−→
Y

x|−→Y |∏
1�α,β�r n

−→
Y
α,β(ε1, ε2,

−→a )
,

n
−→
Y
α,β(ε1, ε2,

−→a ) :=
∏

�∈Yα

[−�Yβ (�)ε1 + (
aYα (�) + 1

)
ε2 + aβ − aα

]
×

∏
�∈Yβ

[(
�Yα (�) + 1

)
ε1 − aYβ (�)ε2 + aβ − aα

]
. (A.1)

3 In this subsection we use the notations in the physics literatures. Do not confuse this parameter Λ and the notation Λ of
the ring of symmetric functions.

4 Do not confuse this symbol |G〉 for the Gaiotto state and the symbol |h〉 for the highest weight vector.
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Table 1
Parameter correspondence.

Virasoro Nekrasov

c 13 + 6(ε1/ε2 + ε2/ε1)

h ((ε1 + ε2)2 − (a2 − a1)2)/4ε1ε2

Λ x1/4/(ε1ε2)1/2

Here
−→
Y = (Y1, . . . , Yr) is an r-tuple of partitions, |−→Y | := |Y1| + · · · + |Yr |, and aY (�), �Y (�) are the

arm and leg of the box � with respect to Y as

aλ(�) := λi − j, �λ(�) := λ′
j − i.

Note that for the case i > �(λ) the number λi should be taken as λi = 0, and for j > λ1 the number λ′
j

taken as λ′
j = 0. Thus aλ(�) and �λ(�) could be minus in general, although such cases don’t occur in

the norm of Jack symmetric functions.
Now the statement of the simplest case of the Gaiotto conjectures is

〈G|G〉 ?= Z rank=2(x;ε1, ε2,
−→a ). (A.2)

Here the parameters are related as in Table 1.
Note that this degenerate version of the AGT conjecture is proved by the method of Zamolodchikov-

type recursive formula in the papers [6] and [10].

A.2. Comparison of the inner products

Our formula (1.12) describes the Gaiotto state |G〉 by Jack symmetric functions. In order to calculate
the norm 〈G|G〉, we should compare the contravariant form · : M∗

h → Mh and the inner product 〈·,·〉
on Λ.

Let us recall the isomorphism ιβ :

ιβ : Fα → ΛC, a−n|α〉 �→ pn · β1/2/
√

2 (n > 0).

In order to give the consistency between the bilinear form · : F ∗
α × Fα → C on the Heisenberg–Fock

space and the contravariant form · : M∗
h × Mh → C on the Verma module of the Virasoro algebra, we

need to give the anti-homomorphism

ω : Fα → F ∗
α

such that

〈h|u†
1 · u2|h〉 = F 〈α|ω(

ϕ(u1)
) · ϕ(u2)|α〉F

holds for any u1, u2 ∈ U (Virc,+), where ϕ : U (Virc) → Û (H) is the bosonization map (1.5).
The consistent definition of ω is given as follows [12,22]:

ω(an) = a−n − 2ρδn,0, ω(ρ) = −ρ.

It implies for the parametrization ρ = −(β1/2 − β−1/2)/
√

2 that ω(β1/2) = −β1/2. Then we can spell
out the inner product on Λ which is consistent with the contravariant form on the Verma module Mh:

〈pn, pm〉 = F 〈α|ω(√
2β−1/2a−n

) · √2β−1/2a−m|α〉F = −2n/β · δn,m.
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This is the inner product 〈·,·〉−2/β defined in (1.11). But the Jack symmetric function orthogonal with

respect to it is P (−2/β)
λ , not P (1/β)

λ which is used in our expansion.
Thus the AGT relation (A.2) is equivalent to∑

λ,μ∈P
Λ2|μ|+2|λ|cλ(α,β)cμ(α,β)

〈
P (1/β)

λ , P (1/β)
μ

〉
−2/β

?= Z rank=2(x;ε1, ε2,
−→a ). (A.3)

Now one may easily find that〈
P (1/β)

λ , P (1/β)
μ

〉
−2/β

= 0 unless |λ| = |μ|.

Using this fact and comparing the homogeneous parts (the coefficients of Λ4d and those of xd) of
both sides in (A.3), one finds that (A.2) is equivalent to∑

λ,μ�d

cλ(α,β)cμ(α,β)
〈
P (1/β)

λ , P (1/β)
μ

〉
−2/β

?= (ε1ε2)
2d

∑
λ,μ∈P

|λ|+|μ|=d

1∏
1�α,β�2 n(λ,μ)

α,β (ε1, ε2,
−→a )

(A.4)

for each d ∈ Z�0. In the right hand side we changed the notation
−→
Y ∈ P 2 to the pair (λ,μ) ∈ P 2.

Note that the ranges of running indexes in the left and right sides are different. Eq. (A.4) seems to
contain non-trivial relations among the ‘non-diagonal’ pairings 〈P (1/β)

λ , P (1/β)
μ 〉−2/β . According to the

computer experiment, these parings have complicated looks (in particular, no factored expressions)
in general, although each summand in the right hand side of (A.4) is factored. A combinatorial proof
of (A.4) would be another justification of the AGT relation (A.2), but we have no clue to show it
directly at this moment.

We have another combinatorial restatement of (A.2). If λ � d, then one can expand P (1/β)
λ ∈ Λd

C
by

the basis {P (−2/β)
ν | ν � d} of Λd

C
. Let us express it as

P (1/β)
λ =

∑
ν �d

γ ν
λ (β)P (−2/β)

ν , γ ν
λ (β) ∈ C. (A.5)

Then by an elementary calculation one finds that (A.2) is equivalent to∑
λ,μ,ν �d

cλ(α,β)cμ(α,β)γ ν
λ (β)γ ν

μ(β)Nν(−2/β)

?= (ε1ε2)
2d

∑
λ,μ∈P

|λ|+|μ|=d

1∏
1�α,β�2 n(λ,μ)

α,β (ε1, ε2,
−→a )

. (A.6)

Here we have used the norm of Jack symmetric function

Nν(b) := 〈
P (b)

ν , P (b)
ν

〉
b =

∏
�∈ν

aν(�) + b�ν(�) + 1

aν(�) + b�ν(�) + b
.

According to the computer experiment, the coefficient γ
μ
λ (β) in the expansion (A.5) doesn’t have a

factored expression in general, although it looks a little simpler than the pairing 〈P (1/β)
λ , P (1/β)

μ 〉−2/β .
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One might find an explicit formula of γ
μ
λ (β). However a direct proof of (A.6) will require a manipu-

lation on the changes of indexes from λ,μ,ν � d to λ,μ ∈ P with |λ| + |μ| = d, which seems to be
hard at this moment.
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